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Abstract 

The OHDSI datasets provide an unprecedented opportunity to investigate predictive modeling at the population and 
individual levels. Here we investigate the task of survival analysis in the context of observational health record data. 
We present Deep Survival Analysis, a novel hierarchical generative approach to survival analysis. It departs from 
previous approaches in two primary ways: (1) all observations, including covariates, are modeled jointly 
conditioned on a rich latent structure; and (2) the observations are aligned by their failure time, rather than by an 
arbitrary time zero like in traditional survival analysis. Further, it (3) handles heterogeneous (continuous and 
discrete) data types that occur in an electronic health record in a scalable manner. We validate the deep survival 
analysis model on stratifying patients according to risk of developing Coronary Heart Disease. We train and test the 
model on a dataset of 313,000 patients corresponding to 5.5 million months of observations. When compared to the 
clinically validated Framingham CHD risk score, our model is significantly superior in stratifying patients 
according to their risk. 

Introduction 

Our goal is to leverage observational data like the ones in OHDSI to estimate the time of a future event of interest 
for given individual, namely, to carry out survival analysis. When used at the point of care, accurately estimating the 
time to an event can improve clinical decision support by allowing physicians to take risk-calibrated actions. To 
learn useful estimates however, large amounts of longitudinal patient trajectories are needed. We illustrate our work 
in the context of survival analysis for coronary heart disease (CHD). CHD, also known as coronary artery disease or 
ischemic heart disease, is the most common type of heart disease and the leading cause of death worldwide causing 
1 in every 4 deaths. There are many effective lifestyle interventions and preventive therapies to reduce risk of 
morbidity and mortality of CHD, but because they themselves can be risky for patients, there is great value in 
identifying accurately the patients that are at high risk of a CHD event. Beyond CHD, there are many conditions 
where a similar need for estimating risk arises, and clinicians have routinely been relying on clinically validated risk 
scores for individual patients to make treatment decisions (e.g., prostate cancer, breast cancer, stroke).  

The standard approach to developing risk scores hinges on regressing covariates to the time of failure on a curated 
set of patient data. The significant covariates in the analysis are then summarized in an easy-to-use table (e.g., the 
Wilson et al. table for CHD [1]. However, this approach has serious limitations when it comes to using it with data 
derived from observational data like in the EHR. First, regression requires complete measurement of the covariates 
for all patients; in practice, many are missing. Second, all patients are aligned based on some initial event (e.g., entry 
into trial, onset of a disease related to event of interest, start of medication, etc.). Third, the relationship between the 
covariates and the time of the medical event is assumed to be linear, possibly with some interaction terms.  

Methods 

We present a novel model for survival analysis from EHR data, which we call deep survival analysis. Full details of 
the model are available [2]. For the sake of space, we describe the main contributions of the model and our 
experiments here. Deep survival analysis handles the biases and other inherent characteristics of observational EHR 
data, and enables accurate risk scores for an event of interest. The key contributions of our method are: 

• Deep survival analysis models covariates and survival time in a Bayesian framework, thus handling the missing 
covariates prevalent in EHR and OHDSI data; 



  

• Deep exponential families [3], a deep latent variable model, forms the backbone of the generative process. This 
results in a non-linear latent structure that 
captures complex dependencies between 
the covariates and the failure time; 

• Rather than enforcing an artificial time 0 
alignment for all patients, deep survival 
analysis aligns all patients by their failure 
time (i.e., the event occurs or data is right 
censored) (see Figure 1); 

• Good preprocessing of EHR data allows 
deep survival analysis to include 
heterogeneous data types. We include 
vitals, laboratory measurements, 
medications, and diagnosis codes; 

Results 

We experiment with the Columbia University OHDSI site dataset and focus on 313,000 adult patient records (309K 
for training, 2K for validation, and 2K for testing). We used deep survival analysis to assess the risk of coronary 
heart disease. In our experiments, we vary the dimensionality of the deep exponential family latent structure to 
assume the values of K ∈ {5, 10, 25, 75, 100}. The baseline clinically validated CHD risk score [1] yielded 68.06% 
in concordance over the held-out test set. In comparison, our model yielded 75.34% concordance (K=50) (Table 1). 

While the concordance metric enables the comparison of the deep survival model to the baseline method, it captures 
only roughly the accuracy of the temporal prediction of the models. In the case of the deep survival model, we are 
able to compute the predictive likelihood of the held-out set according to the model. This enables us to capture how 
well the model predicts failure in time.  Table 2 shows predictive likelihood, evaluated as the expected log 
probability of the observed time until failure under the deep survival analysis model conditioned on the observed 
covariates for a given patient in a given month. The diagnosis-only model yielded the best predictive likelihood. 

Table 1. Concordance the deep survival analysis on held-out set for different values of K and for the baseline risk score. 

Model Deep 
Survival 
K=5 

Baseline 
CHD risk 
score 

Deep 
Survival 
K=10 

Deep 
Survival 
K=100 

Deep 
Survival 
K=25 

Deep 
Survival 
K=75 

Deep 
Survival 
K=50 

Concordance (%) 65.81 68.06 68.22 71.02 73.77 74.80 75.34 
 

Table 2. Predictive likelihood of the deep survival model (K=50) for individual data types.  

Data type included in 
model 

Medications 
only 

Vitals only Laboratory 
tests only 

Diagnoses 
only 

Predictive likelihood -1.12538 -1.06543 -0.974539 -0.721999 
 

Conclusion 

While traditional survival analysis techniques require carefully curated research datasets, our approach handles the 
unavoidable data sparsity and heterogeneity of EHR observations. Our approach holds particular promise for 
developing risk scores from observational data for conditions where there is no known risk score.
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Figure 1. A comparison of traditional survival analysis (top frame) and failure 
aligned survival analysis (bottom frame). A filled circle represents an observed 
event, while an empty circle represents a censored one. In the case of standard 
survival analysis patients in a cohort are aligned by a starting event. In failure 
aligned survival analysis, patients are aligned by a failure event. 


