

¹Janssen Research & Development, LLC, Raritan, NJ; ²OHDSI collaborators, Observational Health Data Sciences and Informatics (OHDSI), New York, NY; ³Columbia University, New York, NY Corresponding author: James Weaver, Janssen R&D, 920 Route 202, Raritan NJ 08869, email: jweave17@its.jnj.com

BACKGROUND

- New user cohort design evaluates the risk of health outcomes in a treatment group relative to a comparator group; selection effects drive treatment assignment and are mitigated by propensity score methods using observed covariates^{1,2}
- Self-controlled case series (SCCS) design evaluates the risk of health outcomes in cases only by comparing event rates in unexposed and exposed time; implicitly controls for fixed and unobserved covariates^{1,3,4}
- The novel comparative self-controlled case series (CSSCS) combines advantages of new user cohort and SCCS designs; treatment and comparator groups balanced on observed covariates, estimate treatment and comparator effects in balanced groups while controlling for unobserved covariates

OBJECTIVES

- Design a statistically efficient, low residual bias method for estimating treatment effect that controls for observed and unobserved covariates
- Compare direction, magnitude, and precision of CSCCS effect estimates relative to those generated by new user cohort design
- Evaluate CSCCS with model calibration⁵ and discriminative performance metrics^{1,2,4}

METHODS

- Preliminary CSCCS approach is demonstrated by comparing celecoxib and non-selective non-steroidal anti-inflammatory drugs (nsNSAIDs) for risk of myocardial infarction (MI) and gastrointestinal hemorrhage (GI bleed) in osteoarthritis patients
- Method executed against Truven MarketScan Multi-State Medicaid (MDCD) and Truven MarketScan Medicare Supplemental Beneficiaries (MDCR)
- The SCCS design is extended to the treatment vs. comparator framework by executing parallel SCCS analyses on propensity score balanced incident new user cohorts; relative outcome risk is the ratio of rate ratios (RRR)⁶

RESULTS

- Many fewer patients needed for CSCCS than new user cohort design (Table 1) to achieve comparable or improved precision
- average uncertainty of effect across all outcomes in CSCCS is 10.6% lower than new user cohort in MDCD; 5.6% lower in MDCR

Table 1.Incident exposure and outcome counts for new user cohort and CSCCS designs comparing celecoxib vs. nsNAIDs on MI and GI bleed

			Celecoxib		nsNAIDs			
DB	Design	Exposed, n	MI, n(e)	Gib, n(e)	Exposed	MI, n(e)	Gib, n(e)	
MDCD								
	New User Cohort	13737	19(19)	32(32)) 13737	11(11)	21(21)	
	SCCS, MI	260	260(402)	-	- 252	252(428)	-	
	SCCS, Gib	327	-	327(508)) 297	_	297(447)	
MDCR								
	New User Cohort	57547	115(115)	155(155)) 57547	69(69)	153(153)	
	SCCS, MI	1435	1435(2651)	-	- 1460	1460(2665)	-	
	SCCS, Gib	1853	-	1853(2999)) 1744	_	1744(2825)	

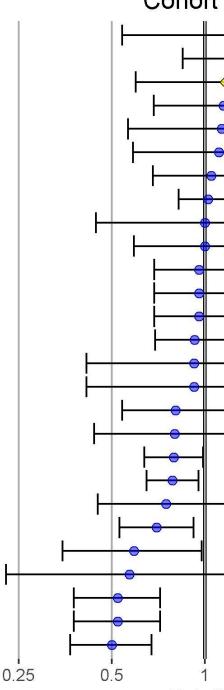
*DB=database, SCCS=self-controlled case series, CSSCS=comparative self-Controlled case series, nsNSAID=non-selective NSAID, GIb=gastrointestinal bleed, MI=myocardial infarction, n(e)=patient count(event count)

Inconsistent results between new user cohort and CSCCS designs for 3 of 4 test cases (MI and GI bleed in MDCD, MI in MDCR) (Table 2, Figure 1a, 2a)

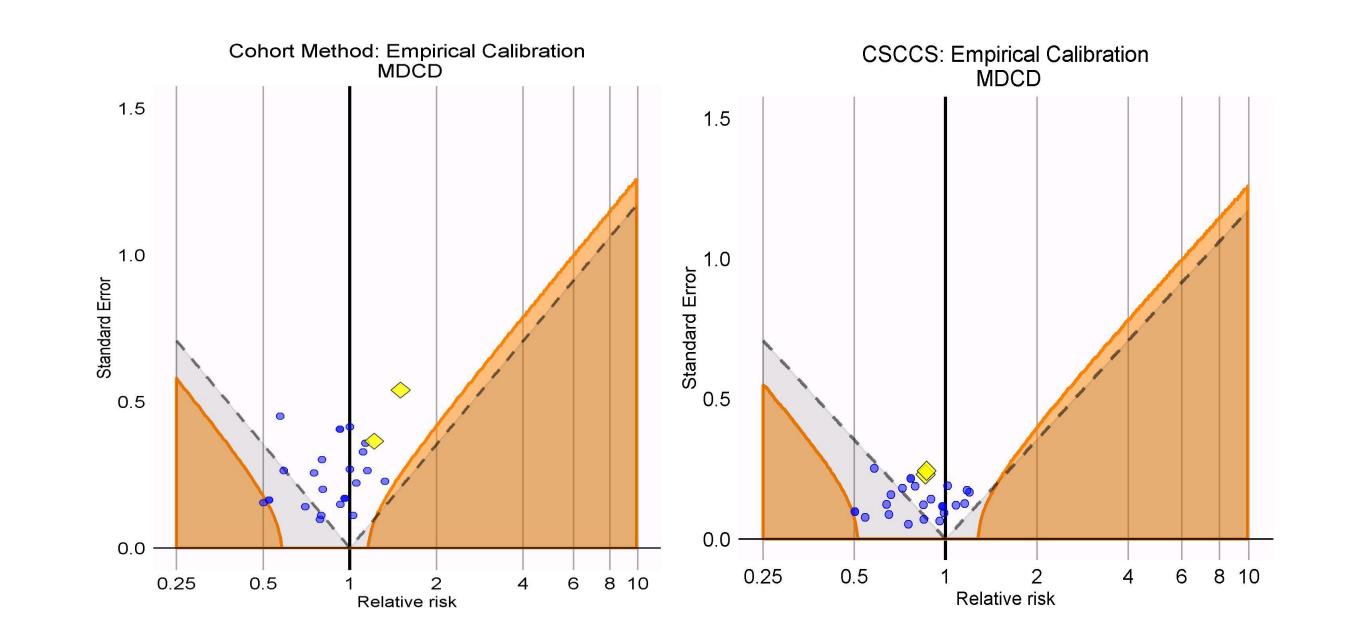
REFERENCES

- system. Drug Saf 2013;36:S143-58.
- 2. 72.
- Whitaker HJ, Farrington CP, Spiessens B, Musonda P. The self-controlled case series method. Statist Med 2005;0:1-31. 2013;36:S83-93.
- Altman DG. Interaction revisited: the difference between two estimates. BMJ 2003;326:219.

Evaluating the Comparative Self-Controlled Case Series Method James Weaver^{1,2}, Martijn J Schuemie^{1,2}, Erica A Voss^{1,2}, Patrick B Ryan^{1,2,3}


RESULTS, cont'd.

- New user cohort and results consistent for GI on MDCR (Table 2, Figure
- RRR<1 does not imply ce reduces risk of outcome
- CSCCS and new user comparably negatively (Figure 1b, 2b)
- CSCCS null mean = (SD=0.22); new user coh mean = -0.20 (SD = 0.15)
- Coverage probability: 64%, MDCR 44%


in MDCD

Cohort Method

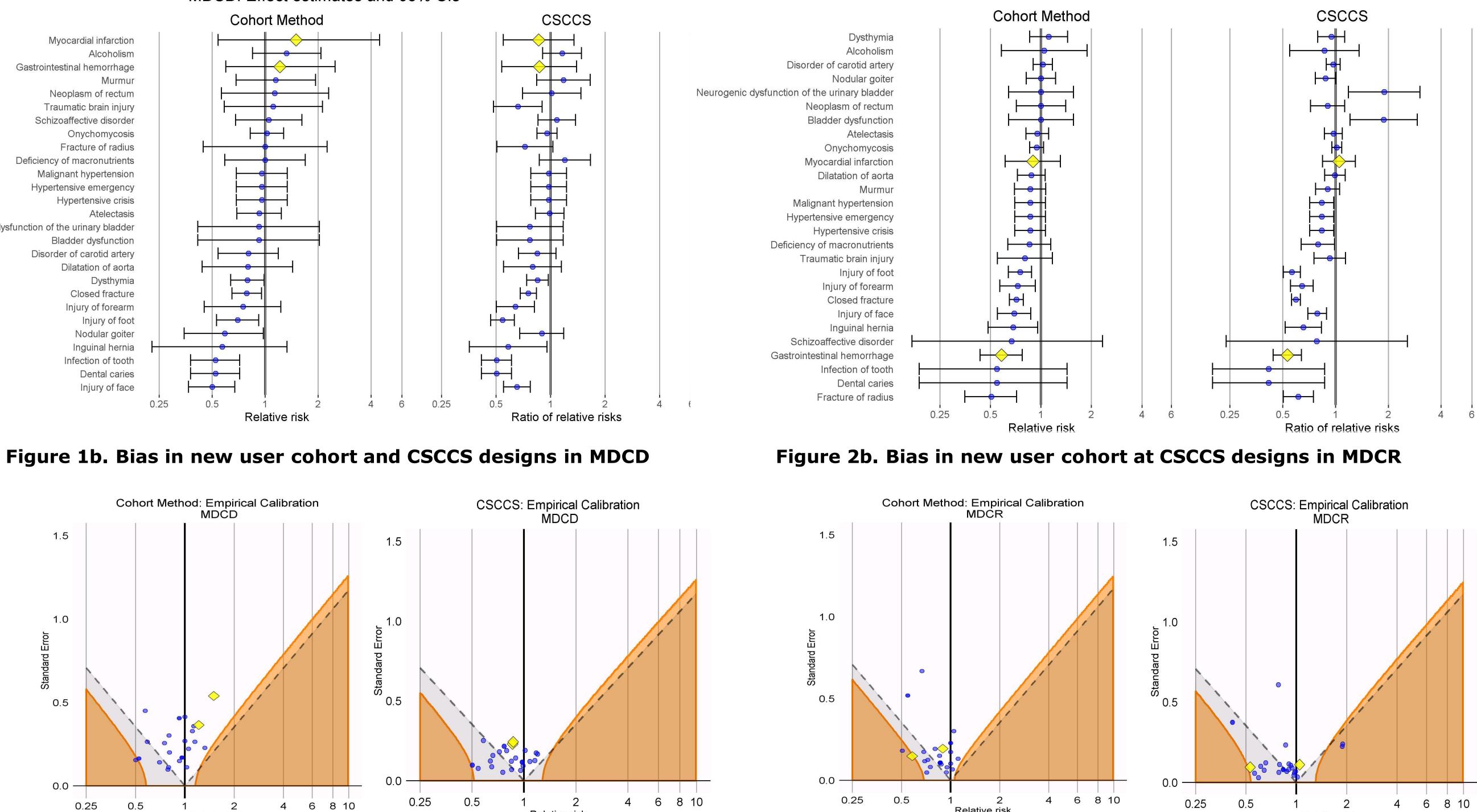
CONCLUSION

Ryan PB, Stang PE, Overhage JM, Suchard MA, Hartzema AG, DuMouchel W, Reich CG, Schuemie MJ, Madigan D. A Comparison of the empirical performance of methods for a risk identification

Ryan PB, Schuemie MJ, Gruber S, Zorych I, Madigan D. Empirical performance of a new user cohort method: lessons for developing a risk identification and analysis system. Drug Saf 2013;36:S59-

Suchard MA, Zorych I, Simpson SE, Schuemie MJ, Ryan PB, Madigan D. Empirical performance of the self-controlled case series design: lessons for developing a risk identification system. Drug Saf.

Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statist Med 2013;33:209-18.


DB	Design	Measure	ΜΙ β	95% CI lb	95% CI ub	GI bleed β	95% CI lb
MDCD							
	New User Cohort	RR	1.50	0.54	4.47	1.21	0.60
	SCCS, celecoxib	IRR	1.27	0.92	1.73	1.63	1.20
	SCCS, nsNSAIDs	IRR	1.48	3 1.05	5 2.06	1.89	1.26
	CSCCS	RRR	0.86	0.55	5 1.35	0.86	0.54
MDCR	<u>`</u>						
	New User Cohort	RR	0.89	0.61	1.31	0.58	0.43
	SCCS, celecoxib	IRR	1.49	9 1.30) 1.71	1.35	1.18
	SCCS, nsNSAIDs	IRR	1.43	3 1.20	1.69	2.55	2.22
	CSCCS	RRR	1.05	5 0.84	1.30	0.53	0.44

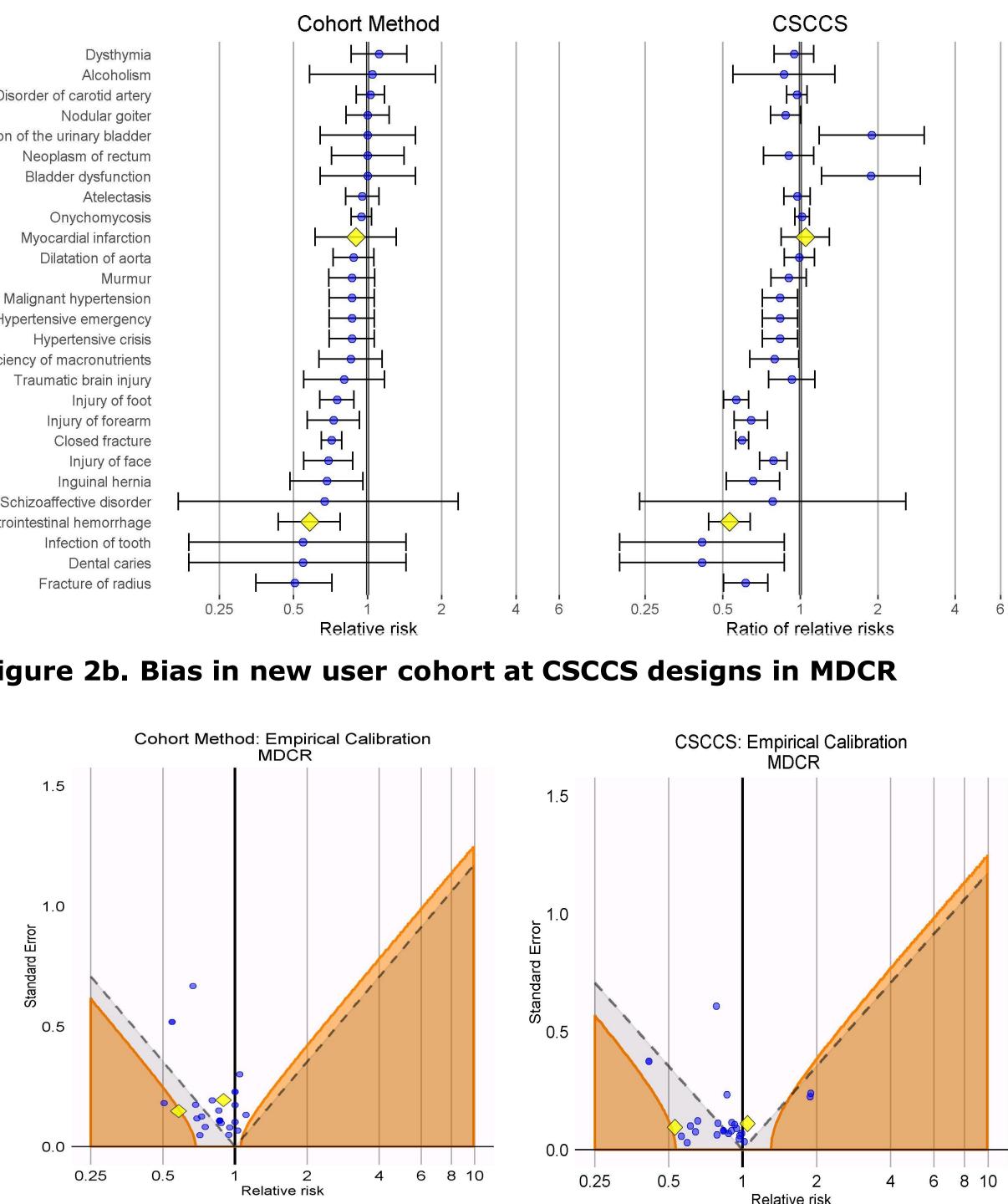

comparative self-controlled case series, nsNSAID = non-selective NSAID, GI Bleed = Gastrointestinal Bleed, MI = Myocardial Infarction

Figure 1a. Effect estimates of new user cohort and CSCCS designs

in MDCR

Preliminary results are inconclusive; unable to conclude that CSCCS effect estimates are comparable to those from new user cohort design Execution across many drug-outcome pairs of known positive and negative signal across a database network necessary for full evaluation Statistical efficient advantages for estimating comparative treatment effects on low-prevalence outcomes

CONFLICT OF INTEREST

JW, MS, EV, and PR are full time employees of Janssen Research and Development, a unit of Johnson and Johnson. The work of this study was part of their employment. They hold pension rights from the company and own stock and stock options.

Figure 2a. Effect estimates of new user cohort and CSCCS designs

