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Abstract 

Negative control exposure-outcome pairs should be more commonly employed in observational studies to reduce the 

potential for systematic error
1,2

. When employed, negative controls help to identify and calibrate for confounding as 

well as other sources of error. The process for identifying negative controls (either exposure controls or outcome 

controls) for use in observational studies requires time-consuming, manual curation of information from various 

knowledge sources. Here we demonstrate a means for automating the selection of candidate negative controls by 

leveraging an open-source standardized evidence base known as LAERTES (Large-scale Adverse Effects Related to 

Treatment Evidence Standardization) made available through the Observational Health Data Sciences and 

Informatics (OHDSI) collaborative.  

Introduction 

The LAERTES evidence base integrates several sources of evidence for investigating the association between drugs 

and health outcomes of interests (HOIs) into a single data source. Evidence is sourced from spontaneous reports, 

scientific literature, and both American and European product labeling. A statistical model was created using the 

evidence in LAERTES for discriminating between known positive drug-HOI causal relationships and drugs known 

to be unassociated with an outcome.  

ATLAS is an open-source platform made available through OHDSI that provides a single user-experience for 

generating evidence. ATLAS has been integrated with LAERTES to provide a workflow for automatically 

identifying positive and negative controls.  

Methods 

The LAERTES evidence base contains information from spontaneous reports, scientific literature, and product 

labeling.  Spontaneous reporting evidence is culled from the FDA Adverse Event Reporting System (FAERS) and 

includes counts of reports and proportional reporting ratio (PRR) scores
3,4

.  Evidence from the scientific literature 

was generated through two methods: one leveraging Medical Subject Headings (MeSH) tags following the process 

described by Avillach et al.
5
, and another (SemMedDB) that uses relationships semantically tagged within Medline 

abstracts natural language processing
6
.  The results of these two methods are additionally stratified by Medline 

publication types: clinical trials, case report, and all other abstracts (i.e., of type Meta-Analysis, Comparative Study, 

Multicenter Study, or Journal Article).  Finally, American product labels are parsed by a method developed by Duke 

et al.
8
, and ADRs mentioned in European labels are provided by the PROTECT project

7
.   

The evidence in LAERTES was narrowed down to a “universe” of drugs and HOIs that met a specific, minimum 

criterion of evidence. The minimum criteria is defined as: the condition or ingredient had at least one FAERS 

evidence item, one Medline evidence item and one evidence item from a product label. This step was taken because 

a condition or drug that did not meet the minimum criteria might indicate a lack of clinical experience.  

 

Logistic regression was used to build a multivariable prediction model on the LAERTES data that could 

discriminate between positive and negative controls. Regularization with a Laplace prior on the regression 

coefficients was used to allow the model to perform parameter selection. A union of the OMOP Reference Set 
9
 and 

the Exploring and Understanding Adverse Drug Reactions (EU-ADR) Reference Set 
10-12

 was used to train our 

classifier. The prediction accuracy was estimated using leave-pair-out cross-validation. 

 



  

An automated process was developed to expose the prediction model along with the evidence “universe” to return 

positive and negative controls. The input to the algorithm is a list of OMOP concept ids that define either a drug 

ingredient or an HOI. When given a drug ingredient, the algorithm will return the full “universe” of HOIs with 

counts for each evidence source and the predicative values. It works in a similar fashion when given an HOI, the 

algorithm will return the same information for all drug ingredients in the “universe”.  

Results 

Figures 1 provides an example of input to the negative controls algorithm while Figure 2 shows the output including 

the evidence counts, by source and the prediction values. 

 

Figure 1. Input to the negative control algorithm (HOI: Gastrointestinal hemorrhage) 

 

Figure 2. Output of the negative control algorithm: drug ingredients in the “universe”, their evidence counts and 

predictive value. 

Conclusion 

Automating a list of candidate negative controls using LAERTES and ATLAS lowers the amount of manual effort 

required of researchers while implementing a study.  
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