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REVIEW

Methods for safety signal detection in healthcare databases: a literature review
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aUniversity of Bordeaux, Bordeaux, France; bBordeaux Population Health Research Centre, Pharmacoepidemiology team, INSERM UMR1219,
Bordeaux, France; cCHU Bordeaux, Service de Pharmacologie Médicale, Bordeaux, France; dCIC Bordeaux

ABSTRACT
Introduction: With increasing availability, the use of healthcare databases as complementary data
source for drug safety signal detection has been explored to circumvent the limitations inherent in
spontaneous reporting.
Areas covered: To review the methods proposed for safety signal detection in healthcare databases
and their performance.
Expert opinion: Fifteen different data mining methods were identified. They are based on dispropor-
tionality analysis, traditional pharmacoepidemiological designs (e.g. self-controlled designs), sequence
symmetry analysis (SSA), sequential statistical testing, temporal association rules, supervised machine
learning (SML), and the tree-based scan statistic. When considering the performance of these methods,
the self-controlled designs, the SSA, and the SML seemed the most interesting approaches. In the
perspective of routine signal detection from healthcare databases, pragmatic aspects such as the need
for stakeholders to understand the method in order to be confident in the results must be considered.
From this point of view, the SSA could appear as the most suitable method for signal detection in
healthcare databases owing to its simple principle and its ability to provide a risk estimate. However,
further developments, such as automated prioritization, are needed to help stakeholders handle the
multiplicity of signals.

ARTICLE HISTORY
Received 13 December 2016
Accepted 27 April 2017

KEYWORDS
Drug safety;
pharmacoepidemiology;
pharmacovigilance; signal
detection; data mining

1. Introduction

Since the early 1970s, spontaneous reporting (SR) has been
the cornerstone of signal detection in drug safety surveil-
lance [1–3]. SR works well for rare and acute adverse drug
reactions (ADR), such as bullous eruptions, agranulocytosis,
or hepatotoxicity [4]. Most drug withdrawals during the last
decades were based on SR, which often provided the only
information available [5,6]. Nevertheless, SR is plagued by
certain limits such as under- or selective reporting or the
absence of information about the actual number of exposed
patients [7–10] that can potentially hamper or delay the
identification of these safety signals. It also appears poorly
efficient in identifying ADRs concerning events which are not
a priori evocative of drug causation: pulmonary infections
related to proton pump inhibitors [11,12] or myocardial
infarction induced by rofecoxib [13–15]. Although signal
detection based on SR is still improving [16–19], the avail-
ability of large health-care databases, which allows to follow
cohorts of several million persons, opens opportunities, com-
plementary to SR, for drug safety surveillance and signal
detection [20,21].

Several initiatives have thus emerged worldwide: ‘the
Exploring and Understanding Adverse Drug Reactions by inte-
grative mining of clinical records and biomedical knowledge
(EU-ADR)’ [22] and ‘the Pharmacoepidemiological Research on
Outcomes of Therapeutics by a European Consortium’ [23]

projects in Europe, the Sentinel System [24,25] and the
Observational Medical Outcomes Partnership (OMOP) [26,27] in
the United States, or again the Asian Pharmacoepidemiology
Network (AsPEN) in Asia [28,29].

This perspective of setting up new post-marketing moni-
toring systems using the information available in health-care
databases gave birth to a broad range of approaches. The
purpose of this paper was to provide a commented overview
of the methods proposed so far for signal detection in health-
care databases.

2. Methods proposed for safety signal detection in
health-care databases

All the data-mining methods proposed for drug safety signal
detection in health-care databases are detailed in the follow-
ing sections; their strengths and weaknesses are summarized
in Table 1. They are classified in the following categories:
disproportionality analysis, traditional pharmacoepidemiologi-
cal designs, sequence symmetry analysis (SSA), sequential
statistical testing, temporal association rules (TAR), supervised
machine learning (SML), and tree-based scan statistic.
Although other and more complex classifications could be as
valuable, we use this one as it reflects the fundamental differ-
ences in the design of the methods and respects the thinking
of their designers.
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2.1. The disproportionality analysis approach

Disproportionality analysis methods were originally developed
on SR databases. In this approach, all spontaneous reports are
displayed in the form of a large contingency table with dimen-
sions corresponding to all the drugs and events encountered
at least once. The information is then aggregated into a 2 × 2
contingency table to compute the ratio of the observed-to-
expected count of reports associated with each drug-event
association. Four main methods are currently used in SR data-
bases (e.g. the gamma Poisson shrinker [GPS] is used by the
United States Food and Drug Administration [48]) and differ
with respect to the manner in which disproportionality is
measured, and in which low counts are accounted for in the
analysis [48–51].

2.1.1. SR-like methods
The main issue when transposing these methods to health-
care databases was to determine how to generate drug safety
reports from longitudinal data. Curtis et al. considered, for
each patient, each month of the observation time as a

Article highlights

● For over a decade, there has been a strong push from stakeholders
and researchers in pharmacovigilance to use the information avail-
able in healthcare databases for safety signal detection.

● Different data mining methods have been developed and tested for
that purpose, and they are based on: disproportionality analysis,
traditional pharmacoepidemiological designs (e.g. self-controlled
designs), sequence symmetry analysis (SSA), sequential statistical
testing, temporal association rules, supervised machine learning
(SML), and tree-based scan statistic.

● Although a comparison across studies using different reference stan-
dards is a difficult exercise, the performance of these methods has
been assessed. The results suggest that self-controlled designs, SSA,
and SML seem the most interesting approaches for safety signal
detection in healthcare databases.

● From a pragmatic point of view, the SSA could be most suitable
owing to, for example, its simple principle that allows to understand
the method and to trust its results.

● The future challenge should consist in developing a prioritization
method to help stakeholders to handle the multitude of signals
detected. This appears crucial for making safety signal detection a
routine activity.

This box summarizes key points contained in the article.

Table 1. Strengths and limitations of the methods tested for safety signal detection on health-care databases.

Method Strengths Limitations

Disproportionality analysis
SR-like methods [30] Easy to implement Does not provide risk estimates

Can incorporate shrinkage for preventing detecting some
spurious signals related to very rare events

Loss of information due to aggregated data

Unable to handle numerous confounders
Sensitive to protopathic and indication biases

LGPS-LEOPARD [31] Provides risk estimates Loss of information due to aggregated data
Easy to implement Unable to handle numerous confounders
Uses shrinkage for preventing detecting spurious some
signals related to very rare events

Sensitive to protopathic and indication biases (theoretically
addressed when associated with the LEOPARD method)

Traditional pharmacoepidemiological designs
New user cohort design [32] Provides risk estimates Needs very large dataset to have enough power to detect signals

related to rare events
Allows controlling for high-dimensional confounding Difficulties to determine the settings as these are not supposed to

be standardized for all the drug-event associations screened
Matched case-control design [33] Provides risk estimates Needs very large dataset to have enough power to detect signals

related to rare events
Allows controlling for some confounders thanks to
matching and nesting

Does not control for numerous confounders

Difficulties to determine the settings as these are not supposed to
be standardized for all the drug-event associations

SCCS design [34] Provides risk estimates Theoretically inappropriate for chronic drug use and for
nonrecurrent events

Robust to confounders that are stable over time Difficulties to determine the settings as these are not supposed to
be standardized for all the drug-event associations

Allows controlling for high-dimensional time-varying
confounding

Sensitive to protopathic and indication biases

CC design [35] Provides risk estimates Theoretically inappropriate for chronic drug use and for
nonrecurrent events

Robust to confounders that are stable over time Does not address time-varying confounding
Difficulties to determine the settings as these are not supposed to
be standardized for all the drug-event associations

Sensitive to protopathic and indication biases
SCC design [36] Provides risk estimates Theoretically inappropriate for chronic drug use and for

nonrecurrent events
Robust to confounders that are stable over time Does not address time-varying confounding

Difficulties to determine the settings as these are not supposed to
be standardized for all the drug-event associations

Sensitive to protopathic and indication biases
Inapplicable for death

Sequence symmetry analysis
[37]

Provides risk estimates Sensitive to protopathic and indication biases
Robust toward confounders that are stable over time Does not address time-varying confounding
Easy to understand and to implement Inapplicable for death

(Continued )
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pseudo-report including drug exposures and events which
occurred during this month, or drug exposures without any
event associated, or events which occurred in the absence of
drug exposure [52]. For Choi et al. [53,54] and Kim et al. [55],
the observation time starts with drug prescription and ends
after 12 weeks; only events which occurred in this period are
considered as ‘reports.’ Zorych et al. proposed to consider the
duration of drug exposure as the observation time, whatever
its duration, and experimented three ways to build the 2 × 2
contingency table used for the disproportionality analyses
[30]. They first considered each patient only once in the con-
tingency table. Classification depended whether or not the
patient had experienced the event during drug exposure.
The two other approaches corresponded to that experimented
in Curtis et al. [52], and in Choi et al.[53,54] and Kim et al.[55].

2.1.2. Longitudinal gamma Poisson shrinker
Schuemie proposed an alternative method in which the expo-
sure and non-exposure periods are expressed in patient-days
to exploit better the information available in longitudinal data

[56]. This approach was tested in combination with the GPS
and called longitudinal GPS (LGPS). The LGPS includes a
minimalist adjustment on age and sex to control for basic
confounders. The author proposed to combine the LGPS
with the longitudinal evaluation of observational profiles of
adverse events related to drugs (LEOPARD) method aiming to
discard spurious signals related to a protopathic or indication
bias. The principle is to compare rates of prescriptions during
a fixed-time window before and after the occurrence of the
event; if this rate is greater after the event than before,
LEOPARD considers the association as related to protopathic
or indication bias [56].

2.2. The traditional pharmacoepidemiological approach

OMOP, and to a lesser extent EU-ADR, has tested several methods
based on traditional pharmacoepidemiological study designs
[31,35,57–59]. These designs, which have been extensively used
for ad hoc studies, consist in a two-step process: (1) to identify
prospectively or retrospectively two groups of patients based on

Table 1. (Continued).

Method Strengths Limitations

Sequential statistical testing
MaxSPRT [38,39] Maintains type I error at 0.05 across multiple testing Does not provide risk estimates

Loss of information due to aggregated data
Inappropriate for chronic exposure and for very rare events
Loses information when using matching, otherwise requires large
historical data

Sensitive to protopathic and indication biases
Computational load

CSSP [40] Maintains type I error at 0.05 across multiple testing Does not provide risk estimates
Works well for rare events Unable to handle numerous confounders

Sensitive to protopathic and indication biases
Difficulties to maintain type I error at 0.05 across multiple testing
when there are many strata computational heaviness

Temporal association rule
MUTARA/HUNT [41,42] Incorporates a filter that prevents detecting expected

signals
Does not provide risk estimates

Sensitive to protopathic and indication biases
Does not have a natural threshold for discriminating positive to
negative signals

Inapplicable for death
TPD [43] Robust to confounders that are stable over time Does not provide risk estimates

Calibrated for systematic differences between time-at-risk
and control periods

Difficulties to address time-varying confounding

Uses shrinkage for preventing detecting some spurious
signals related to very rare events

Inapplicable for death

Fuzzy logic [44] Based on imputability criteria for signal detection Does not provide risk estimates
Difficulties to define the imputability criteria for an automated use
Sensitive to protopathic and indication biases
Does not have a natural threshold for discriminating positive to
negative signals

Supervised machine learning
[45,46]

Based on Bradford-Hill’s causality criteria that make the
method more robust to the detection of false positive
signals

Does not provide risk estimates

Performance for signal detection should improve with
increased data

Needs both large data and a large reference set for training
efficiently the random forest model

Needs to set up one random forest model per drug screened
Sensitive to protopathic and indication biases
Computational load

Tree-based scan statistic [47] Maintains type I error at 0.05 across multiple testing Does not provide risk estimates
Tests simultaneously different event definitions Unable to handle confounders

Sensitive to protopathic and indication biases
Inapplicable for the death event

SR: spontaneous report; LGPS: longitudinal gamma Poisson shrinker; LEOPARD: longitudinal evaluation of observational profiles of adverse events related to drugs;
SCCS: self-controlled case series; CC: case crossover; SCC: self-controlled cohort; maxSPRT: maximized sequential probability ratio test; CSSP: conditional sequential
sampling procedure; TAR: temporal association rules; MUTARA: mining the unexpected TARs given the antecedent; HUNT: highlighting TARs negating TARs;
TPD: temporal pattern discovery.

EXPERT OPINION ON DRUG SAFETY 3



exposures (cohort approach) or events (case based), and (2) to
compare the rate of the drug-event association in these groups.
Statistical tools are usually available with these designs to control
for putative confounders (e.g. co-prescriptions).

2.2.1. New user cohort design
The basic principle of the new user cohort designs is (1) to
follow prospectively cohorts of patients from the start of a first
drug exposure: a first cohort would include patients newly
exposed to the drug of interest, while another cohort includes
patients newly exposed to another drug (generally, a drug
sharing the same indication) and (2) to compare the rate of
occurrence of the event(s) of interest in these two cohorts.

This approach has been extensively explored, as the cohort
design provides many solutions for addressing confounders
[31,32,35] such as adjusting incidence rate ratio for age and
sex by using Mantel–Haenszel adjustment [31], or using pro-
pensity scores or high-dimensional propensity scores to weigh
a Cox proportional hazards model or to adjust by means of a
classical logistic regression model [32,35], or to match patients
in both cohorts. Penalized logistic regression models were also
tested (e.g. the lasso regression [60]); these models handle a
large number of covariates by selecting those with the highest
confounding ability and by including them in a classical logis-
tic regression model [32,35].

2.2.2. Matched case-control designs
The basic principle of matched case-control designs is (1)
starting from a given date to analyze retrospectively prior
drug exposure(s) among two groups of subjects matched on
confounders (e.g. age, sex). The first group includes patients
who have experienced the event of interest (i.e. the ‘cases’),
and the second patients free of this event (i.e. the ‘controls’),
(2) to compare the odds of exposure to the drug(s) of interest
in these two groups.

The availability of large health-care databases popularized
the use of case-control designs nested in a cohort of patients,
which improves the comparability across groups. Though the
use of propensity scores or disease risk scores to control for
numerous confounders is theoretically possible, these two sta-
tistical tools have apparently not been tested in signal detec-
tion using a matched case-control design [31,33,35]. In addition
to the classical matched case-control design, a more original
and complex approach was also tested, called multi-set case-
control estimation, which enables to estimate odds ratio simul-
taneously for multiple events and multiple drug exposures [35].

2.2.3. Self-controlled designs
The self-controlled designs differ from the previous ones in
that only one cohort of patients is considered and each
patient is his/her own control. The effect of a drug on the
occurrence of an event is measured for each patient by com-
paring the event rate in exposed periods to that in unexposed
periods. Self-controlled designs implicitly control for all time-
invariant (e.g. chronic comorbidities) and patient-invariant
confounders (e.g. genetic risk factors).

Three different self-controlled designs have been investi-
gated in the framework of safety signal detection [34–36]. The

self-controlled case series (SCCS) design considers only
patients who have been both exposed to the drug and have
experienced the event of interest at least once. As patients are
followed prospectively, this design can be considered as a
cohort analysis. Statistical tools through penalized regression
models were developed to apply high-dimensional multivari-
ate adjustment with the SCCS to control for time-varying
confounders (e.g. acute diseases) [34,35].

The case-crossover (CC) design is similar to the SCCS but
uses a case-control approach in the sense that drug exposure
is explored retrospectively. However, contrary to the SCCS, no
specific statistical tool has been yet developed to control for
time-varying confounders [35].

The self-control cohort (SCC) design differs from the SCCS
and the CC: it considers all the exposed patients whether or
not they have experienced the event of interest. In this design,
incidence rate ratios correspond to the ratio of event inci-
dence rates during/after versus before the start of drug expo-
sure. As for the CC, the SCC cannot handle time-varying
confounders, except by stratification [35,36].

2.3. The SSA method

The basis of this method was introduced by Petri et al. in 1988
[61] and was conceptualized by Hallas in 1996 [37]. Its aim is to
compare the sequence of the initiation of two drug exposures
A and B within a given time-window, where drug exposure A
is the drug exposure of interest and drug exposure B used as a
surrogate for the potential adverse event. If drug exposure A
induces the prescription of drug exposure B as a consequence
of an ADR, the number of patients that initiated drug exposure
A first and drug exposure B in second is expected to exceed
the number of patients that initiated drug exposure B before
drug exposure A.

This crude sequence ratio is, by essence, not affected by
confounders that are stable over time, but sensitive to
changes in prescribing trends. For instance, if reimbursements
for drug exposure A increased during the study period while
those for drug exposure B remained stable, this trend would,
by itself, result in an excess of sequences where drug exposure
A precedes drug exposure B; this could hamper the detection
of a potential signal. Hallas proposed an adjustment for cor-
recting such temporal trends by dividing the crude sequence
ratio by the null-effect sequence ratio, which is the sequence
ratio that would have been expected from the trends in drug
use if drug exposures A and B were independent [37].

Tsiropoulos et al. slightly modified the computation of the
null-effect sequence ratio to account for shorter observation
time-windows between the initiations of the two studied
drugs [62]. The same authors also validated the use of hospi-
talization diagnoses instead of drug reimbursements for
adverse event selection [62].

2.4. The sequential statistical testing approach

The group of sequential statistical testing methods aims to
test sequentially (e.g. on a monthly basis) the null hypoth-
esis – the event rate is higher among exposed patients
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compared to unexposed – on prospective cohort data, as it
could be done in a routine signal-detection activity. Each
new analysis takes into account the number of new patients
exposed and unexposed to the drug of interest since the last
analysis, and the increment in exposure time for patients
already included in the previous analysis. A signal is raised if
the test statistic exceeds a predefined critical value, which is
chosen so that the overall type I error is maintained at
α = 0.05 across the multiple tests to reduce the generation
of false positives.

2.4.1. The maximized sequential probability ratio test
Brown et al. tested the maximized sequential probability ratio
test (maxSPRT), which was already implemented in vaccine
safety monitoring [38]. This method consists in applying
sequentially the log-likelihood ratio (LLR) test statistic, which
is computed using a large cohort of historical controls. Kulldorf
et al. suggested to collect events simultaneously from exposed
and unexposed patients to fit better situations in which the
use of a cohort of historical controls is not suitable, as for
example for signal detection of newly marketed drugs [39]. In
the proposed approach, an exposure matching with a fixed
matching ratio (1:M) is used to control for confounding. Cook
et al. proposed a generalized LLR test statistic, which is com-
puted considering all the patients instead of only those who
experienced the event, as this provides a more reliable esti-
mate when the event of interest becomes frequent [63].

2.4.2. The conditional sequential sampling procedure
The conditional sequential sampling procedure (CSSP) was
developed by Li et al. [40] because maxSPRT failed to handle
chronic drug exposures [63]. In this approach, the population
is first stratified in two groups depending on whether the
persons are exposed or not. The two groups are stratified a
second time according to the categories of each confounder
considered in the analysis. The cumulative drug exposure and
the number of events are then computed, within each stra-
tum, since the previous analysis. The total number of adverse
events only observed among the persons exposed up to the
time analysis corresponds to the test statistic and is compared
to a critical value computed using a CSSP and corresponding
to the number of events that would be expected to occur
considering all the patients in each stratum.

2.5. The TAR approach

In the context of signal detection, TAR algorithms consider the
following two rules: (1) the event must follow drug exposure
and (2) the event must occur during a prespecified time-
window (i.e. the period considered at risk). For a given drug,
all potential events are mined sequentially, and a correlation
score is computed using a measure of interestingness.

2.5.1. MUTARA/HUNT
Jin et al. proposed the MUTARA (mining the unexpected TARs
given the antecedent) algorithm that incorporates a third rule
specifying that the event must occur ‘unexpectedly’ [41]. For
each user of the drug of interest, a reference period is set
before the start of drug exposure. If the event studied is

observed in that particular period, the authors consider that
it is expected to also find this event after the start of exposure.
In that case, it is considered that the event has few chances to
be an ADR; thus, all its occurrences are excluded from the
patient data. Computation of the correlation score is then
performed in the filtered data.

As this measure of interestingness appeared to be prone to
detect spurious signals due to protopathic or indication bias
[41], the authors incorporated a new metric corresponding to
the ratio of the rank of the signal based on the correlation
score calculated in the whole data to that calculated in the
filtered data. The method was renamed ‘highlighting unex-
pected TARs negating TARs (HUNT)’ [42].

2.5.2. Temporal pattern discovery
Norén et al. implemented the temporal pattern discovery
(TPD) method, which considers several control periods prior
to the start of drug exposure in order to adjust for systematic
variability in event rates over time [43]. These control periods
consider both the same patient and another patient using a
drug sharing similar indication with the drug of interest. As
measure of interestingness, TPD uses the ratio of the
expected-to-observed ratio for the time-at-risk period to that
for the control period; this ratio is computed for each control
period and the minimal value is then selected. To make them
more robust against random variability when event counts
become small, the ratios are transformed: (1) a constant is
added both to the nominator and the denominator in order
to pull the ratios toward a value of 1 (i.e. absence of associa-
tion) and (2) a base 2 logarithm is applied to the transformed
ratios to make the distribution more regular [43].

2.5.3. Fuzzy logic rule based
An approach combining TAR algorithm with fuzzy logic was
proposed by Ji et al. to add the degree of causality between
the drug and the event in the TAR definition [44,64,65]. A first
individual score of causality is computed for each case of the
drug-event association using fuzzy rules. This score takes into
account, temporality, existence of other explanations, dechal-
lenge, and rechallenge. For instance, the fuzzy rule temporality
considers the temporal association as likely, possible, or unlikely
depending on the duration between the start of the exposure
and the event occurrence. Similarly, the fuzzy rule dechallenge
concludes in likely if the patient is still alive after the disconti-
nuation of the drug of interest. A score is attributed to each
value of the fuzzy rules; for example, each likely value corre-
sponds to a score of 1. All the individual scores are combined
to provide a global score of causality for each drug-event
association and then included in the computation of the
measure of interestingness.

2.6. The SML approach

The basis of the SML algorithms can basically be divided in
two parts (Figure 1). The first consists in training a classifier
(e.g. a random forest model) by using a reference set that
includes drug-event associations a priori known as being
related or not-related. For each association, a vector of
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predetermined parameters corresponding to proxies for this
association is extracted from the sample of data used for
training. All the vectors constitute the input data of the classi-
fier, which is programed to select the best parameters that
identify the true associations of the reference set by using a
resampling method and an impurity criterion. The second part
consists in extracting the selected parameters for each drug-
event association screened from the sample of data used for
testing and to apply the trained classifier to predict those
associations that could be new ADRs.

Reps et al. proposed a first SML version in which the para-
meters required for the random forest model classifier were six
risk-ratio values generated from six simple cohort studies [45].
Although these cohort studies used identical at-risk population
and a fixed time-at-risk period, different control populations
and control periods were considered. No statistical adjustment
for controlling for confounders was used. Three additional para-
meters were included to indicate the deviation of the strength
of the association when varying the setting control.

The same authors proposed another SML version, which
included parameters inspired from Bradford-Hill’s causality
criteria to make the method less prone to detect spurious
ADRs [46]. For each drug-event association screened, 27 para-
meters were computed based on the age, sex of the patients,
the drug dosage, and the number of co-medications: 17 para-
meters referred to 5 of the Bradford-Hill’s criteria – strength,
temporality, experimentation, biological gradient, and specifi-
city – while the other 10 indicated the deviation of some of
the previous parameters when varying the event definition
according to the International Classification of Diseases, 10th
revision (ICD-10).

2.7. The tree-based scan statistic method

The fundamental principle of the tree-based scan statistic
method proposed by Kulldorff et al. is to map a tree according

to the basis of the hierarchical structure of classifications used
for coding events [47]: the root corresponds to the broadest
definition of a given event, the nodes correspond to the dif-
ferent sublevel definitions, the leaves correspond to the codes
with the finest definitions, and the branches link the three
elements together (Figure 2a). For each leaf, the observed
and the age and sex-adjusted expected number of exposed
persons who experienced the selected event is computed.
Then, all the possible samples of a given root–node–leaf
event pathway are tested simultaneously using the LLR test
statistic (Figure 2b). The method uses Monte-Carlo-based p
values to formally adjust the p values for multiple testing
due to the many overlapping definitions of the events to
maintain the overall type I error at α = 0.05 [66].

3. Performance assessment

The performance for signal detection of the methods above
presented is detailed in Table 2 and briefly discussed below.

The OMOP and EU-ADR collaborative projects mainly
assessed the methods based on disproportionality analyses
and traditional pharmacoepidemiological designs, and con-
cluded that the former ones were less efficient, notably
when compared to self-controlled designs, which achieved
the best performance [31,35,57,59]. They also compared the
methods based on sequential statistical approach, which
appeared to perform worse than a random signal detection
[35]. The TPD method seemed to perform quite well [57,59]
but the work of Reps et al. showed that the TAR algorithms
performed as poorly as disproportionality based methods
[70]. However, all these results should be considered with
caution as the reference sets used for the computations
suffered from several limitations such as their small size
[31,35], the fact that some drug classes were too heteroge-
neous to be pooled (e.g. antibiotics) [35], or that adverse
events were inadequately defined [57,59]. More details

Figure 1. Basis of the supervised machine learning algorithms.
The first part consists of training a classifier by using a reference set that includes drug-event associations known to be related or unrelated. For each association, a
vector of pre-determined parameters, which correspond to proxies of the association, is extracted from the sample of data used for training. All the vectors
constitute the input data of the classifier, which is trained using a re-sampling method and an impurity criterion to select the parameters that provide the best
ability for the correct identification of the associations included in the reference dataset. The second part consists to extract from the sample of data used for testing
the selected parameters for each possible drug-event association, and to then apply the trained classifier to identify those associations that could be new ADRs.
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about these methodological limitations can be found else-
where [72–75].

Concerning SSA, it showed values of sensitivity and speci-
ficity suggesting that it performs as well as, or even better
than, the self-controlled designs [71]. Other studies provided
information that strengthens the confidence in the general-
ization of the results of signal detection based on SSA in
health-care databases [76–79]. A simulation study demon-
strated that the SSA provided reliable effect estimates when
one varied the prevalence of use and the trend of use of the
drug implied in the signal [77], while two other studies indi-
cated that this method could produce similar effect estimates
in health-care databases covering larger and various popula-
tions [76,78]. A more recent study even led to discover new
safety signals, which appear biologically plausible, and is sup-
ported by the presence of few case reports (e.g. histamine
antagonists and heart failure) [79].

Reps et al. assessed separately the performance of the two
SML versions in the THIN database, both providing values of
performances that exceeded those of the self-controlled
designs [45,46], even if they might have been inflated by the
reference sets used. Indeed, for the version using the
Bradford-Hill’s criteria [46], the authors built a reference set
that included only 10% of true associations; such imbalance
between true and false associations automatically increases
the method’s ability for prediction [80]. For the other SML
version [45], the reference set included as true associations
commonly observed adverse events whatever the drug used
(e.g. nausea), and events that are unlikely to be related to
drugs as false associations (e.g. dog bite).

Unlike the other methods, the tree-based scan statistic
method was not tested with a reference set, but it is note-
worthy that one study applied this method to detect new

safety signals in health-care databases and identified a signal
that justified further investigation [47].

4. Conclusion

A wide range of data-mining methods has been explored for
safety signal detection in health-care databases. Methods cur-
rently used in pharmacovigilance – e.g. disproportionality
analyses – or in pharmacoepidemiology – e.g. traditional
study designs combined with statistical tools for controlling
for confounding – have been adapted and tested. More spe-
cifically, the availability of large amount of longitudinal data
provided the opportunity to develop dedicated methods such
as SSA or sequential statistical testing methods. This new
opportunity for signal detection in pharmacovigilance
research has also attracted the attention on data mining
methods used in other scientific fields such as artificial intelli-
gence and gave birth to methods based on TAR algorithms,
the SML approach, and the tree-based scan statistic. Although
numerous studies attempted to assess the performance of
these methods, consensus about the best approach to use is
far from being reached.

5. Expert opinion

Comparing the retrieved data-mining methods described is
difficult, as their performance was evaluated using different
reference standards. For instance, to identify events of interest,
OMOP developed an algorithm based on ICD-9 diagnostic
hospitalization codes, and/or diagnostic or therapeutic proce-
dure codes, and/or laboratory results [27]; conversely, AsPEN
considered drug use as a surrogate for adverse events identi-
fication [78]. Nonetheless, from the performance assessments,

Figure 2. Example of application of the tree-based scan method to the Alzheimer’s disease.
The root is in brown; the node in yellow; the leaves in green; the branches in solid black lines;
X1, X2, X3, X4 correspond to the observed numbers of patients that experienced the event;
X1ʹ, X2ʹ, X3ʹ, X4ʹ correspond to the expected numbers of patients that should have experienced the event.
The basis of tree-based scan method is to map the ICD-10 classification on the model of a tree. The part of that tree related to the Alzheimer’s disease is drawn here:
the root corresponds to the broadest definition of this disease; the nodes correspond to the different sublevel definitions; the leaves correspond to the most specific
diagnoses related to this disease; and the branches link the three elements together (Figure 2a).
All the associations between a given drug exposure and each potential element of the tree are tested simultaneously using the log likelihood ratio test statistic to
assess different levels of the Alzheimer’s disease definition (Figure 2b).
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Table 2. Performance for safety signal detection.

Study Main settings used for the performance assessment Results

Murphy et al. [35] Data source: 6 private claims databases and 4 private electronic health-care records
databases covering a population of 190 million persons living in the United States

Reference set: 9 positive and 44 negative controls, covering
– Exposure: angiotensin-converting enzyme inhibitors, amphotericin B, antibiotics,

antiepileptics, benzodiazepines, beta-blockers, bisphosphonates, tricyclic antide-
pressants, typical antipsychotics, warfarin

– Events: angioedema, aplastic anemia, acute liver injury, bleeding, myocardial
infarction, hip fracture, mortality after myocardial infarction, renal failure, gas-
trointestinal ulcer hospitalization

Main performance criteria: AUC

SR-like: 0.63
New user design
– Weighted Cox model: 0.47
– HDPS: 0.68
– Bayesian regression model: 0.64
Matched case-control design
– Classical: 0.61
– Multi-set estimations: 0.57
Self-controlled design
– SCCS: 0.57
– CC: 0.61
– SCC: 0.53
MaxSPRT: 0.23
CSSP: 0.38
TPD: 0.65

Ryan et al. [57] Data source: 4 private claims databases and 1 private electronic health-care records
database covering a population of 74 million persons living in the United States

Reference set: 165 positive ADRs and 234 negative controls
– Exposure: 183 drugs, more details in Ref. [67]
– Events: acute liver injury, acute myocardial infarction, acute kidney injury, upper

gastrointestinal bleeding
Main performance criteria: AUC

SR-like: 0.53
LGPS–LEOPARD: 0.58
New user design (HDPS): 0.54
Classical matched case-control design: 0.69
SCCS: 0.71
SCC: 0.81
TPD: 0.75

Schuemie et al. [31] Data source: 4 public claims databases and 3 public electronic health-care records
databases covering a total population of 19 million persons living in Italy,
Netherlands, or Denmark

Reference set: 165 positive ADRs and 234 negative controls
– Exposure: 68 drugs, more details in Ref. [68]
– Events: bullous eruption, acute renal failure, anaphylactic shock, acute myocardial

infarction, rhabdomyolysis, pancytopenia, neutropenia, cardiac valve fibrosis,
acute liver injury, upper gastrointestinal bleeding

Main performance criteria: AUC

SR-like: 0.72
LGPS–LEOPARD: 0.83
New user design
– Without statistical adjustment: 0.76
– HDPS: 0.77
Classical matched case-control design: 0.75
SCCS: 0.76

Schuemie et al. [59] Data source: 3 public claims databases and 3 electronic health-care records
databases covering a population of 11 million persons living in Italy, Netherlands,
or Denmark

Reference set: 165 positive ADRs and 234 negative controls
– Exposure: 183 drugs, more details in Ref. [69]
– Events: acute liver injury, acute myocardial infarction, acute kidney injury, upper

gastrointestinal bleeding
Main performance criteria: AUC

SR-like: 0.60
LGPS–LEOPARD: 0.59
New user design (HDPS): 0.61
Classical matched case-control design 0.59
SCCS: 0.67
SCC: 0.75
TPD: 0.67

Reps et al. [70] Data source: the THIN electronic health-care records covering a population of 11
million persons living in the United Kingdom

Reference set: NA
– Exposure: drugs belonging to the following drug classes: nonsteroidal anti-

inflammatory drugs, tricyclic antidepressants, penicillins, quinolones, calcium
channel blocker drugs, and sulfonylureas

– Events: all ICD-9 codes
– Validation of drug-event pairs: ADRs listed or not in the British National Formulary
Main performance criteria: AUC

SR-like: 0.55
TPD: 0.57
MUTARA: 0.60
HUNT: 0.57

Reps et al. [45] Data source: the THIN electronic health-care database covering a population of 11
million persons living in the United Kingdom

Reference set: 64 positive ADRs and 141 negative ADRs
– Exposure: three drugs belonging to the penicillin drug class
– Events: NA
Main performance criteria: AUC

SML using an ensemble of simple studies: 0.81

Reps et al. [46] Data source: the THIN database covering a population of 11 million persons living in
the United Kingdom

Reference set: 405 positive ADRs and 3844 negative controls
– Exposure: angiotensin-converting enzyme inhibitors, amphotericin B, antibiotics,

antiepileptics, benzodiazepines, beta-blockers, bisphosphonates, tricyclic antide-
pressants, typical antipsychotics, warfarin

– Events: events possibly related to angioedema, aplastic anemia, acute liver injury,
bleeding, myocardial infarction, hip fracture, mortality after myocardial infarction,
renal failure, gastrointestinal ulcer hospitalization

Main performance criteria: AUC

SML using the Bradford-Hill’s criteria: 0.86

(Continued )
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the self-controlled designs, the SSA, and the SML approach
seem the most interesting candidates for safety signal detec-
tion in health-care databases. The two former approaches
provided a slightly lower performance for safety signal detec-
tion than the latter approach, but it is noteworthy that they
were assessed much more intensively. The self-controlled
designs [31–36,56–59] and the SSA [37,61,62,71,76–79] have
been assessed using different health-care databases, both
empirically and through simulation studies. By contrast, the
two versions of the SML approach have been studied once
and using one health-care database [45,46]. The evidence
supporting the performance of the self-controlled designs
and SSA appears therefore much more reliable.

Nevertheless, stating about the best method to use
between these three should look beyond the only statistical
characteristics by considering pragmatic aspects. In the per-
spective of routine signal detection, the choice of what meth-
ods to use should be based on the three following questions:

● Does the method achieve the goals expected for signal
detection?

● Is the method understandable (e.g. principle, meaning of
the results) by stakeholders?

● Does the method provide a guidance to help stake-
holders to handle the massive amount of detected sig-
nals expected in certain situations?

5.1. Does the method achieve the goals expected for
signal detection?

By definition, signal detection consists in screening all drug-
event associations recorded in a database, without a priori
assumptions regarding their potential relationship, in order to
highlight those that could be considered as true associations, i.e.
signals with a special interest to those that are unexpected ADRs
(in nature or in frequency) [81]. In contrast with the SSA and the
SML approaches, the self-controlled designs, and more generally
the traditional pharmacoepidemiological designs, were origin-
ally developed to assess specific drug-event associations, with
settings (e.g. time-at-risk period) tuned to the knowledge about
this association. An application to a large-scale screening con-
sidering all possible types of drug-event associations will

probably not appear soon, especially as this would imply to
override some assumptions required when applying the self-
controlled designs such as the event needs to be recurrent, and
its occurrences must be independent [82].

5.2. Is the method understandable by stakeholders?

All signal detection methods were designed to be highly
sensitive, in the sense that the thresholds for detection are
set low in order to avoid missing a real drug safety concern.
Once a signal is detected, its assessment is crucial and is
generally made by persons qualified in pharmacovigilance,
pharmacoepidemiology, by clinicians, or decision maker with
a medical background, but seldom by statisticians. Therefore,
to be able to adequately decide which signals should be
further investigated, a prerequisite is that these stakeholders
understand at least the basic principles of the method which
generated them. In that perspective, the SML approach, which
is based upon complex statistical concepts, has good chance
to be viewed as a ‘black box.’ The results provided could thus
have a lower acceptability compared to self-controlled
designs, which are well-known methods, and to the SSA, the
principle of which is straightforward to understand.

5.3. Does the method provide a guidance to help
stakeholders handle the massive amount of signals
expected in certain situations?

Although signal detection is not yet performed routinely in
health-care databases, in that context, thousands of signals
would be reasonably expected, which would inevitably con-
gest and slow down the signal strengthening and decision-
making processes. For instance, Reps et al. detected up to
67,000 signals with MUTARA [70]. To handle this tremendous
amount of signals, stakeholders should be guided in determin-
ing what signals are worthy of further investigation. From this
point of view, one may assume that methods providing a risk
estimate for each drug-event association are more appealing,
than those providing probabilities of association. Indeed, only
the former quantify the potential strength of the association,
which is probably the most relevant information to consider
for decision-making. Considering this criterion, the SML

Table 2. (Continued).

Study Main settings used for the performance assessment Results

Wahab et al. [71] Data source: the DVA public claims database covering a population of 250,000
persons living in Australia

Reference set: 44 positive ADRs and 121 negative controls

– Exposure: perindopril, ramipril, irbesartan, amlodipine, carvedilol, metformin,
strontium ranelate, rabeprazole, risperidone, doneprezil, raloxifene, tramadol,
meloxicam, celecoxib, venlafaxine, citalopram, mirtazapine, escitalopram,
sertraline

– Events: 28 events, more details in [71]
Main performance criteria: Se, Sp, PPV, NPV

SSA: Se = 61%; Sp = 93%; PPV = 77%; NPV = 87%

SR: spontaneous report; HDPS: high dimensional propensity score; SCCS: self-controlled case series; CC: case crossover; SCC: self-controlled cohort;
maxSPRT: maximized sequential probability ratio test; CSSP: conditional sequential sampling procedure; TPD: temporal pattern discovery; LGPS: longitudinal
gamma Poisson shrinker; LEOPARD: longitudinal evaluation of observational profiles of adverse events related to drugs; TAR: temporal association rules;
MUTARA: mining the unexpected TARs given the antecedent; HUNT: highlighting TARs negating TARs; SML: supervised machine learning; SSA: sequence
symmetry analysis; PPV: positive predictive value; NPV: negative predictive value; AUC: area under the receiver operating characteristics curve; ADR: adverse
drug reactions; Se: sensitivity; Sp: specificity; ICD: international classification of diseases.

EXPERT OPINION ON DRUG SAFETY 9



approach could be considered less appropriate for routine
safety signal detection in health-care databases.

5.4. Conclusion

When combining the three aspects discussed above, the SSA
appears to be the most suitable method for signal detection
in health-care databases. It is dedicated to longitudinal data
and developed for large-scale and standardized applications.
Its simple and understandable concept allows non-statisti-
cians to grasp it rapidly, and to be confident in the results
provided. It includes self-controlled analyses, which are likely
to reduce the detection of false positives. It is of course
plagued by some limitations. The SSA is per se unable to
prevent the detection of spurious signals related to proto-
pathic or indication biases, a limitation inherent to signal
detection in longitudinal data, but solutions to discard
these signals have been developed. For instance, Avillach
et al. implemented a method able to retrieve well-established
drug-event associations from the Medline database [67]. The
comparison of these associations with the signals detected
could rule out spurious signals related to protopathic or
indication biases. As many drugs tend to be used in specific
sequences when diseases progress, the SSA could lead to flag
up some fallacies associations. The adjustment of the
sequence symmetry estimations for trend prescribing over
time is likely to minimize this issue, even if not fully canceling
its effects. Likewise, medical events that affect the likelihood
of future prescriptions of the drug can bias the sequence
symmetry estimation toward the identification of a risk. This
issue should not be perceived as a matter of concern, as it
will not impact sensitivity. Anyhow, a careful clinical review-
ing of the detected signal is absolutely needed to take full
advantage of automated safety signal detection. The inability
of the SSA to capture ‘death’ event should not be seen as a
major limitation, as it can assess other risks (hospitalization or
other hard outcomes [79]), which provide valuable informa-
tion from the public health perspective.

5.5. Perspectives

Signal detection from health-care database is already possible
but is not yet used for routine surveillance of drug safety. In
this perspective, a further challenge will be represented by
methods helping for signal management, as developing com-
plementary methods for signal prioritization. These could be
based on criteria usually considered as relevant during the
decision-making process. Health-care databases could provide
automatically the potential public health impact of signals
through information such as incidence of drug use or the
incidence of events, which cannot be provided by SR, and
that could help in selecting signals justifying a more thorough
evaluation. Such a prioritization method is thus crucial to
imagine routine safety signal detection activities.
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