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We present to the OHDSI community the R package 
LocalControl, which implements novel nonparametric 
approaches to address biases and confounding when 
comparing treatments or exposures in observational 
studies. LocalControl is an open-source tool for 
researchers whose aim is to generate high quality 
evidence using observational health records. The package 
releases a family of methods for nonparametric bias 
correction when comparing treatments in cross-sectional, 
case-control, and survival analysis settings, including 
competing risks with censoring. 
This work was supported by NIH NLM 1R21LM012389-01. 

Survival-Based Local Control
Because one cannot simply average survival curves, the 
transition to longitudinal analysis required further 
innovation. We first devised an approach of weighting the 
events from each treatment in a cluster so that they sum 
to one, resulting in an equal contribution from all of the 
clusters. We then sum the series of events from all 
clusters, producing a global estimate which can be used 
with the Kaplan-Meier and competing risks counting 
processes. Note, that Kaplan-Meier is a special case of 
competing risks, the latter of which can account for 
multiple outcomes of interest.

We produced a simulation described in Table 2 and 
Figure 3, where the blue treatment naively appears to 
have a lower risk of adverse outcomes, but when the 
treatment bias (younger, lower BMI patients are more 
likely to receive the blue treatment) is corrected for, we 
see that the red treatment is actually safer. We have 
found in communicating results of Local Control that 
people struggle to intuitively grasp the notion that they 
are looking at a difference between treatments. With that 
in mind, rather than presenting survival curve differences, 
we created visualizations of the separate treatments 
before and after bias correction (Figure 3). 

Results

Methods

Conclusions
Treatment comparisons can be performed in both cross-
sectional and survival based settings. The problem is to 
find the true difference in outcomes between two 
treatments.  A naive approach to the calculation of 
treatment differences in cross-sectional studies uses 
global averages, taking the difference in the mean 
outcome of each treatment. Similarly, survival-based 
treatment comparisons compare the cumulative risk of 
one or more outcomes of interest between two 
treatments, where time-to-event (with potential 
censoring) is the outcome of interest, and a naive 
comparison might use Kaplan-Meier curves. 

In order to address biases, covariates in more complex 
models are typically employed. Methods include linear 
models and propensity scoring, the latter of which has 
gained wide use in correcting treatment biases1,2, and on 
average, outperforms alternative methods in large scale 
patient records analyses3,4. However, a weakness of 
propensity scoring is that there is no guarantee about 
patient similarity with respect to their biasing variables, 
rather they only have a similar probability of treatment5. 
Thus, under the coarse matching approach of propensity 
scoring, if a 99-year old female had the same propensity 
for treatment as a 24-year old male, they might be 
grouped for comparison, even though this makes very 
little biological sense. 

The Local Control method6-9  provides a powerful and 
conceptually intuitive approach to statistically addressing 
biases and confounders in large-scale observational data. 
It enables estimation of overall treatment effects, as well 
as estimation of heterogeneity of treatment effect in 
subpopulations.  It has been successfully used to compare 
treatments for major depressive disorder8,10, and to 
evaluate the effect of air quality on mortality11. Its 
theoretical roots are those of propensity scoring, but it 
provides a tunable, finer-grained matching process for 
nonparametric treatment comparisons. The key idea 
behind Local Control is to form many homogeneous 
patient clusters within which one can compare alternate 
treatments, statistically correcting for measured biases 
and confounders, analogous to a randomized block design 
within a randomized controlled trial (RCT)12-14. Prior to our 
work, the Local Control methodology was developed only 
for case/control and cross-sectional studies using a 
hierarchical clustering approach. We introduce our new 
R15  LocalControl package, which implements a nearest-
neighbors clustering approach for both cross-sectional 
and survival/time-to-event analyses, including competing 
risks.

Framingham Study
To demonstrate the utility of the method, for the 
“treatment” of smoking vs. non-smoking we compare the 
risk of hypertension in the context of the competing risk 
of death on Framingham Heart Study Data16, using our 
new competing risks Local Control Methodology.
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Table 2: Survival simulation cohort summary. A hypothetical 
hypertension treatment A (blue) is prescribed more frequently to 
younger, healthier patients with a low body mass index (BMI), 
Treatment B (red) is prescribed to older patients with a higher body 
mass index. Significant treatment biases exist for age and BMI.
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Table 1: Cross-sectional simulation cohort summary.  In this 
simulation, we introduce a bias where treatment 1 is dosed with a 
higher variance than treatment 0. The adverse drug reaction 
(outcome variable) for both treatments is assigned using the same 
function: ADR = |target_dose – actual_dose|mg, where the optimal 
dosage is one mg per kg of the patient’s weight. We introduce the 
bias by modifying the variance of treatment dosages between the 
two groups. This table shows the distribution of weight, and dosage 
among the simulated patients. Using a t-test, we show that there is 
no statistical difference between the covariate averages in the two 
treatment groups. With an F-Test, we compare the variance of the 
two groups to show the statistical difference between the two.

Figure 2: Treatment bias correction using Local Control on the 
cross-sectional simulation. We observe without correcting for bias, 
that the blue T1 outcome average is 8.05 units higher than T1 
(lower left histogram). As the level of correction increases, 
corresponding to shrinking the radius of near-neighbors (closer 
weight and dosage), we see that the local estimate approaches the 
true treatment difference of zero (upper right histogram).

Figure 3: Treatment bias correction using Local Control on the 
survival simulation. Paler dots in the age vs. BMI graph indicate 
shorter times to a cardiac event. Because of the treatment bias, 
patients on A appear to have better outcomes than on B (dotted 
lines on Kaplan-Meier plot). However, the Local Control corrected 
curves (solid lines) show the true treatment effect, that treatment 
B actually has better outcomes than A when patients are clustered 
for similarity of age and BMI.

Figure 5: Output diagram for localControlNearestNeighbors.  Each 
Local Control function returns an R list with the analysis results. 
Since the results differ between the three functions, each of the 
returned lists have S3 class names corresponding to the calling 
functions. In the above figure, we observe the structure of the 
LocalControlNN class which is returned from the 
localControlNearestNeighbors function.  Starting from the top-left 
frame, we have the outermost list, the LocalControlNN object 
itself. The remaining rows of the frame show the names of each list 
element. The '$' represents one of the methods of retrieval for List 
elements in R, users can fetch the ‘summary’ data frame with 
LocalControlNN$summary. 

Figure 1: Distribution of covariates in the cross-sectional 
simulation. This plot shows the distribution of the weight, and 
dosage in the simulation. We use the shading of points to represent 
the level of adverse reaction to the treatment for each patient. The 
pale points indicate patients with a greater adverse reaction to the 
treatment, while the dark points represent those with smaller 
reactions.

Cross-Sectional Local Control
Nearest Neighbors Local Control clusters patients for 
similarity on variables that are thought to be sources of 
bias and confounding. Each patient has a unique set of 
near-neighbors within a covariate hypersphere of a given 
radius. With the radius as a parameter, users have direct 
control over the degree of patient similarity within 
clusters. The radius can assume all real values in the range 
between zero, where clusters contain only perfect 
matches, and the maximum diameter of the covariate-
space, resulting in N clusters which contain the entire 
population. For case/control and cross-sectional studies, 
Local Control calculates the global treatment difference as 
the average of the treatment differences across each of 
the neighborhoods. We illustrate this with a simulated 
cross-sectional dataset where two treatments have the 
same pharmacological properties, but a bias of a higher 
variance in dosage for treatment T1 versus T0 makes T1 
appear to have worse outcomes. Table 1 describes more 
about the simulation, and Figure 1 shows a scatterplot of 
the outcomes as a function of variance of target dosage 
(as a function of weight) with actual dosage.

Table 3: Framingham Heart Study cohort biases.  We dropped 
patients from the study with preexisting cardiovascular conditions. 
We used Fisher’s exact test for the comparison of the is_male 
binary covariate. For the remaining continuous covariates, we used 
a t-test to compare the two groups.  Smoking “treatment” bias was 
significant for sex, age, BMI, blood pressure, and heart rate.

Figure 4. Framingham Heart Study: Competing risks of 
hypertension and death among smokers and nonsmokers. The top 
plot shows the cumulative incidence without any correction for 
covariates. This biased estimate suggests that non-smokers have a 
higher risk for hypertension and lower risk of death. The bottom 
plot displays the results from Local Control after correcting for 
gender, cholesterol, age, BMI, heart rate, and blood glucose level. 
The competing risks Local Control bias-corrected curves show us 
that, among comparable patients, there is almost no difference in 
the rate of hypertension over time, but that the greater risk of 
death remains for smokers. The shaded areas represent 95% 
confidence interval estimates.

With LocalControl, we have introduced a new open-
source tool for the correction of bias and confounding to 
the OHDSI and R communities. Figure 5 shows a schema 
of the output from the cross-sectional function.  
Preliminary studies on real and simulated data with 
known answers have shown that LocalControl effectively 
corrects for measured biases in both case/control and 
survival/time-to-event settings. 

A summary of the Framingham cohort data and potential 
biases is shown in Table 3. We observe that smokers are 
more likely to be male, be younger, have a lower BMI, 
higher blood pressure, and have a higher resting heart 
rate. Figure 4 shows both uncorrected and bias-corrected 
comparisons of cumulative incidence of hypertension and 
death, illustrating how dramatically the interpretation of 
the data can change.


