

OHDSI Methods Library

Martijn Schuemie, Marc Suchard, Patrick Ryan, Tomas Bergvall

OHDSI Methods Library

- What is it for?
- How does it work?
- How can I use it?

What is it for?

Does exposure to

increase/decrease the risk of

O

What is it for?

Does exposure to

increase/decrease the risk of

0

when compared to exposure to

C

What is it for?

Does exposure to

Keppra

increase/decrease the risk of

Angioedema

Methods library

- Population-level estimation analysis designs
 - Self-Controlled Case Series
 - New-user cohort method using propensity scores
 - Self-Controlled Cohort
 - IC Temporal Pattern Discovery
- Implemented as open source R packages
- Run against the CDM
- In (almost) any environment
 - Windows, Linux, Mac
 - PostgreSQL, Oracle, SQL Server, Amazon RedShift, Microsoft APS
- Lots of flexibility
- Validated

Self-Controlled Case Series

Is the outcome more likely during exposed time compared to nonexposed time?

Self-Controlled Case Series

By design, adjusted for

Patient characteristics constant over time

Additionally adjust for

- Age
- Season
- Contra-indication
- (All) other exposures (MSCCS)
- Outcome-dependent censoring

Self-Controlled Case Series

Weakness

Sensitive to time-varying confounding

Is the time when people take Keppra really comparable to when they don't?

Cohort Method

Does exposure to

Keppra

increase/decrease the risk of

Angioedema

Cohort Method

Does exposure to

Keppra

increase/decrease the risk of

Angioedema

when compared to exposure to

Phenytoin

New-user cohort design

Randomized controlled trial

New-user cohort design

Propensity model

- Statistical model (logistic regression) of why patients get one treatment or the other
- Using (all) information prior to initiation of treatment
- Used to adjust for differences through
 - Trimming
 - Matching
 - Stratification

Outcome model

After trimming / matching / stratification on the propensity score

Estimate effect of treatment on outcome using

- Cox
- Poisson
- Logistic

Include same information prior to initiation of treatment

Under the hood

- R
 - Easy to deploy highly optimized code
 - Flexibility (80-20 rule)
 - Can be mastered by epidemiologists
- DatabaseConnector + RenderSql for interacting with various database platforms
- Cyclops for fitting large regression models
 - L₁ and L₂ Regularization
 - Cox, Poisson, logistic
 - Conditioned and unconditioned
- Exploiting 'embarrassingly parallelizability' for increased performance

Validation

- Unit tests
- Simulations

Unit tests

A unit test is a piece of code that tests a function:

All unit tests are executed every time a change is made to the

Development status build passing Codecov 49%

Simulation

Using simulation for more complicated functionality

E.g: SCCS seasonality modeling:

How can I use it?

https://github.com/OHDSI

Methods Library R packages

Cohort Method

New-user cohort studies using large-scale regression for propensity and outcome models

Self-Controlled Case Series

Self-Controlled Case Series analysis using few or many predictors, includes splines for age and seasonality.

Self-Controlled Cohort

A self-controlled cohort design, where time preceding exposure is used as control.

IC Temporal Pattern Disc.

A self-controlled design, but using temporal patterns around other exposures and outcomes to correct for timevarying confounding.

Feature Extraction

Automatically extract large sets of features for userspecified cohorts using data in the CDM.

Patient Level Prediction

Build and evaluate predictive models for user-specified outcomes, using a wide array of machine learning algorithms.

Empirical Calibration

Use negative control exposureoutcome pairs (where relative risk is assumed to be 1) to profile and calibrate a particular analysis design.

Method Evaluation

Use real data and established reference sets as well as simulations injected in real data to evaluate the

performance of methods. 🎊

Database Connector

Connect directly to a wide range of database platforms, including SQL Server, Oracle, and PostgreSQL.

Sql Render

Generate SQL on the fly for the various SQL dialects.

Cyclops

Highly efficient implementation of regularized logistic, Poisson and Cox regression.

Ohdsi R Tools

Support tools that didn't fit other categories, including tools for maintaining R libraries.

Under construction

CohortMethod package

```
cmd <- getDbCohortMethodData(connectionDetails,</pre>
                              cdmDatabaseSchema = cdmSchema,
                              targetId = 1118084,
                              comparatorId = 1124300,
                              outcomeId = 192671,
                              washoutPeriod = 183,
                              firstExposureOnly = TRUE,
                              removeDuplicateSubjects = TRUE,
                              excludeDrugsFromCovariates = TRUE,
                              covariateSettings = createCovariateSettings())
studyPop <- createStudyPopulation(cohortMethodData = cmd.</pre>
                                    outcomeId = 192671,
                                    removeSubjectsWithPriorOutcome = TRUE.
                                    minDaysAtRisk = 1,
                                    riskWindowStart = 0.
                                    riskWindowEnd = 30,
                                    addExposureDaysToEnd = TRUE)
ps <- createPs(cmd, studyPop)</pre>
plotPs(ps)
stratPop <- matchOnPs(ps,</pre>
                       caliper = 0.25,
                       caliperScale = "standardized",
                       maxRatio = 1
plotPs(stratPop, ps)
balance <- computeCovariateBalance(strata, cmd)</pre>
plotCovariateBalanceScatterPlot(balance)
plotCovariateBalanceOfTopVariables(balance)
outcomeModel <- fitOutcomeModel(stratPop.</pre>
                                 useCovariates = TRUE,
                                 modelType = "cox",
                                 stratified = TRUE)
plotKaplanMeier(stratPop. includeZero = FALSE)
drawAttritionDiagram(stratPop)
outcomeModel
```

CohortMethod package

```
cmd <- getDbCohortMethodData(connectionD)</pre>
                                 cdmDatabas
                                 targetId :
                                 comparator
                                 outcomeId
                                 washoutPer
                                 firstExpos
                                 removeDup<sup>1</sup>
                                 excludeDru
                                 covariates
studyPop <- createStudyPopulation(cohor
                                      outco
                                      remov
                                      minDd
                                      riskv
                                      riskv
                                      addEx
ps <- createPs(cmd, studyPop)</pre>
plotPs(ps)
stratPop <- matchOnPs(ps,</pre>
                         caliper = 0.25.
                         caliperScale =
                         maxRatio = 1
plotPs(stratPop, ps)
balance <- computeCovariateBalance(stra</pre>
plotCovariateBalanceScatterPlot(balance
plotCovariateBalanceOfTopVariables(bala
outcomeModel <- fitOutcomeModel(stratPo</pre>
```

drawAttritionDiagram(stratPop)

outcomeMode1

These 13 statements

- Implement a full study
- Interact directly with database in CDM
- Many covariates constructed
 - Demographics
 - Every drug (+ class)
 - Every condition (+ group)
 - Every procedure
 - Every observation
 - Charleston, CHAD2, etc.
- Propensity model using LASSO
- 1-on-1 matching on propensity score
- Fitting a Cox model
 - including same covariates used in PS model

```
useCovariates = TRUE,
                                modelType = "cox",
                                 stratified = TRUE)
plotKaplanMeier(stratPop, includeZero = FALSE)
```


CohortMethod package

Specify the two exposure groups and the outcome.

Typically using Circe-defined cohorts

```
plotPs(ps)
stratPop <- matchOnPs(ps,</pre>
                                                                 Index Population for Study: keppra: T for jon duke's study of
                                  caliper = 0.25.
                                                                 keppra vs. phenytoin and angioedema
                                  caliperScale = "sta Description
                                  maxRatio = 1
plotPs(stratPop, ps)
                                                                           Concept Sets Print Friendly
balance <- computeCovariateBalance(strata.
                                                                  People having any of the following: Add Primary Event Filters...
plotCovariateBalanceScatterPlot(balance)
                                                                                                                                      Add Filter...
                                                                 a drug era of levetiracetam
plotCovariateBalanceOfTopVariables(balance
outcomeModel <- fitOutcomeModel(stratPop,</pre>
                                                 cmd
                                                                 For people matching the Primary Events, include:
                                                 useCovaria
                                                modelType
                                                                  with at least ▼ 1 ▼ using all occurrences of:
                                                                  a condition occurrence of epileps
                                                 stratified
                                                                  occurring between All ▼ days Before ▼ and 0 ▼ days Before ▼ index
plotKaplanMeier(stratPop, includeZero = FA
drawAttritionDiagram(stratPop)
                                                                 Remove Additional Filters
                                                                Limit cohort expression results to: earliest event ▼ per person.
outcomeModel
```


All-by-all support

Estimates, Diagnostics

Learning more...

- All packages have manuals describing the functions
- Most packages have vignettes that describe its use
- Marc and Martijn are organizing a travelling roadshow to teach CohortMethod
 - One stop: OHDSI Symposium