Visual Analysis of Complex Adverse Drug Reactions in Claims Data
Suji Xie¹, Geoffrey Gordon², Trinka Coster MD¹
¹US Army PVC, Falls Church, VA; ²Commonwealth Informatics, Waltham, MA

Abstract
This paper describes visual analytic capabilities developed by the US Army Pharmacovigilance Center (PVC) to support pharmacovigilance safety studies, illustrated with a complex ADR example as the use case.

Introduction
PVC developed and operates the Pharmacovigilance Defense Application System (PVDAS) to perform medication safety surveillance for the Military Healthcare System. PVDAS is a software suite with an accompanying medical datamart that has a data model similar to OMOP Common Data Model and currently contains data from 2005 to the present for about 16 million patients. PVDAS also has visualization tools closely integrated with its analytic modules.

PVDAS Visualization Tools
The PVDAS visualization framework is a graphical timeline, in which patient data, such as enrollment periods, drugs, events, and procedures are displayed for either a single patient or for multiple patients. The single-patient timeline displays complete patient history while multi-patient timeline focuses on providing a visual overview of the temporal distribution of the suspected drug(s)-event(s) relationship. The user interface includes capabilities to zoom to the periods of interest, to explore data at different levels of a terminology hierarchy, and in the case of multi-patient timelines, to align the data according to significant events rather than absolute time. Point-and-click drilldown from the multi-patient timelines to single-patient timelines is supported. EventFlow developed at the University of Maryland allows the user to subset the timeline displays, and also has an innovative display in which the individual timelines are aggregated to highlight common temporal patterns.

Case Study: Analysis of Outcome Drug Reaction Eosinophilia and Systemic Symptom (DRESS)
In December 2014, the FDA warned that ziprasidone may be associated with the serious condition Drug Reaction Eosinophilia and Systemic Symptom (DRESS). Symptoms include: rash, fever, lymphadenopathy, eosinophilia, hepatitis, nephritis, pancreatitis, and inflammation of other organs. The current diagnosis standard specifies that “simultaneous” occurrence of any three of the individual symptoms constitutes a “notification case” with medical review required for confirmation. Correctly identifying this syndrome based on claims data is extremely challenging. Our goal was to algorithmically identify “notification cases” and then visually highlight the evidence to help a medical reviewer decide whether to request a detailed chart review for final confirmation. We began by identifying 339 potential notification cases that had at least two or more of the individual DRESS criteria occurring within 60 days after exposure to ziprasidone. For initial review we loaded these cases into EventFlow and used it to identify patterns of exposure and condition onset (Figure 1). We then presented the cases for detailed review using the multi-patient timeline and single-patient timeline (Figures 2A, 2B). Using these visualizations, a medical reviewer was able to rapidly eliminate about two-thirds of the cases, and then make an initial determination on the remainder in just 10-15 minutes per case. A full chart review will be required for final determination on the set of 30-60 “likely” cases identified through this process.

Figure 1: EventFlow aggregate view of suspected cases
Figure 2: Multi-patient timeline (A) with single-patient drilldown (B)

Conclusion
When dealing with complex outcomes such as DRESS, “blind” algorithmic approaches are not sufficiently precise; visual analytics in the form of single- and multiple-timeline displays can greatly ease the burden of medical review

Reference