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Abstract 

Personalized medicine hinges on the ability to make accurate, individualized prognoses using the entirety of a 
patient’s clinical history. Common regression techniques used to aid in making diagnoses do not align with this goal 
for several reasons. First, they typically make predictions of a single future outcome, but a picture of an individual’s 
full future disease course would be more informative in guiding treatment decisions. Second, the predictions they 
make cannot be updated dynamically using a growing clinical history, which is critical for refining prognoses as 
more observations are made. Finally, they often use heuristic summaries or simple features to capture information 
from the clinical history, which may miss subtle cues in past disease expression. We describe an algorithm for 
making dynamically-updated, personalized prognoses of an individual’s full future disease course. We predict a 
probability distribution over the trajectory of a quantitative clinical marker measuring disease activity (e.g. the 
percent of predicted forced vital capacity) using an integrative analysis of both baseline information (e.g. 
demographic characteristics) and the full histories of longitudinally recorded information (e.g. clinical observations 
and laboratory test results tracked over follow-up). We use our approach to predict lung disease trajectories in 
scleroderma, a complex autoimmune disease. 

Introduction 

In personalized (or precision) medicine, the goal is to tailor treatment to a given patient using a personalized 
prognosis based on all information in the individual’s clinical history. In this work, we formalize the problem of 
personalized prognosis as that of estimating an individualized function of time that models the full trajectory of a 
target clinical marker (see Figure 1 for an illustrative example). Clinical markers are quantitative test results used to 
monitor disease activity and progression in a specific organ system. For example, in scleroderma, a complex 
autoimmune disease, the percent of predicted forced vital capacity (PFVC) is a clinical marker measuring lung 
damage severity, and the total modified Rodnan skin score (TSS) is a marker measuring skin disease activity. 

In practice, cross-sectional regression models are commonly used to predict clinical marker values at fixed future 
time points using collections of baseline characteristics and summary statistics of an individual’s clinical history 
from a fixed window (e.g. estimate of marker slope in the past year). These techniques do not align with the 
dynamic nature of personalized medicine, where new observations are frequently added to a growing clinical history 
and must be integrated into an updated prognosis. Moreover, predicting a single future outcome may not be 
sufficiently informative to guide treatment decisions. We describe a model for personalized prognosis that (1) 
predicts the full future trajectory of a clinical marker, (2) provides uncertainty estimates around the predicted 
trajectory, and (3) uses a growing clinical history to update prognoses. We demonstrate our approach by using it to 
predict the course of interstitial lung disease in patients with scleroderma, a complex autoimmune disease. 

Methods 

Our approach dynamically updates personalized prognoses using an integrative analysis of both baseline 
characteristics of an individual (e.g. gender) and the time-evolving histories of both the target marker and other 
auxiliary clinical markers tracking related organ systems. To extract information from clinical marker histories, we 
propose a probabilistic model of clinical marker trajectories that uses both observed and unobserved factors to 
explain heterogeneous patterns of activity. The form of the probabilistic model and its latent variables are motivated 
by the idea of subtypes (see e.g. Saria and Goldenberg1), which have become increasingly important in 
understanding complex, chronic diseases, and by the idea of nuisance variability (see e.g. Lötvall and others2), 
which is individual-specific variation caused by factors orthogonal to disease subtype. Details about the model and 

Name: Peter Schulam 

Affiliation: Johns Hopkins University 
Email: pschulam@cs.jhu.edu 
Presentation type: Poster 



  

its motivation can be found in Schulam and Saria.3 Our algorithm dynamically estimates unobserved factors using 
Bayesian inference as more clinical markers are recorded, which act as natural summaries of the clinical history. 
These inferences are combined using a conditional random field, which is trained to maximize the predictive 
probability of all future clinical markers (i.e. the future disease activity trajectory). The full integrative technique is 
described in Schulam and Saria.4  

To demonstrate our approach, we build a tool to predict lung disease trajectories for individuals with scleroderma. 
Clinicians use percent of predicted forced vital capacity (PFVC) to track lung disease severity, which is expected to 
drop as the disease progresses. To train and validate our model, we use data from the Johns Hopkins Scleroderma 
Center patient registry; one of the largest collections of clinical scleroderma data in the world. We extract the PFVC 
trajectories of 772 individuals along with five auxiliary markers: % predicted forced expiratory volume in one 
second (PFEV1), % diffusing capacity (PDLCO), total modified Rodnan skin score (TSS), and two Likert-valued 
clinical severity scores (one reflecting disease activity affecting the vasculature and one for the gastrointestinal 
tract). We evaluate our approach by (1) predicting PFVC trajectories and (2) by detecting individuals who will drop 
by more than 20 PFVC using a score derived from each model’s predicted drop in lung capacity. As baselines, we 
compare our model against a static B-spline regression model, a B-spline regression with an individual-specific 
Gaussian process allowing for dynamic individualization, a version of our model including subtypes but without any 
individualization (PwoI), and a version of our model without baseline covariates or auxiliary markers (PwoC). 

Results 

Figure 1 provides qualitative evidence of the improved performance gained by using an integrative approach. 
Observed measurements are in black and those to be predicted are in red. The blue trajectory shows the most likely 
predicted trajectory and the green shows the second most likely. In Figure 1a, we see a 55-year-old white woman 
who presents with mildly impaired lung function (approximately 65 PFVC), but seems to recover over the course of 
the first year. The model without time covariates (Figure 1c) predicts that this recovery will stabilize and hold. The 
model that accounts for the histories of other auxiliary markers, however, correctly predicts that this woman will 
decline. This is likely due to the early PFEV1 trajectory, which initially dips instead of recovering. In Figure 1b, we 
see a 75-year-old white woman who initially declines, but later stabilizes. The model that considers the history of 
PFVC alone over-reacts to this initial decline, whereas the model that includes information from the auxiliary 
markers correctly predicts that the woman will stabilize after this initial decline.  

Figure 2 displays ROCs for the declining population detection task with associated AUCs listed in Table 1. We see 
that the the proposed model’s predictions are more discriminative than the B-spline+GP baseline and the model that 
depends on the target marker history alone (PwoC). 

 
Figure 1. Predictions made using integrative analysis (a, b) and using the target marker history only (c, d). Figure 2. 
ROCs comparing at-risk individual detection across proposed model and baselines. 

Table 1. AUCs corresponding to ROCs in Figure 2. 
Model / Years of Data 1 2 4 

B-Spline+GP 0.59 0.63 0.74 

PwoC 0.57 0.71 0.84 

Proposed 0.68 0.75 0.87 
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