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Propensity Score Adjustment

• PS = estimated probability of treatment assignment 
address confounding in observational studies

How is the PS Estimated?
Logistic Regression

How are Covariates Selected?

Thousands of potential confounders



PS Model Selection

• Traditionally: Investigator Selection


• high-dimensional Propensity Score algorithm (hdPS) 
univariate screen for significant covariates 
based on exposure or outcome association 
 
“exposure-based” : relative risk with treatment exposure 
“bias-based” : relative risk with outcome of interest 

• L1-regularization (LASSO) 
multivariate model selection via penalized likelihood 
coefficients of unimportant covariates shrunk to zero



Study Goals

• Detail framework to evaluate propensity score estimation 
method performance 
 
- simulations 
 
- negative control experiments


• Use evaluation to compare: 
 
- hdPS Algorithm : “exposure-based” and “bias-based” 
 
- L1-regularization (LASSO)



PS Details

• hdPS Algorithm prescribes a certain set of data pre-
processing: 
- aggregate covariates by coding  
- limit considered covariates to most prevalent 
- augment covariates by individual level frequency 
- 180 day lookback windows


• FeatureExtraction default uses more expansive set of 
covariates 
- eras, exposures, observations, measurements, scores 
- 30 day, 365 day, all day lookback windows


• We used L1-regularization on both (hdPS and CDM)



Simulations

• Keep treatment exposure and covariates from real-world 
data


• Simulate outcomes times under a survival model


• Simulate under known hazard ratio and with different 
outcome prevalences


• Extends the “plasmode” framework by Franklin et al. 
(2014)



Simulations

• Simulate realistic survival data under a known hazard 
ratio in Cox proportional hazards model

Cox Model Components: 

Treatment data


Covariate data


Covariate effect sizes


Baseline survival function


Censoring function


Empirical 
Cohorts 

Data

Empirical values

Empirical values

Fitted Cox regression

Breslow estimator

Nelson-Aalen estimator



Negative Control Experiments

• Downside to simulations: 
Do not capture full complexity of real-world data


• Negative controls: 
Outcomes unaffected by the studied treatments

Dabigatran  

Warfarin       

Outcome of Interest:  
Major Bleeding

Unknown relative hazard ratio



Negative Control Experiments

• Downside to simulations: 
Do not capture full complexity of real-world data


• Negative controls: 
Outcomes unaffected by the studied treatments

Dabigatran  

Warfarin       

Negative Control Outcome: 
Lyme Disease

Presumed relative hazard ratio: 1



Empirical Data Used - Anticoagulants

• Replication of dabigatran vs warfarin observational study 
by Graham et al. (2014)


• Database: Truven Health Marketscan Medicare 
Supplemental and Coordination of Benefits Database


• Cohorts: 
19768 dabigatran users, 52721 warfarin users 
192 intracranial hemorrhage 0.26% 
98118 unique covariates 



PS Distribution
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AUC: 0.747

AUC: 0.793 AUC: 0.760
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PS Distribution

AUC: 0.737 Empirical: 
AUC: 0.747

AUC: 0.793 AUC: 0.760

bias-based hdPS (empirical)exposure-based hdPS

L1 Regularization (CDM) L1 Regularization (hdPS)

Simulation: 
AUC: 0.742

bias-based hdPS (simulation)



Covariate Balance

• standardized difference of covariates before and after 
propensity score matching


Which covariates to consider?


• All covariates


• “true confounders” 
- approximated by simulation model covariates 
- note: these include “hdPS Algorithm Covariates” and 
“CDM Covariates”
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Simulation Bias

⌘̂ = logN1 � logN0

N1 : exposed has event, time before unexposed

N0 : unexposed has event, time before exposed

Survival Simulation; consider 1:1 matching

survival function censoring function

exposed hazard  
contains true effect size unexposed hazard

Pr(set in N
1

) =
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@
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S(t)exp{✓1,k})S(t)exp{✓0,k}C(t)C(t)dt



Simulation Bias

⌘̂ = logN1 � logN0

N1 : exposed has event, time before unexposed

N0 : unexposed has event, time before exposed

Survival Simulation; consider 1:1 matching

survival function censoring function

exposed hazard  
contains true effect size unexposed hazard

Pr(set in N
1

) =

Z 1

0

(
@

@t
S(t)exp{✓1,k})S(t)exp{✓0,k}C(t)C(t)dt

Not unbiased 
when there is 

variance in 
baseline hazards



Negative Controls

Coverage: 
0.53±0.07

Unadjusted



Bias Reduction: Negative Outcomes

Coverage: 
0.80±0.06

Coverage: 
0.86±0.05

Coverage: 
0.86±0.05

10:1 variable ratio matching

Outcome 
Dependent 
Metric

exposure-based hdPS bias-based hdPS

L1 Reg (hdPS)L1 Reg (CDM)

Coverage: 
0.90±0.04
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Outcome Dependent Metrics

• Susceptible to bias: 
 
- PS adjustment techniques 
- simulation design choices 
- negative control misspecification

• Different outcomes can yield different results

• Outcome independent metrics more generalizable



Instrument Variables

• Variables that predict treatment exposure but has no 
effect on outcome (or correlation with any confounder)


• Inclusion in PS can increase bias and variance of estimate


Suppose:


- eye color perfectly separates treatment groups 
(all blue eyed receive A, all brown eyed receive B) 
- eye color does not influence outcome 
- no power in experiment 



Instrument Variables

• Variables that predict treatment exposure but has no 
effect on outcome (or correlation with any confounder)


• Inclusion in PS can increase bias and variance of estimate


Suppose:


- absent of IV, PS correlated with outcome hazard, PS 
matches patients with similar baseline outcome hazard 
- add in IV, PS of many exposed people increases 
- exposed people now matched with higher hazard 
- negative bias results



Instrument Variables

• True IV are rare, impact on real-world data unproven


• IV only problematic if uncorrelated with any confounders - 
unlikely situation in real-world data


• Identifying IV’s is difficult


• bias-based hdPS uses outcome information in PS to 
avoid IV’s, but breaks Rubin’s unconfoundedness 
assumption



Instrument Variables - Solution?

• If certain IV’s are suspected, stratify on them in the PS 
logistic regression -> conditional logistic regression (CLR)


• CLR avoids estimating any effect size from IVs


• Keeps unconfoundedness while eliminates effects on PS


• Issue:  
CLR computationally expensive for large strata 
CLR approximations can be very inaccurate


• Future direction: 
Efficient CLR implementation, apply to PS



Take Away Points

• L1 Regularization favorable over hdPS Algorithm


• Simulations and negative controls provided useful evidence


• Regularization solves PS “convergence” problem 
(no MLE for regression exists) 


