OHDSI NLP WG Monthly Meeting

03/13/2019

Agenda

- Introduction of New Members
- Leveraging and Enriching Common Data Model towards Portable
 Clinical NLP System Yuan Luo
- Ongoing projects
- Other issues

PRESENTATION

Leveraging and Enriching Common Data Model towards Portable Clinical NLP System

Yuan Luo

Leveraging and Enriching Common Data Model towards Portable Clinical NLP System

Yuan Luo

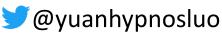
Assistant Professor

Department of Preventive Medicine

Departments of IEMS and EECS (Courtesy)

Northwestern University

yuan.luo@northwestern.edu



3/13/2019

Introduction

- We introduce portability to NLP-driven phenotyping of unstructured clinical records
- We present a portable phenotyping system that facilitates portability across different institutions and data systems
- The portability is introduced by storing key components of rulebased NLP systems' and standard NLP pipelines' results as annotations using the format defined in OMOP CDM
- Experimental results on i2b2's Obesity Challenge show the feasibility of our system

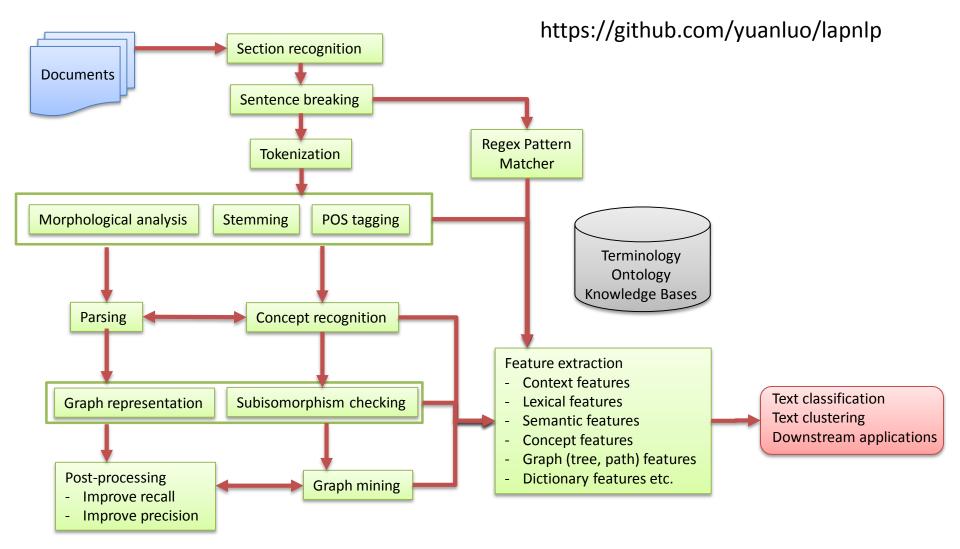
O. Uzuner, "Recognizing Obesity and Comorbidities in Sparse Data," *Journal of the American Medical Informatics Association*, vol. 16, no. 4, pp. 561-570, 2009.

Clinical Note Processing

- Deabbreviation: all abbreviations are translated back to full terms
- Section and boundary detection: record the start and end position of each section
- Rule-based components annotation: annotate the key components by rule-based methods
- Annotation Feature Extraction and Mapping: parse the files by MetaMap to extract CUIs
- Annotation storing: store annotations in OMOP CDM tables (Note and Note_NLP tables)

3

Bigger Picture - NLP Workflow



Yuan Luo (Northwestern)

Developing and Enriching Portable NLP Phenotyping System 3/13/2019

4

Introduction Inline vs. Stand-off Annotation

In-line annotation

The₃ patient₁₁ underwent₂₁ an₂₄ ECHO₂₉ and₃₃ endoscopy₄₃ at₄₆ <PHI TYPE="Hospital">Beth₅₁ Israel₅₈ Deaconess₆₈ Medical₇₆ Center₈₃</PHI> on₈₆ <PHI TYPE="Date">April₉₂ 28₉₅</PHI>.

Stand-off annotation

Start	End	Annotation Type	Annotation Attribute
48	83	PHI	Type=Hospital
88	95	PHI	Type=Date

Y Luo, P Szolovits . Efficient queries of stand-off annotations for natural language processing on electronic medical records. *Biomedical informatics insights. 2016 Jan;8:BII-S38916.*

5

Yuan Luo (Northwestern)Developing and Enriching Portable NLP Phenotyping System3/13/2019

Selected CUIs Related Clinical Tasks

TUI	Semantic group	Semantic type description
T017	Anatomy	Anatomical Structure
Т022	Anatomy	Body System
Т023	Anatomy	Body Part, Organ, or Organ Component
T033	Disorders	Finding
T034	Phenomena	Laboratory or Test Result
T047	Disorders	Disease or Syndrome
T048	Disorders	Mental or Behavioral Dysfunction
T049	Disorders	Cell or Molecular Dysfunction
т059	Procedures	Laboratory Procedure
Т060	Procedures	Diagnostic Procedure
T061	Procedures	Therapeutic or Preventive Procedure
T121	Chemicals & Drugs	Pharmacologic Substance
T122	Chemicals & Drugs	Biomedical or Dental Material
T123	Chemicals & Drugs	Biologically Active Substance
T184	Disorders	Sign or Symptom

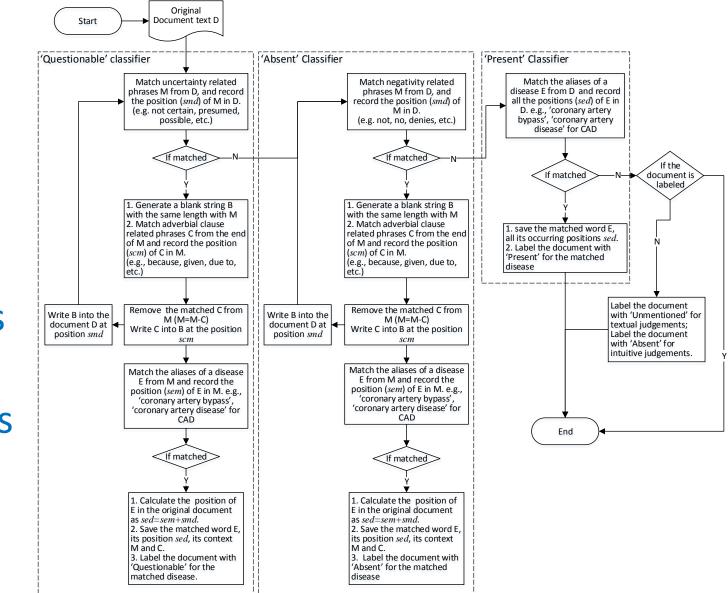
W.-H. Weng, K. B. Wagholikar, A. T. McCray, P. Szolovits, and H. C. Chueh, "Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach," *BMC Medical Informatics and Decision Making*, vol. 17, no. 1, 2017.

Yuan Luo (Northwestern)Developing and Enriching Portable NLP Phenotyping System3/13/2019

Note_NLP Table Data Elements

Column name	Description
note_nlp_id	A unique identifier for each term extracted from a note. A randomly generated auto-incremented number.
note_id	A foreign key. The note_id from the Note table from the note the term was extracted from.
section_concept _id	The representation of the section that extracted concept belongs to.
snippet	A threshold (e.g., +/- 100 characters from the end/start of the phrase)
offset	Provided by the MetaMap in the output file.
lexical_variant	The actual phrase text that MetaMap generates.
note_nlp_conce pt_id	The concepts or CUIs.
nlp_system	NLP tool.
nlp_date_time	Date and Time of creation/running

Anchoring Regular Expression Matches as Stand-Off Annotations



Yuan Luo (Northwestern)

Developing and Enriching Portable NLP Phenotyping System 3/13/2019

Key Components Annotation

diseas	e dis_pos	dis_alias	sen_pos	sentence	
CHF	(50, 53)	chf	(1558, 1611)	the patient was presumed to have pneumonia versus chf	Questionable
					Questionable

disease	dis_pos	dis_alias	sen_pos	sentence	
CAD	(15, 38)	coronary	(797, 836)	no evidence of coronary artery disease	Absent

disease: The name of the disease. sentence: The key sentence or phrase that indicates the classification.

sen_pos: The position of the key sentence or phrase in the original record.

dis_alias: The matched alias name of the disease.

dis_pos: The matched position of this match (in the corresponding key sentence).

disease	dis_pos	dis_alias	
Venous Insufficiency	(2839, 2852)	venous stasis	
Venous Insufficiency	(8918, 8931)	venous stasis	
OA	(3466, 3480)	osteoarthritis	
Diabetes	(293, 301)	diabetes	
Diabetes	(464, 472)	diabetes	声 Presen
Diabetes	(1676, 1684)	diabetes	
Diabetes	(7874, 7882)	diabetes	
Diabetes	(1647, 1655)	diabetic	
CHF	(500, 524)	congestive heart failure	
CHF	(1586, 1610)	congestive heart failure	

Experiments

Classifiers and parameters for grid search

Classifier	Parameter grid
LR	'C':[0.01,0.1,1,10,100]
SVM	'C':[0.01,0.1,1,10,100], 'kernel':['linear', 'rbf']
DT	'criterion':['gini','entropy']
RF	'n_estimators':[5,10,30,50,80,100], 'criterion':['gini','entropy']

LR: Logistic Regression; SVM: Support Vector Machine; DT: Decision Tree; RF: Random Forest

Experiments

- The number of each CUI represents the frequency of occurrence of the CUI in a medical record and serves as a feature of the record.
- Only using machine learning approaches on the features of the records for classification
 - Use multi-class classification algorithms to all classes (4 classes on obesity data. Y, N, Q, U)
- Integrating rule-based and machine learning based approaches for classification.
 - For major classes, use machine learning methods.
 - For minor classes, use Solt's rule-based methods [1].

I. Solt, D. Tikk, V. Gal, and Z. T. Kardkovacs, "Semantic Classification of Diseases in Discharge Summaries Using a Context-aware Rule-based Classifier," *Journal of the American Medical Informatics Association*, vol. 16, no. 4, pp. 580-584, 2009.

The classification results for all classes on all CUIs corresponding to the original records

Intuitive								
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro		
LR	0.8719	0.5792	0.8719	0.5509	0.8719	0.5618		
SVM	0.8727	0.5776	0.8727	0.5537	0.8727	0.5632		
DT	0.9281	0.6113	0.9281	0.6116	0.9281	0.6115		
RF	0.8524	0.5626	0.8524	0.5349	0.8524	0.5454		
			Textual					
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro		
LR	0.8846	0.4379	0.8846	0.4195	0.8846	0.4268		
SVM	0.8886	0.4384	0.8886	0.4243	0.8886	0.4300		
DT	0.9436	0.5127	0.9436	0.5115	0.9436	0.5121		
RF	0.8621	0.4220	0.8621	0.4044	0.8621	0.4112		

*the best results are bolded.

The classification results for all classes on all CUIs corresponding to the records without family history

Intuitive							
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro	
LR	0.8716	0.5794	0.8716	0.5503	0.8716	0.5615	
SVM	0.8735	0.5780	0.8735	0.5546	0.8735	0.5640	
DT	0.9331	0.6159	0.9331	0.6149	0.9331	0.6154	
RF	0.8627	0.5685	0.8627	0.5462	0.8627	0.5551	
			Textual				
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro	
LR	0.8836	0.4372	0.8836	0.4189	0.8836	0.4262	
SVM	0.8895	0.4391	0.8895	0.4248	0.8895	0.4306	
DT	0.9475	0.5284	0.9475	0.5199	0.9475	0.5238	
RF	0.8618	0.4210	0.8618	0.4049	0.8618	0.4112	

*the best results are bolded.

The classification results for all classes on 15 types of selected CUIs corresponding to the records without family history

Intuitive							
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro	
LR	0.9024	0.6040	0.9024	0.5763	0.9024	0.5874	
SVM	0.9077	0.6055	0.9077	0.5831	0.9077	0.5924	
DT	0.9299	0.6131	0.9299	0.6129	0.9299	0.6130	
RF	0.8784	0.5849	0.8784	0.5559	0.8784	0.5671	
			Textual				
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro	
LR	0.9145	0.4560	0.9145	0.4410	0.9145	0.4472	
SVM	0.9227	0.5832	0.9227	0.4532	0.9227	0.4607	
DT	0.9452	0.4878	0.9452	0.4785	0.9452	0.4807	
RF	0.8830	0.4353	0.8830	0.4195	0.8830	0.4258	

*the best results are bolded.

The classification results for major classes on all CUIs corresponding to the original records

Intuitive								
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro		
LR	0.8709	0.6457	0.8709	0.5733	0.8709	0.5960		
SVM	0.8724	0.6444	0.8724	0.5770	0.8724	0.5981		
DT	0.9311	0.6804	0.9311	0.6374	0.9311	0.6488		
RF	0.8466	0.6226	0.8466	0.5559	0.8466	0.5765		
			Textual					
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro		
LR	0.8882	0.7846	0.8882	0.7085	0.8882	0.7397		
SVM	0.8930	0.7858	0.8930	0.7135	0.8930	0.7434		
DT	0.9545	0.8167	0.9545	0.7636	0.9545	0.7854		
RF	0.8882	0.7846	0.8882	0.7085	0.8882	0.7397		

*the best results are bolded, the shaded results can be among the top 10 results reported in [2].

The classification results for major classes on all CUIs corresponding to the records without family history

Intuitive							
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro	
LR	0.8723	0.6473	0.8723	0.5741	0.8723	0.5970	
SVM	0.8732	0.6448	0.8732	0.5780	0.8732	0.5989	
DT	0.9339	0.6829	0.9339	0.6392	0.9339	0.6509	
RF	0.8559	0.6317	0.8559	0.5623	0.8559	0.5838	
			Textual				
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro	
LR	0.8886	0.7854	0.8886	0.7083	0.8886	0.7398	
SVM	0.8938	0.7865	0.8938	0.7139	0.8938	0.7439	
DT	0.9546	0.8164	0.9546	0.7640	0.9546	0.7855	
RF	0.8640	0.7665	0.8640	0.6934	0.8640	0.7233	

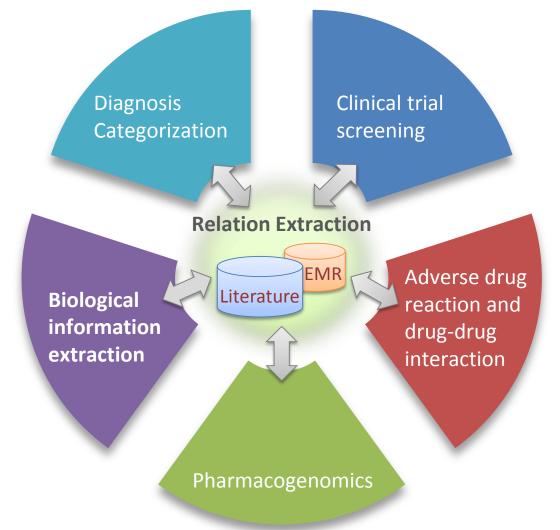
*the best results are bolded, the shaded results can be among the top 10 results reported in [2].

Yuan Luo (Northwestern)Developing and Enriching Portable NLP Phenotyping System3/13/201916

The classification results for major classes on 15 types of selected CUIs corresponding to the records without family history

Intuitive						
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro
LR	0.9001	0.6695	0.9001	0.5979	0.9001	0.6206
SVM	0.9074	0.6725	0.9074	0.6065	0.9074	0.6274
DT	0.9285	0.6783	0.9285	0.6355	0.9285	0.6467
RF	0.8690	0.6417	0.8690	0.5740	0.8690	0.5952
Textual						
	P-Micro	P-Macro	R-Micro	R-Macro	F-Micro	F-Macro
LR	0.9188	0.8037	0.9188	0.7303	0.9188	0.7608
SVM	0.9273	0.8060	0.9273	0.7388	0.9273	0.7669
DT	0.9538	0.8160	0.9538	0.7633	0.9538	0.7849
RF	0.8864	0.7823	0.8864	0.7081	0.8864	0.7386

*the best results are bolded, the shaded results can be among the top 10 results reported in Uzuner et al. The 15 types of selected CUIs are considered most related to clinical tasks in Weng et al.



Y Luo, Ö Uzuner, P Szolovits. Bridging Semantics and Syntax with Graph Algorithms - State-of-the-Art of Extracting Biomedical Relations. *Briefings in Bioinformatics 2016 18 (1), 160-178. PMCID: 5221425*

Yuan Luo (Northwestern)Developing and Enriching Portable NLP Phenotyping System3/13/201918

 "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."

- "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."
- The sentence tells relationships among procedures, cells, and immunologic factors

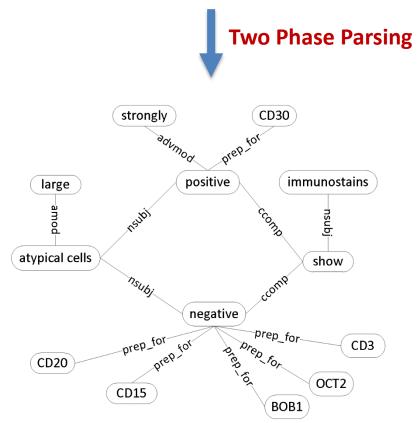
- "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."
- The sentence tells relationships among procedures, cells, and immunologic factors
- Feature choices
 - Words
 - UMLS (Unified Medical Language System) concepts, e.g. LCA and CD45

- "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."
- The sentence tells relationships among procedures, cells, and immunologic factors
- Feature choices
 - Words
 - UMLS (Unified Medical Language System) concepts, e.g. LCA and CD45
- Can we do better? Relations?

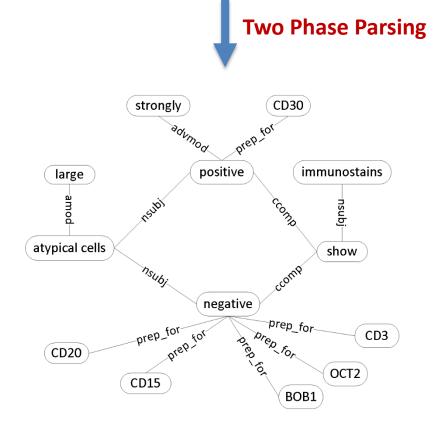
- "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."
- The sentence tells relationships among procedures, cells, and immunologic factors
- Feature choices
 - Words
 - UMLS (Unified Medical Language System) concepts, e.g. LCA and CD45
- Can we do better? Relations?

Graph representation is the universal language for modeling relationships among flexible number of concepts

 "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."

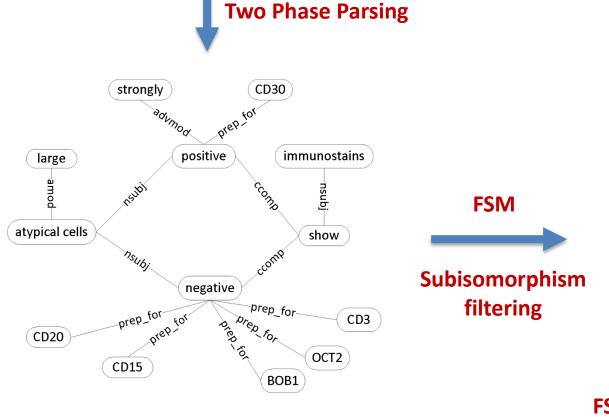


 "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."



Important relations are likely to be repeated in pathology daily practice: large atypical cells are positive for CD30 \Rightarrow sign of Hodgkin lymphoma etc. \Rightarrow frequently ordered test

 "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."



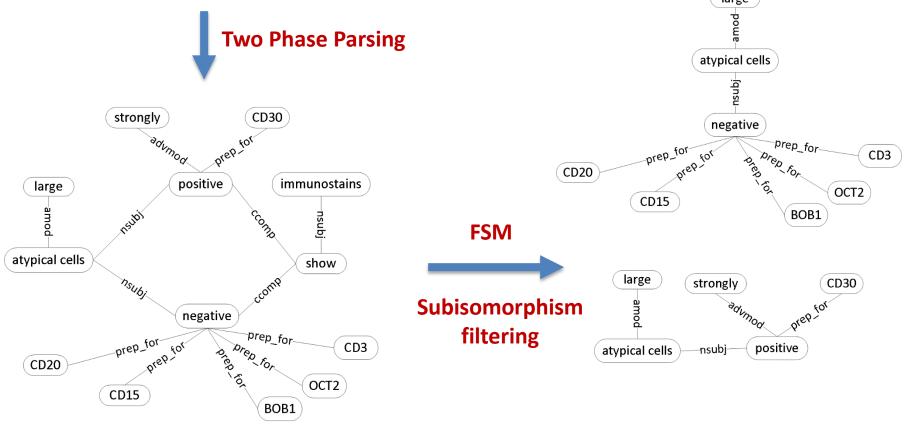
FSM: frequent subgraph mining

Yuan Luo (Northwestern)

Developing and Enriching Portable NLP Phenotyping System 3/13/2019

26

 "Immunostains show the large atypical cells are strongly positive for CD30 and negative for CD15, CD20, BOB1, OCT2 and CD3."



FSM: frequent subgraph mining

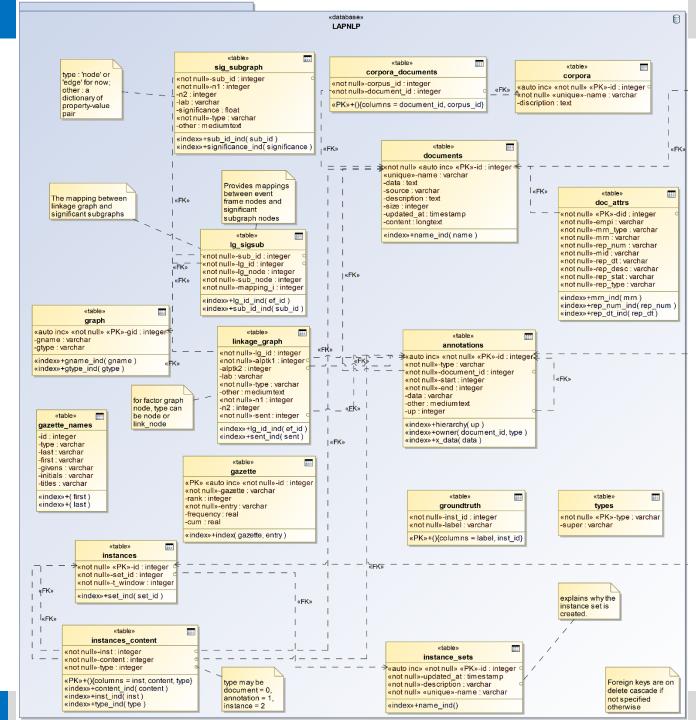
Yuan Luo (Northwestern)

Developing and Enriching Portable NLP Phenotyping System 3/13/2019

27

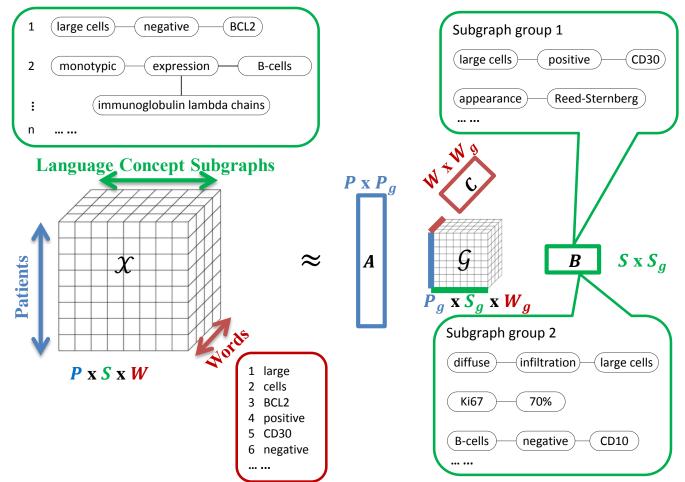
Persistent Storage – an extended Common Data Model (CDM)

https://github.com/ yuanluo/lapnlp



Use Cases

Computational Phenotyping of Lymphoma



Y Luo, A Sohani, E Hochberg and P Szolovits. Automatic Lymphoma Classification with Sentence Subgraph Mining from Pathology Reports. *JAMIA 2014 21(5):824-832*.

Y Luo, Y Xin, E Hochberg, R Joshi, O Uzuner, P Szolovits. Subgraph Augmented Non-Negative Tensor Factorization (SANTF) for Modeling Clinical Text. *JAMIA 2015 22(5): 1009-1019*.

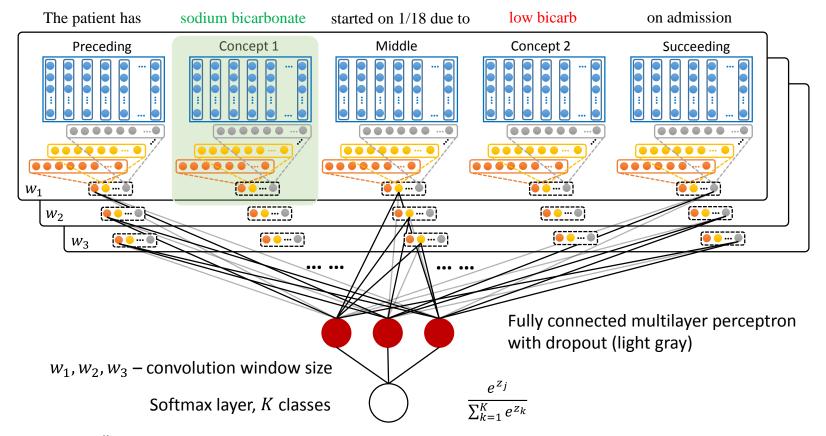
Yuan Luo (Northwestern)Developing and Enriching Portable NLP Phenotyping System3/13/2019

Semantic Relation Extraction

https://github.com/yuanluo/seg_cnn

Relation Label:

Treatment Administered for Medical Problem



Y Luo, Y Cheng, Ö Uzuner, P Szolovits, J Starren. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. *JAMIA 2017 Aug 31;25(1):93-8*.

Yuan Luo (Northwestern)Developing and Enriching Portable NLP Phenotyping System3/13/2019

Conclusion

- We develop a portable phenotyping system that is capable of integrating both rule-based and statistical machine learning based phenotyping approaches
- Our system can mine and store both standard UMLS features and the key features of rule-based systems from the unstructured text
- Our system can thus enable the development of new standard UMLS feature based NLP systems as well as the reuse, adaptation and extension of many existing rule-based clinical NLP systems
- We propose extensions to OMOP CDM NOTE and NOTE_NLP tables, especially with enhancement for relation extraction and graph mining

Thank you

- Collaboration welcome
- <a>yuan.luo@northwestern.edu
- 🍯 @yuanhypnosluo

Ongoing projects

- Mapping of Note Types to LOINC/standard vocabulary Karthik Natarajan, Ruth Reeves, and Jon Duke
- Landscape Analysis of section identifier systems and proposal of a standard terminology for use – Hua Xu and Karthik Natarajan
- Mapping of CUIs to standard terminology Juan Banda
- Standardization of term_modifiers and values Hua Xu
- Evaluate and revise textual CDM tables by sharing practical issues and lessons learnt during ETL for processing textual data into CDM – Ruth Reeves, others?
- Develop tools (within Atlas) to facilitate uses of NLP data for cohort building/phenotyping : Collaborate with eMERGE consortium
- Conduct cross-site studies that use textual data
- Continue developing other NLP resources

Other issues

- Presentation scheduling
 - April 10th Jon Duke ClarityNLP
 - May 8th Juan Banda CUI mapping, ongoing work Juan, Stephan Meyestre – tool to evaluate NLP systems
 - June 12th
 - July 10th
- Please let us know if you can present your related work at any of the above meetings.