Synthetic and negative control evaluation framework for large-scale propensity score survival analysis

Yuxi Tian

M.D./Ph.D candidate
Department of Biomathematics, UCLA

Joint work with:

Marc Suchard - University of California, Los Angeles Martijn Schuemie - Janssen Research and Development

OHDSI Community Call; September 5, 2017

 PS = estimated probability of treatment assignment address confounding in observational studies

 PS = estimated probability of treatment assignment address confounding in observational studies

How is the PS Estimated?

 PS = estimated probability of treatment assignment address confounding in observational studies

How is the PS Estimated?

Logistic Regression

 PS = estimated probability of treatment assignment address confounding in observational studies

How is the PS Estimated?

Logistic Regression

How are Covariates Selected?

 PS = estimated probability of treatment assignment address confounding in observational studies

How is the PS Estimated?

Logistic Regression

How are Covariates Selected?

Thousands of potential confounders

PS Model Selection

- Traditionally: Investigator Selection
- high-dimensional Propensity Score algorithm (hdPS) univariate screen for significant covariates based on exposure or outcome association

"exposure-based": relative risk with treatment exposure "bias-based": relative risk with outcome of interest

L1-regularization (LASSO)
 multivariate model selection via penalized likelihood
 coefficients of unimportant covariates shrunk to zero

Study Goals

- Detail framework to evaluate propensity score estimation method performance
 - simulations
 - negative control experiments
- Use evaluation to compare:
 - hdPS Algorithm: "exposure-based" and "bias-based"
 - L1-regularization (LASSO)

PS Details

- hdPS Algorithm prescribes a certain set of data preprocessing:
 - aggregate covariates by coding
 - limit considered covariates to most prevalent
 - augment covariates by individual level frequency
 - 180 day lookback windows
- FeatureExtraction default uses more expansive set of covariates
 - eras, exposures, observations, measurements, scores
 - 30 day, 365 day, all day lookback windows
- We used L1-regularization on both (hdPS and CDM)

Simulations

- Keep treatment exposure and covariates from real-world data
- Simulate outcomes times under a survival model
- Simulate under known hazard ratio and with different outcome prevalences
- Extends the "plasmode" framework by Franklin et al. (2014)

Simulations

 Simulate realistic survival data under a known hazard ratio in Cox proportional hazards model

Negative Control Experiments

- Downside to simulations:
 Do not capture full complexity of real-world data
- Negative controls:
 Outcomes unaffected by the studied treatments

Negative Control Experiments

- Downside to simulations:
 Do not capture full complexity of real-world data
- Negative controls:
 Outcomes unaffected by the studied treatments

Presumed relative hazard ratio: 1

Empirical Data Used - Anticoagulants

- Replication of dabigatran vs warfarin observational study by Graham et al. (2014)
- Database: Truven Health Marketscan Medicare
 Supplemental and Coordination of Benefits Database

• Cohorts:

19768 dabigatran users, 52721 warfarin users 192 intracranial hemorrhage 0.26% 98118 unique covariates

PS Distribution

0.25

0.50

Preference score

0.75

1.00

0.50

Preference score

0.75

0.25

PS Distribution

0.25

0.50

Preference score

0.75

1.00

0.25

0.50

Preference score

0.75

Covariate Balance

 standardized difference of covariates before and after propensity score matching

Which covariates to consider?

- All covariates
- "true confounders"
 - approximated by simulation model covariates
 - note: these include "hdPS Algorithm Covariates" and "CDM Covariates"

All Covariates

10:1 variable ratio matching

All Covariates

10:1 variable ratio matching

Simulation Model Covariates

Simulation Model Covariates

10:1 variable ratio matching

Bias Reduction: Simulations

Bias Reduction: Simulations

Simulation Bias

Survival Simulation; consider 1:1 matching

$$\hat{\eta} = \log N_1 - \log N_0$$

 N_1 : exposed has event, time before unexposed

 N_0 : unexposed has event, time before exposed

$$\Pr(\text{set in } N_1) = \int_0^\infty (\frac{\partial}{\partial t} S(t)^{\exp\{\theta_{1,k}\}}) S(t)^{\exp\{\theta_{0,k}\}} C(t) C(t) \mathrm{d}t$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{survival function} \qquad \text{censoring function}$$

contains true effect size

unexposed hazard

Simulation Bias

Survival Simulation; consider 1:1 matching

$$\hat{\eta} = \log N_1 - \log N_0$$

 N_1 : exposed has event, time before unexposed

 N_0 : unexposed has event, time before exposed

$$\Pr(\text{set in } N_1) = \int_0^\infty (\frac{\partial}{\partial t} S(t)^{\exp\{\theta_{1,k}\}}) S(t)^{\exp\{\theta_{0,k}\}} C(t) C(t) \mathrm{d}t$$
 Not unbiased survival function when there is

exposed hazard

contains true effect size

unexposed hazard

variance in baseline hazards

Negative Controls

Unadjusted

Coverage: 0.53±0.07

Bias Reduction: Negative Outcomes

- Susceptible to bias:
 - PS adjustment techniques
 - simulation design choices
 - negative control misspecification

- Susceptible to bias:
 - PS adjustment techniques
 - simulation design choices
 - negative control misspecification
- Different outcomes can yield different results

- Susceptible to bias:
 - PS adjustment techniques
 - simulation design choices
 - negative control misspecification
- Different outcomes can yield different results
- Outcome independent metrics more generalizable

Instrument Variables

- Variables that predict treatment exposure but has no effect on outcome (or correlation with any confounder)
- Inclusion in PS can increase bias and variance of estimate

Suppose:

- eye color perfectly separates treatment groups (all blue eyed receive A, all brown eyed receive B)
- eye color does not influence outcome
- no power in experiment

Instrument Variables

- Variables that predict treatment exposure but has no effect on outcome (or correlation with any confounder)
- Inclusion in PS can increase bias and variance of estimate

Suppose:

- absent of IV, PS correlated with outcome hazard, PS matches patients with similar baseline outcome hazard
- add in IV, PS of many exposed people increases
- exposed people now matched with higher hazard
- negative bias results

Instrument Variables

- True IV are rare, impact on real-world data unproven
- IV only problematic if uncorrelated with any confounders unlikely situation in real-world data
- Identifying IV's is difficult
- bias-based hdPS uses outcome information in PS to avoid IV's, but breaks Rubin's unconfoundedness assumption

Instrument Variables - Solution?

- If certain IV's are suspected, stratify on them in the PS logistic regression -> conditional logistic regression (CLR)
- CLR avoids estimating any effect size from IVs
- Keeps unconfoundedness while eliminates effects on PS
- Issue:
 - CLR computationally expensive for large strata CLR approximations can be very inaccurate
- Future direction:
 Efficient CLR implementation, apply to PS

Take Away Points

- L1 Regularization favorable over hdPS Algorithm
- Simulations and negative controls provided useful evidence
- Regularization solves PS "convergence" problem (no MLE for regression exists)

