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Abstract 

We study the problem of estimating the continuous response over time of actions from observational time series—a 
retrospective dataset where the policy by which the data are generated are unknown to the learner. We are 
motivated by applications where response varies by individuals and therefore, estimating responses at the 
individual-level are valuable for personalizing decision-making. We refer to this as the problem of estimating 
individualized treatment response (ITR) curves. In statistics, G-computation1 has been commonly used for 
estimating treatment responses from observational data containing sequential treatment assignments. However, past 
studies have focused predominantly on obtaining point in time estimates at the population level. We leverage G-
computation and develop a novel method based on Bayesian nonparametrics (BNP) that can flexibly model 
functional data and provide posterior inference over the treatment response curves both at the individual and 
population level. On a challenging dataset containing time series from patients admitted to a hospital, we estimate 
treatment responses for 2 different treatments used in managing kidney function and show that the resulting fits are 
more accurate than alternative approaches. Accurate methods for obtaining ITRs from observational data can 
dramatically accelerate the pace at which personalized treatment plans become possible.  

Introduction 

Accurate models of actions and their effects on the state of the agent are critical for decision-making. Learning of 
action-effect models is most straightforward from data where the learner can control the choice of actions and 
observe their responses. But, such data are not always possible to acquire. Alternatively, retrospective data may be 
available that contain time series generated from observing other agents act. Estimating action-effect models from 
observational data—data where the learner cannot control the actions that are prescribed, and the actions may be 
prescribed by a mechanism that is not known to the learner—are more challenging. We study an instance of this 
problem: specifically, we consider the problem of estimating the continuous response over time to an action. We are 
particularly motivated by applications in medicine where accurate action-effect models for estimating treatment 
effects can be used for personalizing therapy. We propose a new Bayesian nonparametric method for estimating, at 
the individual-level, the posterior density of the continuous response over time to treatments (or actions more 
broadly) from observational time-series data. A key practical advantage of using a nonparametric approach is that 
they often provide better fits to challenging data than can be obtained using parametric model based methods. This is 
particularly important in our application of estimating treatment response curves for physiologic time series.  

Method 

As a running example, we will use our application of estimating response curves of two treatments called 
intermittent hemodialysis (IHD) and continuous renal replacement therapy (CRRT) on creatinine, a measurement of 
kidney function. Towards this, we use data obtained from the electronic health record from a patient admitted to a 



  

hospital. Our goal is to obtain posterior inference for the treatment response curves at the individual and population 
levels, and for the outcomes given any sequence of treatments conditioned upon historical data about the individual 
and the population. We model the outcome using a generalized mixed-effects model combining two parts: 1) the 
baseline progression over time in the response variable if no treatments were prescribed; 2) the change in response 
due to all active treatments. Specifically, for the baseline progression, we model a fixed-effect component using 
linear regression, a random-effect component using a Gaussian process regression and a Gaussian distributed noise 
term. For the treatment response, we focus on the scenario where treatment choices are discrete and assume that the 
treatment effects are additive. Further, we assume that the effect of each treatment type lasts at most within window 
W, and define a parametric function to characterize the individual treatment response (ITR) curves. The deviations 
from the parametric form are captured by a zero-mean Gaussian process. Finally, to borrow strength across the 
individual-specific estimates, we generalize the Gaussian Process component for both the baseline progression and 
the treatment response by using a Dirichlet process mixture of Gaussian processes2,3. We use Markov Chain Monte 
Carlo (MCMC) approach to approximate the posterior inference. 

Numerical Analysis 

We fit our models on electronic health record data from patients admitted to the Beth Israel Deaconess Medical 
Center in Boston. The data are publicly available in the MIMIC-II Clinical Database4. The creatinine data contains 
time series from 123 individuals with average duration of 20.75 days and a total of 6,992 observations. We model 4 
treatments including IHD and CRRT prescribed at three different levels: < 500 ml/hr, = 500 ml/hr and > 500 ml/hr. 
We compare ITR’s performance to two baselines: 1) the model parameters are drawn from a broad prior distribution 
but each individual samples it’s own set of parameters, which we refer to as pop; 2) the model parameters are drawn 
from a DP instead of a DPM that allows treatment responses to vary by subgroups but no explicit differences across 
individuals within a subgroup, which we refer to as sub-pop. We report held-out prediction root mean squared errors 
(RMSE) averaged within a day for 10 days following the time of prediction. From the left graph in Figure 1, we see 
that the proposed ITR model improves significantly over the baselines. We show trajectory fits for two different 
randomly chosen patients in the right two graphs, where the darker shaded background denotes data in the training 
period and the lighter background is the test period. In Figure 2, we show the distribution over the individual-
specific response curves for IHD and CRRT at the three different dose levels. As is clear, there is significant 
treatment heterogeneity across all treatments.  

 
Figure 1. Comparison of model prediction 

 
Figure 2. Treatment-response curves estimated by ITR 
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