

Name: James​ ​P​ ​Fairbanks

Affiliation: Georgia​ ​Tech​ ​Research​ ​Institute

Email: james.fairbanks@gtri.gatech.edu
Presentation
type​ ​(s):

Software​ ​Demo,​ ​Poster,​ ​Lightning​ ​Talk

QueryGarden:​ ​growing​ ​healthy​ ​applications​ ​in​ ​well​ ​prepared​ ​SQL.

James​ ​P.​ ​Fairbanks,​ ​PhD
Georgia​ ​Tech​ ​Research​ ​Institute,​ ​Atlanta,​ ​GA

Abstract

Many software packages within the OHDSI ecosystem rely on SQL query generation, which is fraught with security
risks and compatibility issues. We introduce an ahead of time query server, QueryGarden, to enable access to
queries over HTTP to reduce the risk of SQL injection attacks, improve the lifecycle management of analytical
queries and provide both batch processing for training analytics models as well as single patient queries for near real
time applications. The Query Garden is a place to plant queries for analytics that grow into stable, secure, and user
friendly​ ​applications.

Introduction

The OHDSI software ecosystems uses queries as the primary method for storing business logic of health data
analysis. ETL into the OMOP CDN [1] is performed primarily by ingesting data from CSV files into a set of staging
tables that are then transformed by issuing SQL queries to load the data into production tables. ATLAS [2] uses a
human friendly web editor for generating SQL queries as cohort definitions. Achilles uses a collection of SQL
queries to determine the data quality of an OMOP database, while the PatientLevelPrediction R package uses SQL
queries to define the features that will be extracted for making personalized predictions for patients. All these tools
have in common the need for SQL query generation that is beyond the power of standard query parameterization.
Data driven applications need to leverage databases in order to guarantee availability and persistence of data. The
OHDSI ecosystem has wisely standardized on a set of SQL relational database (RDBMS) systems to use when
constructing these applications. However, the management of these queries is not sufficient to meet the diverse and
complex​ ​needs​ ​of​ ​the​ ​OHDSI​ ​community.

Most software applications include a database application layer for storing and retrieving data and executing
queries. For these applications the needs of Create, Read, Update, Delete (CRUD) are sufficient. Since the servers
and clients written for these applications would prefer a database independent programming interface, they typically
use an object-relational mapping (ORM [3]) which translates between the schema of the database and the objects of
programming language used to manipulate these databases. The primary benefit of these ORM tools is the
cross-platform, database independence and easy of use gained by programming against the native interface of
objects or structures in the programming language. The ORM library handles the conversion of application code into
SQL statements to perform the CRUD tasks. The primary drawback to these tools is their limitations with respect to
the analytical capabilities of the SQL languages. Not all ORM tools provide access to the entirety of the SQL
language for a particular RDBMS. So when performing analytical queries, the application must handle all of the
complexity of raw SQL embedded in their application, which is precisely what they were trying to avoid with ORM
tools in the first place. The OHDSI applications such as PatientLevelPrediction require the power of raw SQL
queries in order to efficiently compute the patient features needed for the application. Most ORM tools will not be

sufficient​ ​for​ ​the​ ​analytical​ ​applications​ ​in​ ​the​ ​OHDSI​ ​ecosystem.

One reason that SQL queries are hard to manage for the OHDSI community is that the OMOP CDM has a large
degree of variability. There are multiple versions of the CDM with variable table and schema names. These
properties along with heterogeneity in the CDM prevent the use of standard SQL parameters for most queries. SQL
query parameters are designed to maximize security and prevent the injection of malicious SQL as parameters
passed from user facing code. This security first design means that the structure of the query cannot be changed as a
parameter and thus many of the changes required by the OMOP CDM cannot be performed. OHDSI/SQLRender
tool handles this problem using a runtime manipulation of strings with a custom DSL for generating queries.
However,​ ​this​ ​approach​ ​leads​ ​to​ ​security​ ​vulnerabilities​ ​and​ ​inefficient​ ​execution.

The Query Garden approach combines query generation with SQL query parameters to avoid SQL injection
vulnerabilities by generating the queries as a resource that is deployed with the application and accessed at run-time.
These queries are specified using a standard templating language such as Jinja, Mustaches or the Go standard text
templates and filled in at deployment time with all of the structure modifying changes that cannot be done with SQL
query parameters. The queries can contain query parameters that are substituted at run-time. The variable values are
specified in a YAML [4] document that associates with each key a string value that will be replaced in the query.
This YAML document includes scopes which are collections of variables that are used when instantiating a
template. This design allows for reuse of templates across many queries, which reduces maintenance costs. The
queries are also stored as templates and scopes as files on disk which enables them to be tracked in version control.
By tracking the scopes and templates separately, the administrator of a Query Garden based service can easily verify
changes to the queries for security risks. Before deploying an application that uses the queries, the scopes and
templates are combined to form the rendered queries. These rendered queries are also saved to disk for manual
inspection. At this point they are plain SQL queries (with query parameters) that can be analyzed using any existing
tool for static or dynamic analysis of SQL queries, for example query plans can be created using the EXPLAIN or
ANALYZE keywords in an RDBMS GUI client. The ability to profile SQL queries outside of the application that
uses them is important for benchmarking and optimizing the queries. Once the queries have been rendered, they can
be deployed as static resources with the application that uses them. This relieves the application from depending on
any particular method for generating queries, which enhances interoperability as any tool that exports queries can be
used with any application that requires them. For example clinical experts can construct queries using ATLAS
which​ ​can​ ​be​ ​deployed​ ​along​ ​with​ ​queries​ ​exported​ ​by​ ​a​ ​computational​ ​phenotyping​ ​tool.

The Query Garden approach is designed to meet the needs of an application for near real time patient level
prediction. The models need to be trained using queries that operate on cohorts and then deployed using queries that
operate on patients. This requires many queries, one per feature of the feature matrix as well as a scalable system for
managing these queries. Since the cohort level and patient level queries need to share many parameters, the
templates and scopes are shared between them. Clinical experts can enter new queries by writing templates or
scopes to add new features. Development and maintenance of this application are greatly aided by a simple system
for​ ​statically​ ​generating​ ​the​ ​queries.

Conclusion

In conclusion, the Query Garden approach for statically rendered queries enables secure, interoperable deployment
of analytical queries. This approach is complementary to an ORM based approach for building applications that
depend on business logic in the form of simple database queries. Separating the construction of the queries from
their integration into applications allows for better debugging, profiling, and auditing of the queries and can improve
the​ ​performance​ ​and​ ​security​ ​of​ ​many​ ​OHDSI​ ​applications.

References

1. OHDSI/CommonDataModel​ ​contributors.​ ​OMOP​ ​CDM​ ​specification
https://github.com/OHDSI/CommonDataModel/

2. OHDSI​ ​contributors.​ ​OHDSI​ ​list​ ​of​ ​analytics​ ​tools​ ​https://www.ohdsi.org/analytic-tools/
3. Maria​ ​E​ ​Orlowska,​ ​Hui​ ​Li,​ ​Chengfei​ ​Liu.​ ​On​ ​Integration​ ​of​ ​Relational​ ​and​ ​Object-Oriented​ ​Database​ ​Systems

SOFSEM​ ​1997:​ ​SOFSEM'97:​ ​Theory​ ​and​ ​Practice​ ​of​ ​Informatics​ ​pp​ ​295-312
4. Oren​ ​Ben-Kiki,​ ​Clark​ ​Evans,​ ​Ingy​ ​döt​ ​Net,​ ​The​ ​YAML​ ​Specification,​ ​​http://yaml.org/spec/​​ ​2009

http://yaml.org/spec/

