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Abstract 

Observational medical databases are typically not immediately “regression ready”. Analysts must make various 
choices in order to derive a design matrix of covariates from the source data. We describe these feature creation 
decisions in a longitudinal context in which we have granular medical events by date with subject identifiers. In 
these observational health databases, feature creation often involves coding for characteristics present during a 
designated baseline period through discretization of the temporal element of the records, e.g. coarsening patient 
timelines over a specified period into a feature to capture prior disease history. Our proposed approach to create 
meaningful covariates in these applications is to develop a set of generic concepts and compile a set of potential 
definitions for each, which may vary in hierarchical or temporal resolution. These correlated “competing 
definitions” for the same concept are treated as mutually exclusive to retain interpretability in regression models 
using structured prior distributions and stochastic search variable selection (SSVS). We develop this framework, 
present simulation results demonstrating its model selection recovery performance, and illustrate its use in selecting 
parsimonious interpretable logistic regression models for prediction. 

 

Introduction 

For fitting statistical models such as logistic regression, data from longitudinal observational medical databases 
requires further processing. Typically records must be flattened or collapsed within a subject in order to define a 
design matrix X containing covariates, a process which necessitates analyst decision-making in situations where 
information about appropriate time scales or code sets may not always exist. Further, it is often desired for the 
features to have simple definitions for model interpretation, e.g. for use in rapid risk assessment based on 
information that would be available to a clinician during the course of routine care. Our motivating example is in 
creating “lookback” covariates, that is, binary features indicating presence or absence of certain diagnoses or 
exposures using a particular coding resolution within a specific time window prior to an index date. The analyst may 
be uncertain as to the appropriate time scale to consider for each such covariate, as some diagnoses or exposures 
may only have predictive value when occurring shortly before the index date, while others may be informative over 
a longer time scale. One possible approach is to formulate a large set of these lookback features and then fit an L1-
penalized regression model to select a sparse set of definitions. However, this does not guarantee an appealing 
solution in terms of model interpretation and multicollinearity: for example, if features defined as to “exposed to 
Drug X in previous 6 months” and “exposed to Drug X in previous 12 months” are both selected, it is difficult to 
interpret the effect of use of Drug X in previous 12 months conditional on holding exposure to Drug X in the 
previous 6 months constant as any subject taking Drug X in the more recent period must also have taken in the 
longer period. Thus, it is desirable to impose more structure on the model to only permit one of these closely related 
exposure definitions to be active.  



  

Model 

We propose a hierarchical model for multiphase inference1 in which the analyst formulates groups of “competing 
variables”. A toy example of a group of competing variables for a covariate corresponding to a diabetes diagnosis is 
shown in Figure 1. In this example, the analyst is uncertain which code set to use and how long of a lookback 
window prior to the study index date to check for the presence of these diagnosis codes. The analyst also allows the 
possibility that any of these definitions of diabetes may not be useful in predicting the outcome, and hence may all 
be excluded. This is encoded by placing a multinomial prior with n=1 over nine indicator variables for inclusion of 
the listed possibilities and embedding this within a Bayesian stochastic search variable selection (SSVS, “spike-and-
slab”) logistic regression model2,3,4. We then obtain a posterior distribution over the competing variables and can 
identify which definitions, if any, have high posterior probability and merit inclusion in a single predictive model. 

 
Figure 1. Example of competing definitions for a covariate indicating presence of diabetes at baseline.  

Simulation study and model evaluation 

We demonstrate the utility of this model in predicting a binary outcome in simulated observational medical data 
with 10,000 subjects and 100 disease/exposure definition groups, each group containing 5 competing definitions 
using different lookback windows. Simulation results are shown in Figure 2. Models selected using the competing 
variables framework are much sparser, do not include multiple definitions for the same feature, and have posterior 
mean coefficient estimates closer to true values than lasso or unregularized logistic regression. 

  
Figure 2. Coefficient estimates in simulation study comparing several models selected using the competing 
variables framework (Median-MAP, Best AUC, Best low-cost AUC) with a lasso model selected by cross-validation 
and an unregularized logistic regression model. 

Conclusion 

Our Bayesian hierarchical competing variable framework accommodates model uncertainty arising in the form of 
covariate definitions in a transparent and easily interpretable way.  
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