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Phenotypes	and	phenotyping	

Physically	observable	traits	of	genotypes	(and	their	interac;ons	with	environments)	

Diseases	(and	disease	subtypes)	

AFribu;ons	of	diseases	(e.g.	suscep;bility)	

Biochemical	or	physiological	proper;es,	behavior,	and	products	of	behavior	



Data-Driven	Phenotyping	
•  Data-driven	phenotyping	

–  Two	main	methodologies	
•  Rule-based	approach	(e.g.	eMerge,	hFps://emerge.mc.vanderbilt.edu)		
•  Predic3ve	Analy3cs	

–  Data	sources:		
•  EHRs/EMRs:	Medicinal	treatments,	diagnoses,	lab	measurements,	etc.		
•  Genomic	data:	SNP	arrays,	copy	number	varia;on	(CNVs),	etc.	

–  Phenotypes	
•  	Diseases,	subtypes,	or	variables	aFributed	to	disease	predic;ons	

	



Diagnos;c	Concept	Units	
•  Various	diseases	sharing	the	same	set	of	
diagnos;c	concept	units	

•  Infec;ous	diseases		
–  Lab	tests		

•  Microorganism,	blood,	urine,	body	;ssues,	stool	
– Medica;ons		

•  An;bio;c,	an;virus,	anthelmin;c	

•  Build	sta;s;cal	models	for	each	diagnos;c	
component	and	combine	them	appropriately	
–  Ensemble	learning	



Bulk	Learning	in	a	Nutshell	…	
Bulk Learning is a batch-phenotyping framework that uses multiple 
diseases collectively (i.e. bulk learning set) as a substrate for model 
learning and evaluation wherein (a given) medical ontology is used to 
perform feature selection and model stacking is used to construct 
abstract feature representation of low sample complexity in order 
to reduce training requirements. 

Key	Concepts:		

1.	Build	phenotyping	models	on	top	of	mul;ple	diseases	

3.	Models	are	combined	via	model	stacking	(a	form	of	ensemble	learning)	
4.	Abstract	features	

Dimensionality	reduc;on	

2.	Automa;c	feature	selec;on	using	an	exis;ng	ontology	

5.	Less	labeled	data	required	for	model	evalua;ons		



Phenotyping	via	Bulk	Learning	
•  Under	model	stacking,	we	then	arrive	at	the	no;on	of	
“concept-driven	phenotyping”	
–  A	subset	or	combina;ons	of	lab	tests	are	more	
aFributable	to	some	diseases	while	the	others	are	beFer	
explained	by	medica;ons	

•  In	this	study,	infec;ous	diseases	associated	with	100	
ICD-9	codes	as	the	domain	of	study	for	bulk	learning		
–  For	simplicity,	consider	different	diagnos;c	codes	as	
different	diseases	…				

– Why	100	codes?		
–  Code	selec;on	strategy?		



Bulk	Learning	Basics	I	

•  Addresses	two	central	issues	in	predic;ve	
analy;cal	approach	to	computa;onal	
phenotyping	
– Feature	engineering	

•  Medical	ontology	for	feature	decomposi;on	
•  Medical	En;;es	Dict	(hFp://med.dmi.columbia.edu)	

– Data	annota;on	
•  Ensemble	learning	(e.g.	stacked	generaliza;on	
[Wolpert	1992])	

•  Feature	abstrac;on	for	dimensionality	reduc;on	



Medical	Ontology	for	Grouping	Features	

•  Snapshot	of	Medical	En;;es	Dic;onary		
(hFp://med.dmi.columbia.edu)		



Model	Stacking	
•  Why	inspec;ng	mul;ple	(infec;ous)	diseases?		

–  Using	mul3ple	diseases	as	substrate	and	iden;fy	their	common	elements	
–  Example	stacking	architecture	(under	stacked	generaliza;on	method)	

Level 1

Level 0

 Antibiotic Measure

Urinary Chemistry 
Measure

Intravenous Chemistry 
Measure

Microbiology Measure

Level 2

Attributes: Level-0 Probabilities and Indicators
Target: Diagnostic Codes (Silver Standard)

Other Phenotypic Measures (e.g. Antiviral)

Attributes: Level-1 Probabilities and ICD-9
Target: True Labels (Gold Standard)



Surrogate	Labels	vs	True	Labels	

•  Model	stacking	is	used	to	achieve:		
–  Improve	upon	base	model	performances		
–  Transform	EHR	data	to	a	denser	form	

•  Uses	diagnos;c	codes	(e.g.	ICD-9)	as	surrogate	labels	to	
establish	“approximate	predic;ve	models.”	

•  Why	surrogate	labels	(e.g.	ICD-9)?		
–  Features	extracted	from	EHR	can	be	large	
–  Used	to	derive	compact	representa;on	of	the	training	data		
–  “Free”	supervised	signals	that	are	sufficiently	close	but	can	be	obtained	

without	extra	work	
•  Objec;ve:	Build	sta;s;cal	models	in	abstract	feature	space	

–  Create	a	sparse	annota;on	set	(i.e.	gold	standard)	that	serves	a	proxy	
dataset	for	downstream	model	evalua;ons	

–  83	annotated	cases	
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Performance	Evalua;ons	

•  How	well	does	the	model	predict	ICD-9s	(using	a	
separate	test	data)?		

•  How	well	does	the	model	predict	annotated	data	
(assoc.	with	“true	labels”)?		
–  (Binarized)	ICD-9	becomes	a	candidate	feature	among	
abstract	features	(e.g.	probability	scores,	indicators)	

•  Annotated	sample	consists	of	randomly	selected	cases	in	
which	errors	of	ICD-9	coding	are	corrected	

•  Data	annota;ons	and	coding	procedures	are	two	
independent	processes	



Base	Level	Performances	



	

127.4	Enterobiasis		

047.8	(Other)	viral	meningi;s	

009.1	Gastroenteri;s	...	

053.9	Herpez	zoster	

117.9	Mycoses	





Other	Components	

•  Semi-supervised	learning	and	virtual	annota;on	set	

•  The	3rd	;er	in	model	stacking	hierarchy	
–  Trade-off	between	learned	abstract	features	and	the	ICD-9	
codes	as	surrogate	labels.	

–  Performance	evalua;on	on	predic;ng	annotated	labels	
	
•  Ontology-based	feature	engineering		
•  Proper	design	of	treatment	and	control	(training)	data		



Modeling	Perspec;ve	
•  EHR	data	consist	of	observa;ons	and	latent	variables	

–  Observa;ons	can	be	directly	answered	via	simple	queries	
•  Did	the	pa;ent	have	tests	on	E.	Coli?		
•  Did	the	pa;ent	take	Cekriaxon?		

•  Latent	variables	represent	quan;;es	that	cannot	be	
directly	observed	in	EHR		or	computed	via	simple	queries		
–  Does	the	pa;ent	have	an	infec;on?		
–  Diagnos;c	ques;ons:	specifically	which	infec;ons	do	the	pa;ent	
have?		

•  Learn	classifiers	to	predict	latent	variables	(with	only	access	
to	observa;ons)	



Medical	Perspec;ve	
•  Seemingly	different	infec;ous	diseases	may	share	
similar	sets	of	lab	tests	and	medica;ons	
–  Staph.	aureus		

•  Skin	infec;ons,	pneumonia,	blood	poisoning	
–  Cekriaxone	

•  Meningi;s	
•  Infec;ons	at	different	sites	of	the	body	(e.g.	bloodstream,	lungs,	
urinary	tracts)	

•  Mul;ple	classifiers	for	the	same	disease		
–  4	classifiers	per	ICD-9	code,	each	of	which	is	binary	
classifier		

•  400	classifiers	at	base	level	



Data	Distribu;on	Perspec;ve	

“Can	we	build	a	joint	model	applicable	to	all	diseases?”	



Abstract	Feature	Representa;on:	Design	Choices	

•  Related	work	in	construc;ng	high-level	features	
–  PCA,	unsupervised	feature	learning,	manifold	learning,	etc.	

•  Design	choices	
–  Data	characteris;cs		
–  Interpretability	
	

•  Deep	Neural	Network	
–  Linear	combina;on		
–  Non-linear	transforma;on	(e.g.	sigmoid,	rec;fier,	etc.)	

•  Feature	set:	con;nuous,	dense,	and	“homogeneous”		
–  Image	pixels		
–  Times	series	of	lab	measurements	
–  word2vec	

•  EHR	data	however	are	very	different		
–  sparse	and	incomplete		
–  consist	of	many	different	types	(binary,	categorical,	con;nuous,	etc.)	
–  Features	associated	with	mul;ple	concepts	



Moving	Forward	…	
•  Summary	

–  Bulk	learning	is	a	framework	with	at	least	the	following	system	choices	
•  The	bulk	learning	set	(of	target	condi;ons)	=>	base	models	
•  Classifica;on	algorithms	(guideline:	probabilis;c	classifiers	+	well-calibrated)	
•  Stacking	architecture	(mul;ple	;ers	=>	levels	of	abstrac;ons)	
•  Strategy	for	combining	individual	(local)	disease	models	to	a	global	model	

–  Advantage:	Can	use	a	small	annotated	sample	for	model	construc;on	and	
evalua;on	within	the	abstract	feature	space	(e.g.	level-1	data)	

•  83	clinical	cases	were	labeled	in	this	study	
–  Challenge:	The	model	involving	the	interac;on	between	abstract	features	and	

ICD-9	do	not	generalize	well	into	the	region	of	the	data	where	the	ICD-9	
coding	was	incorrect	

•  Mul;ple	types	of	surrogate	labels		
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•  Ongoing	and	future	work	
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Example	Features	
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3. Compute Meta Models (via Ensemble Learning)1. Define Feature Groups Using Medical Ontology 

1a. Gather EHR data according to 
medical concepts 

1b. Use Medical Entities Dictionary to 
delineate feature scopes 

1c. Apply feature selection 
within each 

concept group

3a. Per-disease ensembles:
compute local 
level-1 models

3b. Cross-disease ensemble: 
compute a global 

level-1 model

Global 
level-1 
features 


