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Abstract
We present to the OHDSI community the R package LocalControl, which implements novel nonparametric approaches to
address biases and confounding when comparing treatments or exposures in observational studies.  LocalControl  is an
open-source tool for researchers whose aim is to generate high quality evidence using observational health records. The
package releases a family of methods for nonparametric bias correction when comparing treatments in cross-sectional,
case-control, and survival analysis settings, including competing risks with censoring. 

Introduction
We all  envision a day when high-quality safety and effectiveness evidence is continuously generated,  scrutinized,  and
updated within a culture of reproducible research, and deployed at point-of-care to improve patient outcomes. A major
challenge in making treatment comparisons in observational data is biases and confounders. 

One approach to address biases is to model their effects as covariates in linear models. While widely accepted and
useful, regression methods have difficulty modeling nonlinearity, have convergence problems when analyzing correlated
covariates, and are problematic when multiple mechanisms drive the outcome. Propensity scoring approaches have gained
wide use in correcting treatment biases1, and on average, outperform alternative methods, including regression in large scale
patient records analyses2,3. However, a weakness of propensity scoring is that there is no guarantee about patient similarity
with respect to their biasing variables, rather they only have a similar probability of treatment. Thus, if a 99-year old female
had the same propensity for treatment as a 24-year old male, they might be grouped for comparison, even though this makes
very little biological sense.

Often it is more appropriate in observational studies to employ survival analysis to model time to events of interest.
While visually intuitive, Kaplan-Meier curves do not address biases. Methods that do, include linear survival models like
Cox regression, and competing risks regression4. In recent years, propensity scoring has also been extended to a survival
framework and evaluated5,6. However, these approaches suffer from the same limitations in a survival setting as enumerated
earlier for cross-sectional and case-control settings.

The Local Control method7-9 provides a powerful, nonparametric, and conceptually intuitive approach to statistically
addressing biases and confounders in large-scale observational data. It enables the estimation of overall treatment effects,
and provides a framework for investigating heterogeneity of treatment effect in subpopulations.   It has been successfully
used to compare treatments for major depressive disorder8,10, and to evaluate the effect of air quality on mortality11. The
key idea behind local  control  is  to  form many homogeneous patient  clusters  within which one can compare alternate
treatments, statistically correcting for measured biases and confounders, analogous to a randomized block design within a
randomized controlled trial (RCT).  Local Control can be used alongside, or as an alternative to other methods of treatment
comparisons, such as regression, or propensity scoring. Prior to our work, the Local Control methodology was developed
only for  case/control  and  cross-sectional  studies.  We introduce  our  new  R  LocalControl  package,  which  implements
survival/time-to-event analysis, including competing risks.

Local Control
While similar methods depend on perfect or near-perfect matches, Local Control creates neighborhoods of similar patients
along a continuum. Each of the patients are clustered for similarity on variables that are thought to be sources of bias and
confounding. We have made the innovation of using the nearest neighbors to a given patient, instead of using a clustering
without replacement approach where patients reside in only a single cluster. Each patient has a unique set of near-neighbors,
and  the  approach  becomes  more  akin  to  a  non-parametric  density  estimate  using  similar  patients  within  a  covariate
hypersphere of a given radius. With this radius as a parameter, users have direct control over the degree of patient similarity
within clusters.  The radius  can assume all  real  values  in  the  range between zero,  where  clusters  contain  only perfect
matches, and the maximum diameter of the covariate-space, building only clusters which contain the entire population.

For this package, we have extended the functionality of the Local Control method to support longitudinal data analysis.
For case/control and cross-sectional studies, Local Control calculates the global treatment difference as the average of the
treatment differences across each of the neighborhoods. Because one cannot simply average survival curves, the transition
to longitudinal analysis required further innovation. We first devised an approach of weighting the failure events from each
treatment in a cluster so that they sum to one, resulting in an equal contribution from all of the clusters. We then sum the
series of events from all clusters, producing a global estimate which can be used with the Kaplan-Meier and Competing
Risk counting processes. We found in communicating results of Local Control that people struggle to intuitively grasp the



notion that they are looking at a difference between treatments. With that in mind, rather than presenting survival curve
differences, we created visualizations of the separate treatments before and after bias correction (Figure 1). 

Figure 1. Framingham Heart Study: Competing risks of hypertension and death among smokers and nonsmokers. These plots use data from the
Framingham Heart Study12 to demonstrate CompetingRisksLocalControl. The plot on the left was created prior to correcting for any comorbidities. This
plot suggests that while smokers have worse survival than nonsmokers, they are experiencing hypertension at a lower rate. The right plot displays the
results from Local Control after correcting for gender, cholesterol, age, BMI, heart rate, and blood glucose level. The bias-corrected curves show us that,
among comparable patients, there is almost no difference in the rate of hypertension over time.

Conclusion
With LocalControl, we introduce a new open-source tool for the correction of bias and confounding to the OHDSI and R
communities. Preliminary studies on real and simulated data with known answers have shown that LocalControl effectively
corrects for measured biases in both case/control and survival/time-to-event settings.
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