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Abstract 

Longitudinal observational data can be used to develop risk models by learning condition occurrence patterns that 

commonly precede an illness.  These patterns may consist of latent features that are not directly observed, but 

rather, they are inferred.  In this research, two common approaches for feature learning are investigated, namely 

deep learning/boosting and matrix factorization. The empirical performances of different risk model frameworks, 

incorporating various feature learning methods, are evaluated across a range of outcomes on the OPTUM CDM 

database. It was found that deep learning slightly outperformed lasso logistic regression, indicating the benefits of 

learning feature interactions, but none of the risk models performed satisfactorily,  

Introduction 

The rise of digital infrastructure has resulted in large quantities of medical longitudinal observational data becoming 

available.  Furthermore, these datasets are rapidly expanding.  This presents the opportunity to learn new medical 

information from the data; however, methods that can overcome issues with the data are required to fully utilise it.  

For example, the data could be used to develop high performance personalised risk models that could accurately 

identify patients who are at high risk of developing certain illnesses. Such models would enable preventative 

initiatives to be implemented to lower the patients’ risks and improve healthcare. However there are often technical 

issues limiting the analysis of big data
1
.  The main issues include the size and sparseness of the data.   

To develop high performance risk models it is likely that manual feature engineering or data-driven techniques for 

feature learning are required. At present, risk models generally rely on expert specified features (basic feature 

engineering). Using only a small number of expert specified features ignores a large amount of data that could be 

used to improve the model performance. For example, by considering a patient’s complete medical history it may be 

possible to learn predictive temporal patterns that would otherwise be ignored by conventional risk models. These 

patterns could be learned by implementing data-driven feature learning techniques such as matrix factorization
2
 or 

deep learning
3
.  Aside from often improving model performance, feature learning has the added advantage of being 

adaptable to different illnesses, so the same methodology could be widely applied to learn predictive features for any 

illness without requiring experts to specify the features. 

Deep learning is a supervised learning technique that learns to infer classes based on learning feature 

representations.  It has been successfully applied to image recognition where it is capable of identifying parts of an 

object, such as edges or shapes, at different hierarchal levels. Matrix factorization is an unsupervised learning 

method often used to reduce the dimension of sparsely represented data by identifying latent features.  Matrix 

factorization has been used to improve the performance of risk models
2
 and can readily overcome missing data 

issues.  One advantage of matrix factorization is that it can readily incorporate temporal aspect of the data. 

The aims of this research are:  

1) To empirically evaluate the implementation of deep learning and matrix factorization within a risk model 

framework using OPTUM CDM data. 

2) Provide R code of the risk model framework. 

Methods 

The risk model framework methodology is presented in Figure 1 below.  To extract the cohort data an index date is 

chosen and all patients within a user specified age range at index are selected if they have either a complete 2-year 

observational period after the index date or a recording of the outcome during the 2-year interval after index. 

Patients with less than six years of observation prior to the index date or with a prior recording out the outcome are 

excluded.  For each patient a medical history feature matrix is constructed, with each row representing consecutive 

6-month time intervals prior to the index date, each column corresponds to a condition and the entry is 1 if the 

patient has the condition recorded during the time interval and 0 otherwise.  Each patient’s outcome label is 1 if they 

have the outcome recorded within the 2-years follow-up and 0 otherwise.   The set of patient feature matrices paired 



  

with their outcomes are used to train a deep neural network for the deep learning framework.  For the matrix 

factorization we implement non-negative matrix factorization to reduce the dimensionality of the data.  The matrix 

factorization is used to predict the risk by feeding the patients’ latent features, discovered via matrix factorization, 

into a classifier (neural network or gradient boosting machine).  The code for the risk framework is available online 

(see poster). 

 

Figure 1. The risk model framework incorporating feature learning via deep learning or matrix factorization. 

To compare the frameworks the area under the receiver operating characteristic curves (AUCs) when predicting the 

risk of OMOP congestive heart failure, OMOP depression and gastro-intestinal hemorrhage are calculated. The 

complete data is randomly partitioned into a test set (10%) and training set (90%).  The hyper-parameters for each 

risk model are selected based on the results from 5-fold cross validation on the training set.  

Results & Discussion  

Table 1. The performance of risk model frameworks incorporating the different feature learning methods 

Method Heart Failure Depression Gastro-intestinal  Mean 

Deep Learning Classifier 0.745 0.640 0.641 0.675 

Matrix Factorization 0.727 0.600 0.619 0.649 

Lasso Logistic Regression 0.734 0.623 0.626 0.661 

Table 1 presents the AUC results of each risk model framework applied on the various outcomes. Overall none of 

the models obtained high AUCs (>0.8). However, as these models only used the 5 year medical condition history 

and did not include feature such as age or gender, the performance is reasonable.  The lasso logistic regression 

generally performed just as well deep learning and was faster to train.  One reason for deep learning only slightly 

outperforming the other models may be due to the complexity of training deep learning models often resulting in a 

suboptimal model. The performance shows deep learning created more suitable latent features than matrix 

factorization. One possible explanation is that the matrix factorization learns latent feature independently of the 

outcome, whereas the deep learning latent features adapt to the outcome, giving deep learning an advantage. Non-

negative matrix factorization seemed to perform poorly, however this may not be true for other matrix factorization 

methods that impute and learn temporal patterns
2
, and this may be worth investigating in the future. 

Conclusion 

In this paper we investigated the risk model performance when incorporating supervised (deep learning) and 

unsupervised (matrix factorization) feature learning into the framework.  Deep learning performed slightly better 

than regularized logistic regression across the three outcomes.  This shows that feature learning may be a possible 

solution to personalizing risk models, but more advanced modeling such as implementing ensembles may be 

required to obtain the desired AUCs.  Possible areas of future work include implementing a convolutional neural 

network approach or including prescriptions and demographic features into the feature learning framework. 
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