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Innovations to the R package LocalControl are presented. The 
package implements nonparametric approaches to address biases 
and confounding when comparing treatments or exposures in 
observational studies. This work illustrates how LocalControl can 
address the problem of feature selection, and how it can provide bias-
corrected insight into what variables modify the difference in outcome 
from one treatment to another.
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Conclusions

The Local Control method1-3  provides a powerful and conceptually 
intuitive approach to statistically addressing biases and confounders 
in large-scale observational data. It enables estimation of overall 
treatment effects, as well as estimation of heterogeneity of 
treatment effect (HTE) in subpopulations. Its theoretical roots are 
those of propensity scoring, but it provides a tunable, finer-grained 
matching process for nonparametric treatment comparisons. The key 
idea behind Local Control is to form many homogeneous patient 
clusters within which one can compare alternate treatments, 
statistically correcting for measured biases and confounders, 
analogous to a randomized block design within a randomized 
controlled trial (RCT)4,5.  Figures 1-2 and Tables 1-2 demonstrate bias 
correction and feature selection on simulated data with the Local 
Control methodology. This is followed demonstration of HTE analysis.
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Figure 4. Abciximab recursive partitioning tree. After performing full factorial 
LocalControl analysis with seven variables, recursive partitioning on the 
treatment differences identifies four mutually exclusive subgroups: men and 
women with and without stents.

One of the open areas for research in Local Control is how to choose 
the relevant covariates for bias correction. One approach that is 
viable for a modest number of covariates is a full factorial regression 
analysis of how significant each covariate is in modeling the 
treatment difference. This work describes the full factorial approach, 
but note that for more variables, a fractional factorial approach could 
be employed for greater efficiency4. A full factorial design of 
experiments approach first runs all 2k  combinations of including or 
excluding each of the k covariates in the Local Control model. One 
can then model with linear regression the outcomes as a function of 
the binary variables (main effects and interactions) that designate 
which cluster variables were employed in the Local Control runs.

Figure 5. Lindner subgroups.  After identifying significant subgroups with 
recursive partitioning, each of the subgroup treatment differences are graphed 
together. Observe that the men without stents have a much lower billing cost 
on Abciximab vs. control than each of the other subgroups. The top two 
windows display the fraction of data contributing to each of the estimates.

In large data sets it can be true that an ”average/overall” effect is 
meaningless. The answer is that ”it depends”. For example a drug 
might work for women, but not for men. When there is treatment 
response heterogeneity, a recommendation of one-size-fits-all is 
problematic and even a bias-corrected overall effect is misleading. 
LocalControl enables the analysis of both the bias-corrected average 
effect, as well as creates insight into subgroup outcome 
heterogeneity. This package is vailable on the Central R Archive 
Network (https://CRAN.R-project.org/package=LocalControl), and on 
the OHDSI github.

Estimates of bias-corrected treatment differences are useful in 
making generalizations that one treatment may be safer or more 
effective than another on average. However, they do not answer the 
question of what is the expected outcome from a given treatment for 
a particular patient. Patient level prediction recognizes that there 
may be heterogeneity of treatment effect, namely that patients can 
have very different outcomes depending on patient characteristics. 
Traditional approaches will use regression models or machine 
learning on patient covariates to predict patient outcomes. While 
these approaches can provide patient level predictions, the 
interpretation of such models could be distorted by the biasing 
variables.  Instead, after bias correction, regression or machine 
learning can be applied to model bias-corrected treatment 
differences, giving insight into what variables modify the difference in 
outcome from one treatment to another, unpolluted by variables that 
govern choice of treatment.

The following example uses data from a study conducted at the Ohio 
Heart Health Center in 1997, known as the Lindner study6. The study 
examines post-procedure effects of the treatment, Abciximab, plus 
usual care, compared with outcomes from patients who received 
usual care alone. Recursive partitioning is used to examine patient 
subgroups with statistically significant differences in bias-corrected 
treatment difference as a function of patient covariates, including the 
clustering variables2,5,7.

Table 3. Lindner cohort summary.  In this example, we focus on the cardbill 
outcome. This variable represents all cardiac related billing in the 12 months 
following the procedure.

Figure 1: Local Control clustering. We observe without correcting for bias, that 
the blue T1 outcome average is 8.05 units higher than T1 (top histogram). As 
the level of correction increases, corresponding to shrinking the radius of near-
neighbors (closer weight and dosage), we see that the local estimate 
approaches the true treatment difference of zero (middle, bottom histograms).

Table 1: Cross-sectional simulation 
cohort summary.  In this 
simulation, we introduce a bias 
where treatment 1 is dosed with a 
higher variance than treatment 0. 
The adverse drug reaction 
(outcome variable) for both 
treatments is assigned using the 
same function: ADR = |target_dose 
– actual_dose|mg, where the 
optimal dosage is one mg per kg of 
the patient’s weight. We introduce 
the bias by modifying the variance 
of treatment dosages between the 
two groups. This table shows the 
distribution of weight, and dosage 
among the simulated patients. 
Using a t-test, we show that there 
is no statistical difference between 
the covariate averages in the two 
treatment groups. With an F-Test, 
we compare the variance of the 
two groups to show the statistical 
difference between the two.

Figure 2: Full factorial Local Control on the cross-sectional sim data.  This 
figure is a graphical representation of the different covariate configurations. 
Each of the curves on the plot corresponds to one of the rows in Table 2. When 
both weight and dosage are included in the model (purple), the corrected 
treatment difference converges to the correct answer of zero. When only one 
of weight or dosage is used in the model (red or blue), or neither (green), then 
the biases remain, and the treatment difference estimate is non-zero. Because 
this simulated data contains no perfect matches, the corresponding section has 
been omitted from the plot.

Table 2. Regression input for full 
factorial analysis.  The difs column 
shows the average difference in 
the corrected LTD from the global 
treatment difference for each of 
the 16 combinations. A value of -1 
for a clustering variable means that 
it was excluded, while 1 represents 
including it in the model. 

All patients Treated Untreated p-value

N (patients) 996 698 298 --

female 0.35 0.33 0.39 1.00E-01

height 171.44 171.44 171.45 9.96E-01

stent 0.67 0.70 0.58 3.23E-04

diabetic 0.22 0.2 0.27 3.40E-02

acutemi 0.14 0.18 0.06 4.66E-09

ejecfrac 50.97 50.40 52.29 8.58E-03

ves1proc 1.39 1.46 1.20 4.21E-11

lifepres 11.30 11.42 11.02 1.10E-02

cardbill 15674.16 16126.68 14614.22 9.83E-02

weight dosage noise1 noise2 difs
-1 -1 -1 -1 0.00
1 -1 -1 -1 -0.01

-1 1 -1 -1 0.78
1 1 -1 -1 3.83

-1 -1 1 -1 -0.01
1 -1 1 -1 -0.01

-1 1 1 -1 0.81
1 1 1 -1 3.72

-1 -1 -1 1 0.01
1 -1 -1 1 -0.01

-1 1 -1 1 0.82
1 1 -1 1 3.74

-1 -1 1 1 0.02
1 -1 1 1 0.01

-1 1 1 1 0.95
1 1 1 1 3.72

T0 + T1 T0 T1 p-value
N 10000 5000 5000 --

Weight 
(kg)

μ 74.76 74.72 74.80 .804
σ 14.97 14.99 14.94 0.800

Dosage 
(mg)

μ 74.77 74.70 74.84 .701
σ 18.69 15.82 21.18 2.2E-16

ADR 
(mg)

μ 8.03 4.01 12.06 2.2E-16
σ 7.86 2.99 9.07 2.2E-16

Figure 3. Lindner treatment difference as a function of correction radius. 
When the maximum radius fraction is 1, the treatment difference is equal to 
the uncorrected global average. As the fraction decreases (left to right), the 
treatment difference is drawn from smaller and more similar clusters. The 
window on the right represents only the perfect matches contained in the data. 


