Weakly Supervised Natural Language **Understanding Models for Clinical Text**

Jason Alan Fries, PhD **Research Scientist** Shah Lab, Stanford University

Outline

- Introduction: Snorkel & Programmatic Training Data
- Weakly Supervised Sequence Labeling for NLP
- Case Study: Medical Device Surveillance
- Closing Thoughts

Transforming Unstructured to Structured

Machine Learning

Dark Data: Text, Tables, Images, Diagrams, etc.

Need to transform data into machine readable form

Structured Data: Enables analyses, interfaces, etc.

Standard Machine Learning Process

Domain Experts

Manually Labeled Data

Standard Machine Learning Process

Domain Experts

Manually Labeled Data

Standard Machine Learning Process

Domain Experts

Building machine learning systems can take months or years!

Snorkel: (Ratner et al. 2017) A System for Rapidly Creating Training Sets

Program ML systems faster and easier

Slide credit: Alex Ratner

USERS & SPONSORS

Snorkel usage is growing in industry and research

Microsoft

Key point: Input is *labeling functions- No hand-labeled training sets*

Labeling Functions (LFs) Black box functions that label subsets of data $\{-1, 0, 1\}$

{Negative, Abstain, Positive}

His father died secondary to prostate cancer and mother had Alzheimer's.

prostate cancer \in SNOMEDCT AND STY == 'Neoplastic Process' prostate cancer —> **DISORDER**

Check membership in a knowledge base/ontology

His father died secondary to prostate cancer and mother had Alzheimer's.

def LF_is_a_relative(span): (parent | (daught | sist | broth)er | son | cousin)(s)*)\b''', re.I) text = get left span(span, window=6).text return FAMILY if rgx.search(text) else ABSTAIN

Match regular expression rules

```
rgx = re.compile(r''\\b((grand)*(mother|father)|grand(m|p)a|
```


Labeling functions provide a **unified interface** for label sources

Allows us to combine sources and model aspects like accuracy and statistical dependencies without hand-labeled data

How do we model and combine LFs? def lf1(x): return 1 if cid in KB else 0 **irn 1 if** cid in KB **else** 0 urn 1 if cid in KB else PROBABILISTIC lf1(x):1 if cid in KB else 0 TRAINING DATA LABEL MODEL **END MODEL** LABELING FUNCTIONS

Key Technical Challenge: How to best reweight and combine the noisy supervision signal?

Challenges of Weak Supervision

- Problem 1: How do we resolve conflicts between weak label sources?
 - How can we estimate their accuracies without ground truth?
- This is a real development burden that our users faced with prior "distant supervision" systems

Need to be able to estimate source accuracies

Challenges of Weak Supervision

- Problem 2: Need to communicate training point lineage to model being trained
- Ex:
 - User writes one high-accuracy, lowcoverage LF...
 - ...and one low-accuracy, high-coverage LF
 - If we just naively take the union of labels, expected acc. = 60.3%!

Need to communicate training label *lineage*

Key point: Input is *labeling functions- No hand-labeled training sets*

Noisy, conflicting labels

Resolve conflicts, re-weight & combine Generalize beyond the labeling functions

Weakly Supervised Sequence Labeling for NLP

Many NLP Tasks Are Sequence Labeling Problems

His father died secondary to prostate cancer and mother had Alzheimer's. 0 II 0 0 Ο Ο Ι 0 ()

Named Entity Recognition

Many NLP Tasks Are Sequence Labeling Problems

His father died secondary to prostate cancer and mother had Alzheimer's. Ι I \mathbf{O} 0 0 0 Ο ()()

Building labeled training sets for these style of tasks is very expensive

Named Entity Recognition

UMLS-based Labeling Functions

Let's look at named entity recognition for **disorders**

Map Semantic Types to Classes

disease or syndrome neoplastic process injury_or_poisoning sign or symptom pathologic function anatomical_abnormality

Create LFs for k **Source Vocabularies**

Positive

Negative

manufactured object intellectual_product body location or region virus functional concept

Consumer Health Vocabulary (CHV)

SNOMED CT

Medical Subject Headings (MSH

His father died secondary to prostate cancer and mother had Alzheimer's .

Example: Apply 5 labeling functions (LFs) to a sentence

IO Disorder Tagging

 \boldsymbol{m}

Factor Graph-based Label Model

 $p_{\theta}(I$

 $\lambda_1, \ldots, \lambda_n$ $\Lambda \in \{-1, 0, 1\}^{m \times n}$ **Y** := $y_1, ..., y_m$

Labeling functions Words Label matrix True label (unobserved)

$$\phi_j^{Acc}(\Lambda_i, y_i) := y_i \Lambda_{ij}$$

$$\mathbf{\Lambda}, \mathbf{Y}) \propto \exp\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \theta_{j}^{Acc} \phi_{j}^{Acc} (\Lambda_{i}, y_{i})\right)$$

His father died secondary to prostate cancer and mother had Alzheimer's.

IO Disorder Tagging

(1) Probabilistic label per-word

Weakly-labeled Training Set

$$argmin_{w} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{y \sim \hat{Y}} \left[L(w, x_{i}, y) \right]$$

End Model Generalization

Powerful *representation learning* algorithms allow us to generalize beyond our labeling function output

End model provides predictions for uncovered words

i2b2 Medication Challenge (2009)					
Model	# Train Docs	Ρ	R	F1	Diff.
Expert-labeled + LSTM	124	90.4	88.5	89.4	-
Lexicon (UMLS)	-	31.9	67.6	43.3	-52%
Amazon Comprehend Medical (Aug. 2019)	?	69.4	79.9	74.3	-17%
Snorkel (UMLS) + LSTM	1000	82.2	74.7	78.3	-12%
Snorkel (UMLS + Manual LFs) + LSTM	1000	83.9	82.9	83.4	-7%

Weakly supervised models score within 7-12% of supervised baseline Test Set: 125 expert-labeled docs

Theory Benefit: Scaling with Unlabeled Data

PubMed Disease Tagging (Fries et al. 2017)

Log-linear performance improvements with unlabeled data

In (Bach et al. 2019), matched performance of models trained on **12 - 80k hand-labeled instances** at Google.

Clinical Text Sequence Labeling Tasks

Named Entities

Disorders (CLEF) Drugs (i2b2)

Attributes

Temporality (THYME) \in {before, before_overlaps, overlaps, after}Negation (THYME, CLEF) \in {positive, negative}BodyLocation (CLEF) \in {CUIs}Experiencer (CLEF) \in {patient, other}

We have labeling functions for all these benchmark tasks (3 clinical NLP datasets)

Case Study: Medical Device Surveillance

Learning from unlabeled electronic health records for medical device surveillance

Alison Callahan, BMIR Jason A. Fries, Stanford CS/BMIR Chris Ré, Stanford CS Scott Delp, Stanford Bioengineering Nicholas J Giori, Stanford Medicine, Palo Alto VA James I Huddleston, Stanford Medicine Nigam Shah, BMIR

Early Failure of Implants is Very Expensive

Metal-on-metal hip implants

13% failure rate within 5 years expected rate is **0.5%**!

\$4 Billion Dollars in legal settlements

On the market for ~5 years before issuing a recall We need faster strategies for evaluating devices

Automating Medical Device Surveillance with EHRs

Treat this as a **knowledge base** *construction* task using patient notes

Transform Patient Notes into Structured Data

Orthopedic Devices (hip replacements)

Extracting Implant-related Complications

WELL CENTERED.

suggestive of osteolysis.

(this is from a surgical procedure — not a complication!)

Extracting Implant-related Complications

Let's train a **relational inference model** to to link these to specific implants

IMPLANT TYPE

Binary classification over sentences w/ two arguments

There is also a **lucency** surrounding the **right acetabular cup** wh suggestive of osteolysis.

Dataset

Expert Labeled Data

60 patient notes233 mentions5 clinical annotators

6,583 patients Primary THA and/or revision surgery 500k Notes

DEVELOPMENT TEST 30 notes each

Developing Labeling Functions

Iteratively tune labeling functions by examining unlabeled data

Clinical Note Markup

HISTORY OF PRESENT ILLNE

60 yo male with infected R hip (

LTHA November 2004 demonstr

No lucencies were observed arc

Implant is being evaluated for pe

PAST MEDICAL HISTORY:

Hx right Zimmer Biomet hip 1/1/

NOTE DATE: 07/01/2008 06:11

ISS:
MRSA) s/p previous hip replacement.
rates component wear.
ound the implant.
ossible revision.
05 complicated by infection.
PM

Clinical Note Markup

Labeling Function Examples

def LF2 historical(c): v = has historical attrib(c) return FALSE if v else ABSTAIN

def LF3 reject section(c): h1 = get section header(c) v = h1 in reject headers return FALSE if v else ABSTAIN

def LF4 negated(c): v = NegEx.is negated(c) return FALSE if v else ABSTAIN

FALSE: -1 **ABSTAIN:** 0 **TRUE:** 1

Shared structure makes writing labeling functions easier

~ 20 - 40 **Labeling Functions**

Scaling with Unlabeled Data

of Documents

Pain

Scaling with Unlabeled Data

of Documents

Pain

Complications

CATEGORY	NUM.	PRECISION	RECALL	F1	+/- F1
Revision	63	74.4	46.0	56.9	
Component Wear	48	71.4	41.7	52.6	
Mechanical Failure	25	87.5	28.0	42.4	
Particle Disease	65	80.0	6.2	11.4	
Radiographic Abnormality	17	100.0	37.5	54.5	
Infection	58	100.0	39.7	56.8	
Implant-Complications	276	81.7	32.4	46.4	
Pain-Anatomy	236	81.4	64.8	72.2	

Soft Majority Vote of Labeling Functions

CATEGORY	NUM.	PRECISION	RECALL	F1	+/- F1
Revision	63	75.5	58.7	66.1	+16.2%
Component Wear	48	72.9	72.9	72.9	+38.6%
Mechanical Failure	25	91.7	44.0	59.5	+40.3%
Particle Disease	65	97.1	52.3	68.0	+496.5%
Radiographic Abnormality	17	60.0	25.3	44.4	-18.5%
Infection	58	90.7	84.5	87.5	+54.0%
Implant-Complications	276	82.7	62.3	71.1	+53.2%
Pain-Anatomy	236	80.2	82.6	81.4	+12.7%

20k Imperfectly Labeled Documents

Improvements over a Rule-based Approach

We trade little-to-no precision for a big boost in recall

01./ 00.7	32.4	40.4
81.7	32.4	46.4
PRECISION	RECALL	F1

The Benefits of Programmatic Supervision

- Real machine learning tasks change over time
- Labeling functions are easily shared and modified
- Labeling functions can be applied to unseen data

Manually labeled datasets are static artifacts with sunk costs

Model Labeling Function Zoos

Downloadable pre-trained, state-of-the-art models **are common now** for text & images (model zoos)

Share labeling functions instead!

...but clinical text models (especially large, language models like BERT) pose considerable privacy issues.

Enables training high-performance NLP models with orders of magnitude less hand-labeled data

Reusable Supervision

Resources / Reading

Academic Papers

Snorkel: Rapid Training Data Creation with Weak Supervision.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, Christopher Ré Proceedings VLDB Endowment. 2017

SwellShark: A Generative Model for Biomedical Named Entity Recognition without Labeled Data Jason Fries, Sen Wu, Alexander Ratner, Christopher Ré. 2017.

Medical device surveillance with electronic health records. Alison Callahan, Jason A Fries, Christopher Ré, James I Huddleston III, Nicholas J Giori, Scott Delp, Nigam H Shah. 2019

Blogs, papers & more at: <u>https://www.snorkel.org/</u>

Thank you! jason-fries@stanford.edu