
Highly	scalable	patient-at-a-time	transformation	of	observational	databases	into	
OMOP	CDM	v5	format	using	cloud-based	open	source	tools
Marzieh	Golbaz,	MS1,	Donald	O'Hara,	MS1,		Mohammad	Azimi,	PhD1,	Steve	Lyman,	BS1,	Stephanie	Reisinger,	BS1	
1 Evalytica,	Inc.,	San	Francisco,	CA

1. We have executed our transformation process against the 500+ million person year dataset twice,
varying the number of concurrent workers used and obtained the run times reported in Table 1.

2. A primary bottleneck within the architecture was the use of cost-effective Amazon S3 service for
long term storage and retrieval of transformed data. S3 automatically handles the placement of
files across partitions based on name, resulting in the placement of files with sequential names
which are typically accessed simultaneously on the same partition. Simultaneous requests from
thousands of processes quickly overwhelm a single partition and result in slowdowns in execution.
By hashing filenames prior to storage and retrieving the hashed filenames, we evenly distribute
our requests across up to 10,000 partitions and achieve request rates of millions of files per second
that should allow us to go far beyond 200 simultaneous workers and reduce transformation time
to under an hour.

3. We determined that the Python

• We have demonstrated a significantly reduced wall time for ETL
transformation, using open source tools executing in the AWS
cloud infrastructure.

• Complex set-based manipulation of large volumes of data using
SQL code can be replaced by much simpler person-at-a-time
logic implemented in procedural languages (Python in our case).

• This approach utilizes on-demand infrastructure and can be
scaled as needed to meet ETL processing time requirements.

A similar approach to the two points presented in the Background
can be adopted when implementing analytic routines for CDM
transformed data. The assumption of independence of data
between patients remains valid, enabling the application of patient-
at-a-time processing. Combined with the ability to rapidly scale the
number of workers based on analytic demand allows for the
generation of insights on CDM data of this scale in under an hour.
The ability to develop these analytic applications using procedural
programming languages provides significant advantages in reduced
development time, simpler debugging and quality controls through
ease of unit and integration testing.

Conclusions

Background Results

Methods

Nodes Wall	Time
25	concurrent	workers 8	hours
50	concurrent	workers 4	hours
200	concurrent	workers*

(planned;	not	yet	executed) 1	hour	(estimated)

The use of a common data model (CDM) such as the OMOP CDM provides many advantages, including the
ability to perform systematic analysis of disparate observational databases and the ability to develop a
library of standard analytic routines that have been written based on a single common format. A major
bottleneck prior to performing any analysis is the transformation of very large databases (500+ million
person years) from their original format to that of the CDM in a process that is commonly referred to as ETL
(Extract, Transform and Load).

This transformation process is commonly implemented using SQL code and run on a large DBMS. Executing
set-based operations on these large datasets in a time-performant manner requires enterprise-sized
database servers, database administration and SQL programming expertise to optimize complex
transformation steps. Even then, this approach can result in a transformation process that can take several
days.

Here we show the benefits of two key design decisions that can lead to significant improvements in
transformation time over the above mentioned approach:
1. Patient-at-a-time processing – this approach takes advantage of the independence of data between any

two patients to provide maximal horizontal partitioning of datasets to uniformly distribute work across
thousands of CPUs.

2. Cloud architecture – utilizing cloud architecture allows for a quick yet temporary “burst” of
computational resources to rapidly process a large amount of data on performant hardware, with the
ability to offload the results to more cost-effective storage for long-term use.

Figure 1: ETL architecture utilizing AWS(Amazon Web Services). S3 (Simple Storage
Service), EC2 (Elastic Compute Cloud), ASG (AutoScaling Group), VPC (Virtual Private
Cloud), IAM (Identity and Access Management), Redshift and Snowball Appliance.

1. Untransformed data is physically transferred to
S3 via an AWS Snowball Appliance and
horizontally partitioned (sharded).

2. Transformation is initiated by placing a series of
messages on the queue – each message
identifies a set of patients to be transformed
(100k+) on a single “worker” (EC2 instance)
along with a unique range of IDs reserved for
these patients and their records.

3. EC2 instances are deployed within an ASG that
can support 1 to hundreds of workers.

4. These EC2 instances:
a) Pull messages from the queue (RabbitMQ)
b) Retrieve the associated raw data from S3.
c) Perform transformation on a single patient

at a time using OHDSI specs implemented
in Python.

d) Store CDM format transformed data back to
S3.

e) (optionally) Load CDM data to Redshift.

programming language is well
suited for the implementation
of OHDSI published ETL
specifications, providing ease
of debugging and automated
testing when compared to set-
based SQL logic.

Table	1:	Transformation	times	based	on	workers	allocated


