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Scope and Objectives

Explored challenges
◦ Collecting patient data for precision medicine

◦ Analyzing data to develop predictive models

◦ Testing predictive models

◦ Delivering risk estimations

Designed solutions
◦ To collect comprehensive medical records of patients

◦ To standardize patient medical records, both concept validations and dataset structure

◦ To standardize exchange of predictive models 

◦ To provide a tool to enable testing and deploying health risk estimations in “plug-and-
play” manner

3



Predictive models, How good they are?

Pick a cohort

Develop predictive models
• Logistic regression
• Linear regression
• Random forest
• Cox proportional hazards 
• Support vector machine (SVM)
• Naïve Bayes network

Patient level 
predictions
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Predictive models, How good they are?

Risk Prediction Models for Hospital Readmission: A Systematic Review
Kansagara, D. et al. (2011). Jama, 306(15), 1688-1698.

◦ Reviewed 7,843 papers, analyzed 26 unique models

◦ Poor-to-modest discriminative ability:

◦ To risk-adjust readmission rates for hospital comparison with c statistic ranged 0.55-0.65

◦ To identify high-risk patients for intervention early during a hospitalization with c statistic ranged 0.56-0.72

◦ To estimate hospital discharge with c statistic ranged 0.68-0.83

Statistical models and patient predictors of readmission for heart failure: a 
systematic review
Ross, J. S. (2008). Archives of internal medicine, 168(13), 1371-1386.

◦ Poor-to-modest discriminative ability:

◦ To patient readmission risk with c statistic of 0.60

◦ To predict mortality after HF hospitalization with c statistic ranged 0.67-0.81
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Problem No. 1
Predictive Models with poor-to-modest performance

Model development
◦ Not generalizable: Limited to the sample size

◦ Not reproducible: Not a good representative of the whole population; Limited to the 
patient characteristics in the training set

◦ Suboptimal results: Limited accuracy when tested on other data sources

Potential solutions
◦ Increase sample size of training set

◦ Include patients from all tiers of the population with diverse age range, race, ethnicity, 
genetic factors, history of diseases and comorbidities, therapies, etc.

◦ Compare the performance of different predictive modelling methods

◦ We need a system that can integrate data from different centers with diverse data 
models in one matrices to run the machine learning algorithms.

?
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Challenges of Deploying Predictive Models

Development Deployment Prediction

Statistician/Data scientist

• Recode data
• Control for confounders
• Develop the model
• Evaluate the model

IT programmer

Adding a new feature is always 
challenging and time limiting:

• Cross-map variables to the 
EHR data model

• Modify hard-coded variables
• Debug the newly developed 

module

Healthcare Provider

Due to the limitations in deployment:

• Delayed use of predictive model
• Suboptimal predictions
• Needs for an updated model
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Problem No. 2
Complex and costly multi-center evaluation and deployment

Model deployment and evaluation
◦ Complex task: Different data models, Diverse coding systems

◦ Adding new excess costs: Development, Implementation, Maintenance, Training, 
Safety and privacy safeguards

◦ Many people are involved every time a new model is selected to be deployed or 
evaluated on multiple data repositories: Data Procurement Manager, IT Manager, 
Analyst, Computer Programmer, Statistician

Potential solutions
◦ Build a plug-and-play platform to deploy predictive models and generate 

predictions

◦ We need an interoperable system, independent of the systems that runs the 
predictive models.

?
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Problem No. 3
Limited access to ready-to-use data

Data from other data sources needs 

extensive processing to be ready for 

population health research

Diverse 

coding 

systems

Diverse 

database 

structures

Many 

data 

sources

• Concept mapping

• Concept validation

• Code validation

• De-identification

• Removing duplicates

• Text processing
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Key Factors

Key factors to achieve goals of Precision Medicine to 
develop and deliver risk estimation models:

◦ “Generalizable” and “reproducible” predictive and risk scoring models

◦ “Comprehensive” and “ready-to-use” patient data repository

◦ “Convenient” evaluation of models on larger cohort of patients

◦ “Plug-and-play” deployment of predictive models
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Request for data

PHRST

Personalized health Risk Scoring Tool

Request for results 
of my analysisHL7

PMML

HIPAA Policy

Security Financial

Insurance Company

E-Prescribing

EHR



Personalized Risk Scoring Tool (PHRST)
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PHRST is a tool that 
deploys (plugs) new analytics algorithms, 
runs (plays) the models on patient data, 
and returns the results 

Plug-and-Play



The Interoperable System For Delivering 
Personalized Predictive Analytics

User Interface

OMOP 

CDM

API

O-PMML

Repository
CCD 

Repository

CCD-TO-OMOP 
Parser

CCD-TO-OMOP Parser

<on load>
Request list of patients 

and predictive models

O-PMML 

Parser

Personalized Health Risk Scoring Tool (PHRST)

JSON

<response>
List of patients

<on model run>
Request the selected 

model’s output

JSON

<response>
Outputs of 

predictive models
JSON

<response>
List of models

SQL Executer

Scorer

O-PMML

Mining Task Build 
scripts

Retrieve values 
of variables

Passing 
retrieved values

Model scoring 
procedure

O-PMML Scoring Engine

CCD
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The diagram of the 

architecture and data flow of 

personalized health outcome 

prediction framework



The Interoperable System For Delivering 
Personalized Predictive Analytics
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The Interoperable System For Delivering 
Personalized Predictive Analytics
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Accommodation of HL7 C-CDA-based CCD data into 
OMOP CDM
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OMOP Common Data Model Version 5.1 conceptual modelHL7 Consolidated-Clinical Document Architecture (C-

CDA)



Accommodation of HL7 C-CDA-based CCD data into 
OMOP CDM

CCD-TO-OMOP package
◦ CCD parser: Extracts demographics, medicines, conditions, care provider encounters, 

laboratory test results, and observations data from CCDs.

◦ CCD Mapper: Transforms the data into intermediate OMOP tables–which are 
instantiated from the OMOP CDM module–for further processing. 

◦ Loader: Loads the transformed data from the intermediate tables into an OMOP CDM 
database.
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Accommodation of HL7 C-CDA-based CCD data into 
OMOP CDM

CCDs
◦ Continuity of Care Document: A summary of patient medical records
◦ Randomly selected 250 deidentified CCD documents 
◦ HL7 version 3 (V3) consolidated clinical document architecture (C-CDA) Release 1.1 standard 

from Regenstrief Institute

Processed OMOP CDM tables
◦ Person : patient demographics
◦ Observation Period : periods of observing patient health events
◦ Visit Occurrence: visit encounters 
◦ Condition Occurrence: diagnoses and health conditions
◦ Condition Era: continuous intervals of diseases and conditions 
◦ Procedure Occurrence: procedure records
◦ Drug Exposure: administered medications
◦ Drug Era: continuous intervals of medication use
◦ Measurement: results of medical evaluations 
◦ Observation: clinical observations 
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Accommodation of HL7 C-CDA-based CCD data into 
OMOP CDM

Overall mapping performance of concepts and records to OMOP CDM vocabulary by 
domain.
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

◦ We have standard for exchanging patient information, why not for predictive 
models?

◦ Predictive Model Markup Language (PMML)
◦ Introduced in 1997 by the Data Mining Group

◦ XML-based architecture

◦ Mainly used in finance, banking, AI, auto industry

◦ Very few studies in the literature on using PMML in healthcare

PMML Versioning:

◦ 1997: release 0.7 

◦ 1998: release 0.9

◦ 1999: release 1.0

◦ 2000: release 1.1

◦ 2001: release 2.0

◦ 2004: release 3.0

◦ 2009: release 4.0

◦ 2011: release 4.1

◦ 2014: release 4.2

◦ 2016: release 4.3 (latest)

PMML Consortium:

◦ IBM

◦ MicroStrategy

◦ SAS

◦ Actian

◦ Experian

◦ Zementis

◦ Equifax

◦ FICO

◦ Fiserv

◦ KNIME

◦ Open Data Group

◦ RapidMiner

◦ Togaware Pty Ltd

◦ Angoss

◦ KXEN

◦ Microsoft

◦ Oracle

◦ Portrait Software

◦ Prudsys

◦ Salford Systems

◦ SAP

◦ Software AG

◦ StatSoft

◦ Tibco
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

The “plug-and-play” requirements for sharing OMOP-based predictive models

◦ All concepts and mining tasks are compatible with OMOP CDM.

◦ The PMML must contain data mining from database.

◦ The PMML must contain the transformation processes of participating variables.

◦ The PMML must contain the predictive model’s specifications: model type, participating variables, 
coefficients, matrices, correlations, …

◦ The PMML must contain the processes to compute outputs of the model.
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

Benefits
◦ Standard format for sharing predictive model’s specifications between data systems to apply on 

the destination data

◦ Independent of original and destination systems’ data models

◦ Supports variety of machine learning algorithms

◦ Small, sharable, and human readable text file

◦ A specialized parser receives the model, extracts specifications, and runs the model

PMML defines:
◦ Data mining process

◦ Data transformation procedures

◦ Definitions of variables

◦ The model’s specifications

◦ The output of the model

◦ Model scoring steps
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

Analytics tools that support PMML

Analytic Tool Export PMML Import PMML

SAS PROC PSCORE SAS Model Manger

R pmml package pmml package

KNIME PMML writer node PMML reader node

SPSS SPSS Modeler SPSS Modeler
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

The Structure of PMML

PMML

Header

Mining Build Task

Data Dictionary

Transformation Dictionary

Model

ModelStats: Represents variable statistics

• Univariate

• Multivariate

• Anova

Models: Detailed specification of the models. 

Supports multiple models in one PMML.

Supported models:

Association Rules

Baseline Models

Cluster Models

General Regression

k-Nearest Neighbors

Naive Bayes 

Neural Network

Regression

Ruleset

Scorecard

Sequences

Text Models

Time Series

Trees

Vector Machine
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

The Structure of PMML
PMML

Header

Mining Build Task

Data Dictionary

Transformation Dictionary

Model

Data Transformation:

• Provides instructions how data should be 

pre-processed

• It can be specific to one model or all 

models within the PMML:

• Transformation Dictionary

(applies on all models): A separate 

section

• Local Transformations (applies on 

only the specified model): located 

within Model Specification section

• Types of data transformations:

• Normalization

• Discretization

• Value mapping

• Text Indexing

• Normalizing text input

• Functions

• Aggregation

CASE When "Profit" < 0 Then 'negative' 

When "Profit" >= 0 Then 'positive' End

Types of functions: Count, Sum, Average, Min, Max, Multiset 
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

Framingham 10-year risk of cardiovascular disease
◦ Predictors

◦ Age

◦ Diabetes

◦ Smoking

◦ Treated and untreated Systolic Blood Pressure

◦ Total cholesterol

◦ HDL cholesterol

◦ BMI replacing lipids in a simpler model

σ𝛽𝑋 = 3.06117 × ln 𝐴𝑔𝑒 + 1.12370 × ln 𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 − 0.93263 × ln𝐻𝐷𝐿 + 1.93303 × ln 𝑆𝐵𝑃𝑛𝑜𝑡 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 +

1.99881 × ln 𝑆𝐵𝑃𝑡𝑟𝑒𝑎𝑡𝑒𝑑 + 0.65451 × 𝑆𝑚𝑜𝑘𝑒𝑟 + 0.57367 × 𝐷𝑖𝑎𝑏𝑒𝑡𝑖𝑐

𝑅𝑖𝑠𝑘 𝑜𝑓 𝐶𝑉𝐷 𝑖𝑛 10 𝑦𝑒𝑎𝑟𝑠 𝑓𝑜𝑟 𝑚𝑒𝑛 = 1 − 0.88936exp(σ 𝛽𝑋−23.9802)

σ𝛽𝑋 = 2.32888 × ln 𝐴𝑔𝑒 + 1.20904 × ln 𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 − 0.70833 × ln𝐻𝐷𝐿 + 2.76157 × ln 𝑆𝐵𝑃𝑛𝑜𝑡 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 +

2.82263 × ln 𝑆𝐵𝑃𝑡𝑟𝑒𝑎𝑡𝑒𝑑 + 0.52873 × 𝑆𝑚𝑜𝑘𝑒𝑟 + 0.69154 × 𝐷𝑖𝑎𝑏𝑒𝑡𝑖𝑐

𝑅𝑖𝑠𝑘 𝑜𝑓 𝐶𝑉𝐷 𝑖𝑛 10 𝑦𝑒𝑎𝑟𝑠 𝑓𝑜𝑟 𝑤𝑜𝑚𝑒𝑛 = 1 − 0.95012exp(σ 𝛽𝑋−26.1931)
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

Framingham 10-year risk of 
cardiovascular disease
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Added new schema in 
Mining Build Task section



Adoption of PMML to disseminate OMOP-based 
risk scoring models

Framingham 10-year risk of 
cardiovascular disease
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Adoption of PMML to disseminate OMOP-based 
risk scoring models

O-PMML scoring engine
◦ PMML defines the specifications of the algorithm,.

◦ The scoring engine applies the model on data.

O-PMML 

Parser

Patient’s data 

in OMOP CDM

SQL 

Executer
Scorer

Database Connector

O-PMML
Output 

values
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The timeline of estimated 10-year risk score of cardiovascular disease of 8 patients that had 

full set of required values to generate scores.

Adoption of PMML to disseminate OMOP-based 
risk scoring models

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 5 10 15 20 25 30 35

R
is

k
 S

c
o

r
e

Sequence of Index Date

Patient 1 Patient 2 Patient 3 Patient 4

Patient 5 Patient 6 Patient 7 Patient 8

30



Conclusion

The developed cloud-based system:
◦ Enables to collect and process patient medical records from 

disparate repositories with diverse coding systems in a real-time
manner for population health research

◦ Enables to evaluate the performance of predictive models across 
multiple databases with no need to relocate data

◦ Enables to deploy predictive models as “plug-and-play” units

◦ Enables to deliver health risk estimation at the point-of-care
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Predictive model 

with better 

prediction power

Standardized and 

rapid deployment 

of models



What does it mean for OHDSI?

ATLAS

(probably??)
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• Share analytics across OHDSI collaborators/systems in 
real-time manner

• The analytics request is submitted to the cloud (ATLAS??) in 
PMML, or specified through a GUI.

• ATLAS passes over the uploaded or generated PMML to OHDSI 
entity.

• Parsing engine (located in the OHDSI) entity mines the CDM and 
performs the requested analytics. So, data does not leave data 
owner’s system.

• The analytic results are sent back to ATLAS.

• The PMML can be re-used for other entities.

• The results can be archived for other collaborators’ use.

PMML Parser 



Future work

PMML needs to be tested for 
◦ Cohort selection

◦ Descriptive analysis

◦ Other statistical algorithms
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