Using negative control outcomes to identify biased study design: A self-controlled case series example

James Weaver1,2

1Janssen Research & Development, LLC, Raritan, NJ, USA
2Observational Health Data Sciences and Informatics (OHDSI), New York, NY, USA

\texttt{jweave17@its.jnj.com}
Agenda

I. Introduction
II. Self-controlled case series for population-level effect estimation
III. Methods
IV. Results
V. Discussion
1. Introduction

<table>
<thead>
<tr>
<th></th>
<th>Methodological development</th>
<th>Open-source analytics development</th>
<th>Clinical applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational data management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical characterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population-level effect estimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient-level prediction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I. Introduction

<table>
<thead>
<tr>
<th></th>
<th>Methodological development</th>
<th>Open-source analytics development</th>
<th>Clinical applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational data management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical characterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population-level effect estimation</td>
<td></td>
<td></td>
<td>![Balanced Scale]</td>
</tr>
<tr>
<td>Patient-level prediction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction

<table>
<thead>
<tr>
<th>Methodological development</th>
<th>Open-source analytics development</th>
<th>Clinical applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational data management</td>
<td>![Funnel]</td>
<td>![Database]</td>
</tr>
<tr>
<td>Clinical characterization</td>
<td>![Wrench and screwdriver]</td>
<td></td>
</tr>
<tr>
<td>Population-level effect estimation</td>
<td>![Target]</td>
<td>![Balance scale]</td>
</tr>
<tr>
<td>Patient-level prediction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I. Introduction

- **Clinical application**
 - Does influenza cause acute myocardial infarction?
 - IRR = 6.05 (3.86 – 9.50)

- **Population-level effect estimation (PLE)**
 - Self-controlled case series (SCCS)
 - https://www.bmj.com/content/354/bmj.i4515
II. SCCS for PLE

- Population-level effect estimation
 - Epidemiologic methods for causal inference
 - Estimating unbiased, average treatment effect
 - Goal: compare outcomes between an exposed population and its counterfactual approximation
II. SCCS for PLEE

• Population-level effect estimation

 • Epidemiologic methods for causal inference

 • Estimating unbiased, average treatment effect

• Goal: compare outcomes between an exposed population and its counterfactual approximation
II. SCCS for PLEE

• Self-controlled case series

• Effect estimation: does T cause O?

• Compares outcomes *within* persons during time periods of differing risk (e.g. exposed time vs unexposed time)

• Unexposed time = counterfactual approximation of exposed population
II. SCCS for PLEE

• Self-controlled case series

 • Self-controlled: a patient is their own control

 • Cases only: intersection of exposed and outcome cohorts

 • Compares outcome incidence during a risk period (e.g. exposed time) to other time (e.g. unexposed time) during study window

 • When events occur relative to risk period *given that event(s) occurred*
III. Methods

 • T: Highly specific, laboratory-confirmed influenza diagnosis
 • Flu and Other Respiratory Viruses Research Cohort
 • Specimens from routine clinical care, research, outbreak investigation
 • O: Primary, inpatient myocardial infarction (not same visit as flu dx)
 • Discharge Abstract Database, National Ambulatory Care Reporting System, Same-Day Surgery Database, Ontario Health Insurance Plan
 • Risk interval: 7 days following influenza diagnosis
 • Study period: 1 year before to 1 year after influenza diagnosis
 • Multiple sensitivity analyses
III. Methods

IV. Methods

• **Best faith replication**
 • T: Visit occurrence with influenza diagnosis, no outcome code, no influenza diagnoses in last 60 days
 • Truven Health MarketScan Commercial Claims and Encounters Database
 • Truven Health MarketScan Medicare Supplemental and Coordination of Benefits Database
 • O: Inpatient visit occurrence with primary, acute myocardial infarction (not same visit as flu dx)
 • Risk interval: start - influenza visit end, influenza visit start + 7 days
 • Study period: 1 year before to 1 year after influenza diagnosis
 • Multiple sensitivity analyses
 • **Negative control outcomes:** lung cancer, ingrowing nail, T2DM, renal impairment, acute liver injury, HIV, anemia, depression
IV. Results

- CCAE

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Kwong et al. IRR</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>Replication IRR</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>6.05</td>
<td>3.86</td>
<td>9.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2DM</td>
<td>NULL</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingrowing nail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal impairment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute liver injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. Results

- **CCAE**

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Kwong et al.</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRR</td>
<td>95% CI lower</td>
</tr>
<tr>
<td>AMI</td>
<td>6.05</td>
<td>3.86</td>
</tr>
<tr>
<td>T2DM</td>
<td>NULL</td>
<td>-</td>
</tr>
</tbody>
</table>

Lung cancer
Ingrowing nail
Renal impairment
Acute liver injury
HIV
Anemia
Depression
IV. Results

- **CCAE**

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Kwong et al. IRR</th>
<th>Kwong et al. 95% CI lower</th>
<th>Kwong et al. 95% CI upper</th>
<th>Replication IRR</th>
<th>Replication 95% CI lower</th>
<th>Replication 95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>6.05</td>
<td>3.86</td>
<td>9.50</td>
<td>3.76</td>
<td>3.16</td>
<td>4.43</td>
</tr>
<tr>
<td>T2DM</td>
<td>NULL</td>
<td>-</td>
<td>-</td>
<td>5.36</td>
<td>4.82</td>
<td>5.95</td>
</tr>
<tr>
<td>Lung cancer</td>
<td></td>
<td></td>
<td></td>
<td>4.02</td>
<td>3.07</td>
<td>5.16</td>
</tr>
<tr>
<td>Ingrowing nail</td>
<td></td>
<td></td>
<td></td>
<td>5.93</td>
<td>1.44</td>
<td>16.05</td>
</tr>
<tr>
<td>Renal impairment</td>
<td></td>
<td></td>
<td></td>
<td>9.45</td>
<td>8.74</td>
<td>10.20</td>
</tr>
<tr>
<td>Acute liver injury</td>
<td></td>
<td></td>
<td></td>
<td>15.94</td>
<td>12.69</td>
<td>19.76</td>
</tr>
<tr>
<td>HIV</td>
<td></td>
<td></td>
<td></td>
<td>8.91</td>
<td>6.42</td>
<td>12.03</td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
<td></td>
<td>5.08</td>
<td>4.26</td>
<td>6.01</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
<td>1.22</td>
<td>1.05</td>
<td>1.40</td>
</tr>
</tbody>
</table>
V. Discussion

• Replication showed similar acute myocardial infarction results across all analysis variants
 • Lesser magnitude of positive effect

• Replication showed conflicting T2DM results across all analysis variants
 • Strong positive effect rather than null
V. Discussion

• Replication unable to replicate highly specific, lab confirmed influenza exposure definition

• Ontario team re-executed T2DM analysis with influenza exposure definition using administrative data and found increased effect
 • Decreased specificity influenza definition
 • Influenza false positives responsible T2DM cases?
 • Inconsistent with replication findings of reduced MI effect

• Berkon’s bias – hospitalized patients at greater outcome risk
 • Test by restricting laboratory influenza definition to IP, OP
V. Discussion

• **What this work demonstrates:**
 • Value of negative controls as a diagnostic test
 • For assessing trust in main results

• **Literature:**
 • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856503/

• **What this work does not demonstrate:**
 • The true effect of influenza on myocardial infarction
V. Discussion

• Next steps: find a design and specification that produces a null association between influenza and negative controls

• Executed cohort study assessing the hazards of first occurrence, primary inpatient AMI and negative controls among patients with influenza compared to 1:1 propensity scored matched patients with a cold during 7 days time-at-risk
 • Results roughly the same
V. Discussion

• Challenge:

• Can someone in the OHDSI community produce a design specification that estimates a null association between influenza and negative controls?

• https://github.com/OHDSI/StudyProtocolSandbox/tree/master/FluAmiSccs
V. Discussion

• Questions
• jweave17@its.jnj.com