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Abstract

Introduction Signal detection from healthcare databases is

possible, but is not yet used for routine surveillance of drug

safety. One challenge is to develop methods for selecting

signals that should be assessed with priority.
Aim The aim of this study was to develop an automated

system combining safety signal detection and prioritization

from healthcare databases and applicable to drugs used in

chronic diseases.

Methods Patients present in the French EGB healthcare

database for at least 1 year between 2005 and 2015 were

considered. Noninsulin glucose-lowering drugs (NIGLDs)

were selected as a case study, and hospitalization data were

used to select important medical events (IME). Signal

detection was performed quarterly from 2008 to 2015 using

sequence symmetry analysis. NIGLD/IME associations

were screened if one or more exposed case was identified

in the quarter, and three or more exposed cases were

identified in the population at the date of screening.

Detected signals were prioritized using the Longitudinal-

SNIP (L-SNIP) algorithm based on strength (S), novelty

(N), and potential impact of signal (I), and pattern of drug

use (P). Signals scored in the top 10% were identified as of

high priority. A reference set was built based on NIGLD

summaries of product characteristics (SPCs) to compute

the performance of the developed system.

Results A total of 815 associations were screened and 241

(29.6%) were detected as signals; among these, 58 (24.1%)

were prioritized. The performance for signal detection was

sensitivity = 47%; specificity = 80%; positive predictive

value (PPV) 33%; negative predictive value = 82%. The

use of the L-SNIP algorithm increased the early identifi-

cation of positive controls, restricted to those mentioned in

the SPCs after 2008: PPV = 100% versus PPV = 14%

with its non-use. The system revealed a strong new signal

with dipeptidylpeptidase-4 inhibitors and venous

thromboembolism.

Conclusion The developed system seems promising for the

routine use of healthcare data for safety surveillance of

drugs used in chronic diseases.Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s40264-017-0618-y) contains supple-
mentary material, which is available to authorized users.
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Key Points

Automated signal detection from healthcare

databases is a new avenue for drug safety

monitoring. However, the huge number of signals

expected to be detected requires a signal

prioritization process.

In this study, an automated system, adapted to

longitudinal healthcare data, and combining

detection and prioritization of safety signals, was

developed and applied to drugs used in chronic

diseases, with noninsulin glucose-lowering drugs as

a case study.

The developed system provided a promising

performance, suggesting that it could be used

routinely for selecting the most relevant safety

signals, and it identified a new signal concerning

dipeptidylpeptidase-4 inhibitors and venous

thromboembolic events.

1 Introduction

The major drug safety issues that have arisen in recent

decades all concern drugs used for the treatment of chronic

diseases and adverse events (AEs) a priori not evocative of

a drug causation. For example, rofecoxib, a non-steroidal

anti-inflammatory drug expected to convey a much lower

risk of gastrointestinal bleeding, was found to increase the

risk of myocardial infarction once millions of people had

already been exposed [1, 2]. The proton pump inhibitors,

which are used to prevent or treat various gastrointestinal

disorders such as peptic ulcer and its complications, were

among the most prescribed drugs in the mid-2000s, notably

as they were deemed to have a good safety profile. How-

ever, they were secondarily shown to increase the risk of

community-acquired pneumonia [3, 4] and osteoporosis-

related fractures [5–7]. In the late 2000s, important safety

alerts emerged concerning the thiazolidinediones, a class of

noninsulin glucose-lowering drugs (NIGLDs), and showed

that rosiglitazone was associated with an increased risk of

cardiovascular events [8, 9], while pioglitazone could

induce bladder cancers [10–12].

Current systems of drug surveillance, which are essen-

tially based on spontaneous reporting, are relatively inef-

ficient when it comes to detecting signals involving

diseases or events relatively common in the general pop-

ulation and for which a drug causation is not a priori

suspected. The access to huge longitudinal data through

healthcare databases is useful in this respect by allowing

large cohorts to be followed over time. Research in this

area has burgeoned for over a decade with the launching of

several initiatives worldwide [13–17], some of which have

focused on signal detection applied to healthcare databases

[18–21]. Even if they are potentially helpful for identifying

safety signals that would have been ignored using tradi-

tional methods, data mining methods are known to detect a

huge numbers of statistical associations representing

potential signals that must be assessed to be confirmed or

disproved. If signal detection is performed routinely, a

method that can help in selecting priority signals would be

needed. Routine signal detection thus needs to be combined

with an automated prioritization process.

Numerous algorithms have been developed for the

automated prioritization of safety signals detected from

spontaneous reporting databases, and some of these are

currently used routinely [22–35]. They are all based—en-

tirely or in part—on three key aspects: the strength, nov-

elty, and public health impact of the safety signal. The

importance of these aspects was outlined in 1999 by Waller

and Lee with the SNIP concept ‘Strength, Novelty, and

clinical Importance of the signal, and potential for

Prevention’ [22]. However, experiments in prioritization of

safety signals detected in longitudinal data are scarce. The

EU-ADR consortium developed an approach that aimed at

identifying the signals that were less likely to result from

biases, which can be considered as a kind of signal prior-

itization. Nevertheless, it did not take into account some of

the key aspects for prioritization (e.g., the public health

impact), and its performance was not assessed [36].

The objective of this pilot study was to develop and

assess an automated system combining the detection and

prioritization of safety signals identified in healthcare

databases and involving treatments of chronic diseases.

2 Methods

2.1 Data Source

The Echantillon Généraliste des Bénéficiaires (EGB)

claims database is a 1/97th permanent representative

sample of the population covered by the French national

healthcare insurance system [37]. It contains individual,

anonymous, and comprehensive outpatient drug reim-

bursement and hospitalization data from beneficiaries of

the general scheme, which includes salaried workers and

their dependents, unemployed, and retired salaried work-

ers, with the exception of civil servants and non-working

students (77% of the French population). Drugs are coded

according to the anatomical therapeutic chemical (ATC)

M. Arnaud et al.



classification and hospitalization diagnoses according to

the International Classification of Diseases, 10th revision

(ICD-10).

2.2 Population, Exposure, and Event Definitions

All persons present in the EGB for at least 1 year between

2005 and 2015 were considered.

NIGLDs were selected as examples of treatments of

chronic diseases. Reimbursements were considered as

surrogates for drug exposure. Active substances were

identified through ATC classification of blood glucose-

lowering drugs, excluding insulins (ATC code: A10B). In

the event of fixed combinations of NIGLDs, the exposure

was considered in each corresponding active substance

(e.g., a fixed combination ‘metformin and sitagliptin’ was

considered for both exposure to metformin and to sita-

gliptin). For each patient and for each NIGLD considered,

only the first reimbursement was selected if it occurred

after a 12-month run-in period, to ascertain that it was an

incident drug exposure.

Hospitalization diagnoses were considered as surrogates

for adverse events and were identified by ICD-10 codes

grouped according to the first three characters (e.g., I26:

pulmonary embolism). The ICD-10 codes were aligned to

those included in the important medical event (IME) terms

list of the MedDRA� dictionary using the unified medical

language system tool to select the ICD-10 that needed to be

monitored (i.e., events that per se can result in death, are

life-threatening, or cause prolonged hospitalization or

persistent disability; see Electronic Supplementary Mate-

rial 1) [38]. Similarly to the incident drug exposure, it was

assumed that the first occurrence of a hospitalization

associated with a diagnosis related to the ICD-10 code of

interest, if it occurred after a 12-month run-in period, could

be considered as an incident event. This approach has been

validated in previous studies using sequence symmetry

analysis [39, 40].

2.3 Signal Detection

Sequence symmetry analysis (SSA) was selected for signal

detection analyses on the basis of a literature review that

focused on the comparison of performance of methods used

for that purpose [41]. SSA is dedicated to longitudinal data

and developed for large-scale standardized applications; it

provided good detection performance, notably by consid-

ering self-controlled analyses and controlling for temporal

trends, which allows the detection of spurious associations

to be partly preserved.

SSA compares the number of patients who presented,

over a given time window, the sequence ‘drug in first,

event in second’ during the study period with that of

patients who presented the reverse sequence ‘event in first,

drug in second’ [42, 43]. The crude ratio of these two types

of sequences is, by essence, not affected by confounders

that are constant over time, but is sensitive to changes in

prescription and hospitalization trends. To address this

issue, an adjustment for correcting such temporal trends is

applied by dividing the crude sequence ratio by the null-

effect sequence ratio. The latter is the sequence ratio that

would have been expected from the trends if the drug and

the event were considered independently. The corrected

sequence ratio obtained after this adjustment is termed the

adjusted sequence ratio (ASR) [43].

Signal detection was performed quarterly from 2008 to

2015 considering a time window of 12 months for the pre-

and post-drug initiation periods [40]. In each analysis,

NIGLD/IME associations were screened if (1) one or more

exposed case was identified in the quarter, (i.e., if a patient

was hospitalized for the event of interest in the quarter and

initiated the NIGLD of interest in the previous 12 months)

and (2) three or more exposed cases were identified in the

population at the date of screening. If no sequence ‘event in

first, drug in second’ was observed, the value 0.49 was

assigned to compute the crude sequence ratio [39]. NIGLD/

IME associations were considered as signals if the lower

limit of the bootstrapped (500 replicates) 95% confidence

interval (95% CI) of the ASR exceeded 1 [40].

2.4 Signal Prioritization

The principal algorithms for the prioritization of signals

derived from spontaneous reporting data were reviewed

[22–35]. The principle of the SNIP strategy developed by

Waller and Lee [22] was adapted to build an algorithm for

the prioritization of safety signals detected from longitu-

dinal healthcare data, the Longitudinal-SNIP (L-SNIP),

which is based on strength of the signal (S), novelty of the

signal (N), potential impact of the signal (I), and patterns of

drug use (P). The L-SNIP algorithm included a total of 14

criteria related to scientific, medical, and economic aspects

and factors potentially conditioning perception of the sig-

nal (Table 1):

• Strength: the risk estimate, the minimal risk (the lower

limit of 95% CI), precision of the risk estimate;

• Novelty: absence of the signal in the Summary of the

Product Characteristics (SPC), drug seniority, and an

increase in risk over time;

• Potential impact: the potential number of

attributable cases, and the cost of hospitalization for

this event;

• Pattern of drug use: the event is not related to the drug

indications, the proportion of drug users among frail

populations (children, childbearing women), the
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Table 1 Criteria included in prioritization algorithm

Criteria Definition Weight Categories Score

Strength of signal

Risk estimate Value of ASR 3 [3 1

1.5–3 0.5

\1.5 0

Minimal risk Value of lower limit of 95% CI

of ASR

4 [2 1

1.5–2 0.5

\1.5 0

Precision of risk estimate Range of 95% CI of ASR 2 \3 1

3–6 0.5

[6 0

Novelty of signal

Absence in SPC Association not mentioned in

the French version of the SPC

corresponding to the year of

analysis

4 Yes 1

No 0

Drug seniority Duration of drug on market at

time of analysis

2 \6 y 1

6–10 y 0.5

[10 y 0

Increase in risk over time Evolution of ASR between time

of analysis and three previous

detection analyses

1 [50% 1

0–50% 0.5

\0% 0

Impact of signal

Potential number of

attributable cases

Number of attributable cases

potentially related to drug use

based on the prevalence

of use of the drug and the

incidence of the event at the

year of analysis

2 [1000 cases 1

200–1000 cases 0.5

\200 cases 0

Cost of hospitalization for

event

Mean cost of hospitalization

associated with diagnosis

corresponding to event

2 [€6000 1

€3000–6000 0.5

\€3000 0

Patterns of drug use

Event not related to drug

indications

Event not mentioned in SPC as

indication of drug

4 Yes 1

No 0

Drug use in vulnerable

population (1): children

Proportion of children aged

0–15 years among drug users

3 C 10% 1

\10% 0

Drug use in vulnerable

population (2):

childbearing women

Proportion of women aged

15–49 years among drug users

3 C 10% 1

\10% 0

Prevalence of drug use Prevalence of drug use in year

of analysis

2 [1/100 persons 1

0.1/100–1/100 persons 0.5

\0.1/100 persons 0

Incidence of drug use Incidence of drug use in year of

analysis

2 [1/1000 persons 1

0.1/1000–1/1000 persons 0.5

\0.1/1000 persons 0

Increase in incidence of

drug use over time

Evolution of incidence of drug

use between year of analysis

and 2 previous years

1 [20% 1

0–20% 0.5

\0% 0

ASR adjusted sequence ratio, 95% CI 95% confidence interval, SPC summary of product characteristics
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prevalence of drug use, the incidence of drug use, and

the increase in the incidence of drug use over the

2 years preceding that of the analysis.

All the criteria were grouped into two or three cate-

gories, each being associated with a score of 0, 0.5, and 1.

Thereafter they were weighted using a coefficient that

ranged from 1 to 4 according to their assumed importance

for a decision-making process (Table 1). All these steps

(i.e., selection, scoring, and weighting of the criteria) were

performed on the basis of a consensus between three senior

experts in pharmacovigilance and pharmacoepidemiology

(BB, FS, AP) and after the analysis of the existing litera-

ture. The signals in the top 10% of the L-SNIP scores,

which corresponded to the weighted sum of the scores of

the 14 criteria, were identified as high priority for the

validation process.

2.5 Assessment of the Performance of Signal

Detection and Prioritization

All the potential NIGLD/IME associations with sufficient

power to detect a relative risk of 2 based on the drug and

event prevalence estimated in the EGB database were

considered [44].

For measuring the performance of the developed system

for signal detection and prioritization, an original reference

set was built. The annual versions of the SPCs between

2008 and 2017 were reviewed to be able to identify the

drug/IME associations that constituted positive controls of

our reference set. The negative controls were randomly

selected from the other associations to avoid bias in per-

formance assessment when a large imbalance between the

number of positive and negative controls is present [45].

The selection of the negative controls was performed to

have a ratio of negative/positive controls of three. The

performance for the signal detection was determined using

the sensitivity (Se), specificity (Sp), positive predictive

value (PPV), and negative predictive value (NPV). For

measuring the added value of the signal prioritization for

the identification of relevant signals, the positive controls

were restricted to those that were mentioned in the SPCs

after 2008. The assessment measured the ability of the

system to identify these signals before they were men-

tioned in the SPCs and the performance was compared with

that obtained when the L-SNIP algorithm was not used

(i.e., when considering only the single signal detection).

In addition, the prioritized signals were screened to find

any potentially relevant new safety issue. The relevance of

these signals was initially judged by the three senior

experts (BB, FS, AP) based on their experience and the

results of the signal detection. For signals that were con-

sidered relevant, complementary analyses were performed

to ascertain whether they were specific to the drug or the

drug class, and to the event or the group of related events.

All analyses were performed using SAS Enterprise Guide

7.1 (SAS Institute, Inc., Cary, NC, USA).

3 Results

3.1 Trends of Signal Detection and Prioritization

Between 2008 and 2015

A total of 920 NIGLD/IME associations with sufficient

power to be detected in EBG were considered. Among

them, 815 associations were screened at least once between

the first quarter of 2008 (2008-Q1) and the end of the study

period (2015-Q4). A total of 241 (29.6%) signals were

detected during the study period (51 signals [6.3%] only

once, and 190 [23.3%] at least twice); among these, 58

signals (24.1%) were identified as of high priority (22

signals [9.1%] prioritized only once, and 36 [14.9%] at

least twice).

Over the study period, the number of NIGLD/IME

associations screened increased from 216 in 2008-Q1 to

384 in 2011-Q2, before decreasing to 257 associations

screened in 2015-Q4 (Fig. 1). Similarly, the number of

signals detected increased between 2008-Q1 and 2011-Q4,

from 35 to 73, and decreased up to 56 signals in 2015-Q4.

The number of signals identified as of high priority fluc-

tuated between four signals in 2008-Q1 and ten signals in

2009-Q4, 2011-Q2, 2011-Q3, and 2013-Q1.

3.2 Performance of Signal Detection

and Prioritization

The reference set included 15 positive controls and 45

negative controls (see Electronic Supplementary Material

2). The signal detection identified 21 controls, including

seven among the positive ones, which corresponded to the

following performance: Se of 47%; Sp of 69%; PPV of

33%; NPV of 80% (Table 2).

Among the positive controls, three were added to the

SPCs after 2008. The Se was 33%, Sp was[80%, and

NPV was around 95% whether the L-SNIP algorithm was

used or not; however, PPV was 100% when the prioriti-

zation was combined with the detection, while this value

dropped to 14% when only the detection was considered

(Table 3).

3.3 Identification of New Relevant Signals

The 58 signals that were identified at least once as of high

priority during the study period have been screened in

depth, and three of them appeared to be of interest. All

Signal Detection and Prioritization from Healthcare Databases



concerned DPP-4 inhibitors and the occurrence of venous

thromboembolic events, and shared a similar detection

profile with a strengthening of the risk estimate over time

(Fig. 2).

The association between vildagliptin and pulmonary

embolism was screened over five different quarters during

the study period, and was found significant for the last four

screenings. It was identified as of high priority in 2015-Q1

(seven cases; ASR 7.3, 95% CI 2.1–13.0), and in 2015-Q4

(8 cases; ASR 8.3, 95% CI 3.1–15.5). Pulmonary embolism

was also found to be associated with saxagliptin, the

association being identified as of high priority for the

second screening in 2013-Q2 (four cases; ASR 8.7, 95% CI

2.1–9.3). The third signal concerned ‘venous thromboem-

bolism and thrombosis’ (not otherwise specified) with

sitagliptin. The signal strengthened over time to finally

reach five cases and an ASR of 10.0 (95% CI 1.9–10.4) in

2015-Q3. A fourth signal (not identified as of high priority)

was detected during the study period and concerned vil-

dagliptin and phlebitis/thrombophlebitis. This association

was screened nine times and remained stable and signifi-

cant in the last five screenings. In 2015-Q4 it concerned 13

cases with an ASR of 3.1 (95% CI 1.6–11.0) (Fig. 2).

Complementary analyses were performed to further

assess this potential safety issue with the use of DPP-4

inhibitors and the risk of venous thromboembolic events.

An analysis of DPP-4 inhibitors and arterial thromboem-

bolic events identified two signals during the study period,

but their profile of detection fluctuated between signifi-

cance and non-significance over time. A further search on

signals related to venous thromboembolic events retrieved

two other signals (one for acarbose and another for gli-

clazide) that shared a similar profile of detection to that

observed with DPP-4 inhibitors but with a lower strength of

ASR, and a lower 95% CI value that constantly remained at

the limit of significance (see Electronic Supplementary

Material 3 and 4).

4 Discussion

This pilot study aimed at improving the tools used for

signal detection in longitudinal healthcare databases by

developing an automated system combining both detection

and prioritization of signals related to treatments of chronic

diseases. In the proposed approach, signal detection was

Fig. 1 Global trend of signal detection/prioritization between 2008 and 2015

Table 2 Results of the

performance assessment for the

signal detection

Positive controls Negative controls

Detected 7 14 PPV = 7/(7? 14) = 33%

Not detected 8 31 NPV = 31/(31? 8) = 80%

Se = 7/(7? 8) = 47% Sp = 31/(31? 14) = 69%

NPV negative predictive value, PPV positive predictive value, Se sensitivity, Sp specificity

M. Arnaud et al.



performed quarterly and the detected signals were subse-

quently prioritized according to their relevancy by using

the L-SNIP algorithm combining 14 criteria based on the

strength, novelty, and potential impact of the signal, and on

the patterns of use of the drug concerned. The assessment

of the developed system showed that it performs satisfac-

torily, and that the L-SNIP algorithm could be used in

order to improve the feasibility of routine signal detection

from healthcare databases. The developed system also

identified a new signal with the use of the DPP-4 inhibitors

and the risk of venous thromboembolic events, which

deserves to be investigated with further ad-hoc and more

robust studies.

Signal detection was performed quarterly, a periodicity

already adopted by the Uppsala Monitoring Center for signal

detection from the spontaneous reporting database VigiBase

[27]. The European Medicines Agency has used shorter

intervals (monthly or twice a month) [33], but this does not

seem to perform better than quarterly screening [46]. From a

pragmatic perspective, associations were screened only if a

new exposed casewas identified during the quarter considered

and if at least three similar drug–event associations were

found in the study population, a strategy previously shown to

offer the best compromise [46]. Signal detection was per-

formed using SSA, as it offers an interesting balance between

good detection performance, notably by including self-con-

trolled analyses and controlling for temporal trends to mini-

mize the detection of false-positive associations, and ease of

use [41].

In this pilot study, the signal detection of the developed

system proved interesting, and was comparable to that

obtained previously in a validation study of the SSA per-

formed by the AsPEN consortium [40]. However, this result

should be considered with caution given the low number of

controls included in the reference set. The screening of only

the ICD-10 codes related to IMEs according to MedDRA�

reduced the number of signals detected and prioritized, even if

this number remained large. This was expected, as it is typi-

cally encounteredwith automated safety signal detection from

either spontaneous reports or healthcare data. The high num-

ber of detected signals reinforces the idea that a form of pri-

oritization of safety signals is needed if routine use of

healthcare databases is envisaged. As it is intended to be used

as a routinemethod, eventswere retrieved through the ‘native’

ICD-10 classification without any form of grouping of codes

related to the same given disease. It is obvious that grouping

ICD-10 codes would reduce the number of signals related to

spurious or duplicate events (e.g., acute renal failure vs

unspecified kidney failure). For routine purposes, it would be

worth defining a priori medical events that are likely to be

captured in healthcare databases, and then selecting the codes

that seem themost appropriate for their identification [47, 48].

The use of grouped codes, at least for the most relevant drug-

related disorders such as those proposed by the EU-ADR

project [49], could be useful in this perspective.

The added value of the signal prioritization was assessed

by measuring the ability of the developed system to iden-

tify the NIGLDs/IME associations before they were men-

tioned in the corresponding SPCs. The assessment showed

promising results, as the use of the L-SNIP algorithm

allowed a seven-fold increase in the probability of

retrieving IME secondarily cited in the SPC among the

associations flagged compared with the single signal

detection. As for the performance obtained for signal

detection, this result has to be considered with caution

given the low number of controls. Nevertheless, this study

Table 3 Performance of the developed system according to the presence or absence of the use of the L-SNIP algorithm for signal prioritization

Positive controls added in the SPC after 2008 Negative controls

Detection? prioritization

Identified before mention

in the SPC

1 0 PPV = 1/(1? 0) = 100%

Identified after mention in

the SPC or never identified*

2 45 NPV = 45/(45? 2) = 96%

Se = 1/(1? 2) = 33% Sp = 45/(45? 0) = 100%

Detection only

Identified before mention

in the SPC

1 6 PPV = 1/(1? 6) = 14%

Identified after mention

in the SPC or never identified

2 39 NPV = 39/(39? 2) = 95%

Se = 1/(1? 2) = 33% Sp = 39/(39? 6) = 100%

NPV negative predictive value, PPV positive predictive value, Se sensitivity, Sp specificity, SPC summary of product characteristics
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Fig. 2 Results of signal detection for signals related to DPP-4 inhibitors with venous thromboembolism events

M. Arnaud et al.



indicated that the developed system is able to find new

signals, such as venous thromboembolic events related to

the use of DPP-4 inhibitors, which seem relevant enough

for planning further and urgent investigations. Three dif-

ferent signals concerning pulmonary embolism, venous

embolism, and thrombosis were considered high priority at

least once during the study period. They also shared a

similar profile of detection that could suggest an actual

relationship, notably with a strengthening of the risk esti-

mate after the occurrence in patients exposed to DPP-4

inhibitors. Complementary analyses also suggested a pos-

sible role of DPP-4 inhibitors in venous thromboembolism:

(1) a fourth detected signal concerned phlebitis and

thrombophlebitis, but it was not identified as of high pri-

ority; (2) there was no signal of arterial thromboembolic

events related to DPP-4 inhibitors; (3) only two non-pri-

oritized signals concerned venous thromboembolic events

related to other NIGLDs. No pre-clinical or clinical data

can support or rule out this association. This absence of

external evidence concerning the signals detected in this

study, as well as the large number of patients exposed to

DPP4-inhibitors [50], emphasizes the need for an urgent

and more robust investigation.

The developed system was not able to prioritize cardiac

failure related to rosiglitazone in the top 10% of signals, as

this event was already mentioned in its SPC in 2008. Nev-

ertheless, this signal was detected from the beginning of the

study period, and at least once a year up to the withdrawal of

rosiglitazone, with ASR values around 4 (data not shown).

The system was not able to detect bladder cancers related to

pioglitazone, as the risk found in the literature was quite low

[10–12], and the EGB database does not provide sufficient

power to detect it. The absence could also be due to a limi-

tation of SSA for the detection of cancers, as this method

considered a 12-month period to identify exposed cases.

While this period seems appropriate for most of the adverse

events that can be captured from healthcare databases, it

could be too short for detecting drug-related cancers that

have late effects. Consequently, cancers could need specific

tailored methods to be detected.

Thirty-two detected signals oscillated between high and

low priority. It was typically the case of associations that

were mentioned in the SPC after their first detection in EGB.

For example, the association between sitagliptin and acute

renal failure was detected and prioritized before its mention

in the SPC, while it was never re-ranked in the top 10%

L-SNIP score after its mention in the SPC. For the other

associations (e.g., metformin and malignant neoplasm of

pancreas), the oscillations between the two statuses were due

to their ranking at the limit of the 10% threshold. Thus, for

these signals, a slight modification of the risk estimate or the

patterns of drug use from one quarter to another can lead to

the prioritization threshold going up or going down. This

could be considered as expected, and did not alter the value

of the L-SNIP algorithm.

The criteria included in the L-SNIP algorithm were

selected on the basis of the information available in health-

care databases and with the view to develop an automated

and efficient system of prioritization that can be easily

combined with signal detection. Some criteria were derived

from the algorithms of prioritization applied to signals

detected in spontaneous report databases. For example, the

criterion ‘drug seniority’ was considered whereby the full

score was given to drugs marketed for\6 years, as it was

previously demonstrated that safety signals concerning

drugs that were marketed forB5 years were associated with

their prioritization by the experts of the Dutch Medicines

Agency [29]. The criterion ‘increase in risk over time’ was

considered as a novelty criterion, as it is more likely to reflect

a new aspect of a known safety signal, and it fits with the

definition of a signal provided by Hauben and Aronson in

2009 [51]. The access to longitudinal healthcare data

allowed us to consider criteria based on patterns of drug use,

such as prevalence or incidence of drug use, which is infor-

mation that is lacking in algorithms based on spontaneous

reporting data. The criterion ‘event not related to drug

indications’ was added to reduce the impact of protopathic

and indication biases, which are well known shortcomings of

signal detection performed on healthcare databases [41].

Only two criteria focusing on frail populations (children and

childbearing women) were retained; the elderly were not

included in the algorithm as chronic diseases are frequent in

this population, so this criterion would not have been dis-

criminant. In addition, the number of criteria considered in

the L-SNIP algorithm was limited to make it more discrim-

inant. In that respect, some criteria classically used for signal

prioritization were not included since we considered them to

be less relevant in this context (e.g., ‘positive rechallenge’

[30]) or because they are hardly automatable (e.g., ‘biolog-

ical plausibility’ [24]). Criteria relative to scientific and

medical issues were given pride of place, since it was

assumed that they are of greater importance in the decision-

making process than economic factors or public perception.

Using a single criterion for economic factors thus seemed

reasonable; the cost of hospitalizations induced by the drug

was preferred to the cost of the drug itself.

To combine the 14 criteria included in the L-SNIP algo-

rithm, each was first transformed into a score based on a

consensual analysis of the scientific literature by three senior

experts in pharmacovigilance and pharmacoepidemiology.

Techniques classically used to perform this task (e.g., nor-

malization [32], ranking [28]) were not applicable, as the

selected criteria referred to different dimensions of the signal;

that is, criteria specific to the signal itself (e.g., ‘minimal

potential risk’), or only to the drug involved in the signal (e.g.,

‘seniority of the drug’). A consensus for weighting the criteria

Signal Detection and Prioritization from Healthcare Databases



was also sought by considering their relevancy for the

decision-making process. Among the five weighting pro-

cesses retrieved in the literature [24, 28, 30–32], the one

considering a 1:4 ratio between the least and the most

important criterion [24] was chosen. The other processes

use a much leaner ratio (up to the second decimal), making

clinical relevancy of the weights questionable. To limit the

number of signals to bemanaged, a threshold, arbitrarily set

to the top 10% of the highest values of the priority score

obtained from the signals detected in the quarter, was

introduced to focus on signals of prime interest. The use of

different cut-offs at 15% and 20% did not increase the

number of prioritized signals (data not shown), while larger

cut-offs seemed unsuitable for an algorithm that aimed to

select the most relevant signals among the huge number of

those detected.

5 Conclusion

The developed system performed well and its potential

application for routine signal detection and prioritization

seems promising. The L-SNIP algorithm seemed to

correctly prioritize the relevance of signals detected.

Further research in a wider range of drug classes and

using different definitions of events is needed to defi-

nitely validate this system. Meanwhile, an investigation

is urgently required to support or rule out the strong

signal between the use of DPP-4 inhibitors and the risk

of venous thromboembolic events demonstrated in this

study.
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pisley-Cox J, et al. Combining electronic healthcare databases in

Europe to allow for large-scale drug safety monitoring: the EU-

ADR Project. Pharmacoepidemiol Drug Saf. 2011;20:1–11.

14. Wisniewski AFZ, Bate A, Bousquet C, Brueckner A, Candore G,

Juhlin K, et al. Good signal detection practices: evidence from

IMI PROTECT. Drug Saf. 2016;39:469–90.

15. Platt R, Carnahan RM, Brown JS, Chrischilles E, Curtis LH,

Hennessy S, et al. The U.S. Food and Drug Administration’s

Mini-Sentinel program: status and direction. Pharmacoepidemiol

Drug Saf. 2012;21:1–8.

16. Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG,

Reich C, et al. Advancing the science for active surveillance:

rationale and design for the Observational Medical Outcomes

Partnership. Ann Intern Med. 2010;153:600–6.

17. Andersen M, Bergman U, Choi N-K, Gerhard T, Huang C, Jalbert

J, et al. The Asian Pharmacoepidemiology Network (AsPEN):

promoting multi-national collaboration for pharmacoepidemio-

logic research in Asia. Pharmacoepidemiol Drug Saf.

2013;22:700–4.

18. Ryan PB, Stang PE, Overhage JM, Suchard MA, Hartzema AG,

DuMouchel W, et al. A comparison of the empirical performance

of methods for a risk identification system. Drug Saf.

2013;36:143–58.

19. Schuemie MJ, Gini R, Coloma PM, Straatman H, Herings RMC,

Pedersen L, et al. Replication of the OMOP experiment in Eur-

ope: evaluating methods for risk identification in electronic health

record databases. Drug Saf. 2013;36:159–69.

20. Pratt N, Andersen M, Bergman U, Choi N-K, Gerhard T, Huang

C, et al. Multi-country rapid adverse drug event assessment: the

Asian Pharmacoepidemiology Network (AsPEN) antipsychotic

and acute hyperglycaemia study. Pharmacoepidemiol Drug Saf.

2013;22:915–24.

M. Arnaud et al.



21. Kulldorff M, Dashevsky I, Avery TR, Chan AK, Davis RL,

Graham D, et al. Drug safety data mining with a tree-based scan

statistic. Pharmacoepidemiol Drug Saf. 2013;22:517–23.

22. Waller PC, Lee EH. Responding to drug safety issues. Pharma-

coepidemiol Drug Saf. 1999;8:535–52.

23. Waller P, Heeley E, Moseley J. Impact analysis of signals

detected from spontaneous adverse drug reaction reporting data.

Drug Saf. 2005;28:843–50.

24. Seabroke S, Wise L, Waller P. Development of a novel regulatory

pharmacovigilance prioritisation system: an evaluation of its

performance at the UK medicines and healthcare products regu-

latory agency. Drug Saf. 2013;36:1025–32.

25. Meyboom RH, Lindquist M, Egberts AC, Edwards IR. Signal

selection and follow-up in pharmacovigilance. Drug Saf.

2002;25:459–65.
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