

A benchmark for population-level estimation methods

¹Janssen R&D, Titusville, NJ, USA; ²University of California, Los Angeles, CA, USA; ⁴Columbia University, New York, NY, USA; ⁵NewYork-Presbyterian Hospital, New York, NY, USA;

Background

When designing an observational study, there are many designs to choose from, and many additional choices to ma it is often unclear how these choices will affect the accuracy results. (e.g. If I match on propensity scores, will that lead or less bias than when I stratify?) The literature contain papers evaluating one design choice at a time, but ofte unsatisfactory scientific rigor; typically, a method is evaluated one or two exemplar study from which we cannot generalize using simulations which have an unclear relationship with world.

Here we present a new benchmark for evaluating population-level estimation methods, one that can inform on how a particular study design and set of analysis choices perform in general. The benchmark consists of a gold standard of research hypotheses where the truth is known, and a set of metrics for characterizing a methods performance when applied to the gold standard. We distinguish between two types of tasks:

- **1. effect estimation**: estimation of the average effect of an exposure on an outcome relative to no exposure.
- 2. comparative effect estimation: estimation of the average effect of an exposure on an outcome relative to another exposure.

The benchmark allows evaluation of a method on both tasks. This work builds on previous efforts in EU-ADR, OMOP, and the WHO, adding the ability to evaluate methods on both tasks, and using synthetic positive controls as real positive controls have been observed to be problematic in the past.

Limitations

Given the nature of the negative controls it is unlikely that any of the exposures will be contra-indicated for the related outcome of interest, precluding the ability to evaluate a method's sensitivity to contra-indication.

The process for adding synthetic outcomes can only preserve measured confounding, so performance on positive controls with respect to unmeasured confounding may be slightly optimistic.

Availability

The benchmark is available in the MethodEvaluation R package: https://github.com/OHDSI/MethodEvaluation

This includes:

- Negative control set
- Function for creating outcome and nesting cohorts
- Function for synthesizing positive controls

Martijn J. Schuemie¹, M. Soledad Cepeda¹, Marc A. Suchard², Yuxi Tian², Alejandro Schuler³, Patrick B. Ryan^{1,4}, George Hripcsak^{4,5}

y study
ake, and
y of the
to more
is many
en with
ated on
ze, or by
the real

	,		,,,,,,,, .			
Re •	 Real negative controls (n = 200) Pick 4 outcomes and 4 exposures of interest 					
	GI bleed	ding	Ciprofloxaci	n		
	Stroke IBD		Mettormin Sertraline			
•	Use LAERTES to identify potential negative controls					
 Use clinicaltrials.gov + ATC to find potential comparator exposures 						
•	 Rank by prevalence 					
 Manual review, up to 25 per outcome or exposure of interest 						
Gold standard (n = 800)						
Tar	get	Comparator	Nesting	Outcome		
Esz	opiclone	Triazolam	Insomnia	Acute par		
Esz	opiclone	Triazolam	Insomnia	Acute par		
Esz	opiclone	Triazolam	Insomnia	Acute par		
Esz	opiclone	Triazolam	Insomnia	Acute par		

Evaluate effect estimation method

- Compute effect of exposure to *Target* on risk of *Outcome*
- Optionally nest in *Nesting* cohort (e.g. Nested Case-Control)
- Compare to true effect size

Evaluate *comparative effect estimation* method

- Compute effect of *Target* compared to *Comparator* on risk of *Outcome*
- Optionally nest in *Nesting* cohort
- Compare to true effect size

Method(s) to evaluate

Case-control

- Nested
- 10 controls per case

Compute performance metrics

AUC: Area under the ROC curve for classifying positive

- **Coverage**: Coverage of the 95% confidence interval **Mean precision**: Precision = 1/SE2; higher precision
- means narrower confidence intervals
- **MSE**: Mean squared error between effect size (point) estimate and the true effect size
- **Type 1 error**: For negative controls, how often was the
- **Type 2 error**: For positive controls, how often was the null not rejected (at alpha = 0.05)
- **Missing**: For how many of the controls was the
- method unable to produce an estimate