Studies in the OHDSI distributed research network

Martijn Schuemie
Distributed research network

• Many observational databases in OHDSI
 – large numbers
 – large diversity

• We cannot share patient-level data

• Solution:
 – analysis code ‘visits’ the data
 – only population-level data is shared
Hub and spoke network

Data site A

Data site F

Data site E

Data site D

Data site C

Data site B

Coordinating center
OHDSI network

Stanford

Columbia University

Janssen

Regenstrief

IMS

University of Hong Kong

Taipei Medical University

UF

UCSD

UMD

UCSD

UCSD

UCSD

UCSD

UCSD
Treatment pathway study
Drug Utilization in Children study
Keppra-angioedema study

Stanford

IMS

Columbia University

UCLA

University of Hong Kong

Taipei Medical University

Regenstrief

Janssen

Ajou School of Medicine

University of South Australia
Everyone can initiate and lead a study

See the Wiki Collaborative Study FAQ:

• Post preliminary protocol on Wiki
• Invite community review
• Post final protocol on Wiki
 – can be used for IRB approval
• Develop study code, post on GitHub
• Test code at at least 2 sites
• Invite sites to join
Implementation

Standards:
- PostgreSQL, Oracle, SQL Server, RedShift, or APS
- OMOP Common Data Model
- Windows, MacOS, Linux
- R
Implementation

Content:
• R package

Delivery:
• GitHub (StudyProtocols repo)
 E.g. https://github.com/OHDSI/StudyProtocols/tree/master/KeppraAngioedema

Mini-Sentinel: SAS
EU-ADR: Java application (Jerboa)

Why R?
• Open source
• Efficient in deploying advanced computing code
• Easy to integrate different modules
• Can we written by person ≠ Martijn
Implementation

Content: zip file containing
• Plain text
• CSV (comma-separated values)
• PNG (plots)
• ...

Needs to be:
• Non-identifiable information
• Human reviewable

Delivery:
• E-mail
• Amazon S3
Study package

- User experience
- Under the hood

Examples: Keppra-angioedema and DrugsInPeds study packages
Study package user experience

Steps for the user:
1. Install the package (and dependencies)
2. Run the analysis
3. Review the results
4. Share the results
Study package user experience

Steps for the user:
1. **Install the package** (and dependencies)
2. Run the analysis
3. Review the results
4. Share the results
Installing the package

Using R’s package infrastructure to deploy packages

Not all packages are in CRAN. There’s an OHDSI package repository (using “drat”)

```
install.packages("drat")
drat::addRepo(c("OHDSI","cloudyr")) # Link to OHDSI packages
install.packages("KeppraAngioedema")
```
Study package user experience

Steps for the user:
1. Install the package (and dependencies)
2. Run the analysis
3. Review the results
4. Share the results
Running the analysis

Ideally a single command to run the entire analysis

This should create a folder called ‘export’ with all files that will be shared

```r
library(KeppraAngioedema)

connectionDetails <- createConnectionDetails(
  dbms = "postgresql",
  user = "joe",
  password = "secret",
  server = "myserver")

execute(connectionDetails,
  cdmDatabaseSchema = "cdm_data",
  workDatabaseSchema = "results",
  studyCohortTable = "ohdsi_keppra_angioedema",
  oracleTempSchema = NULL,
  outputFolder = "c:/temp/study_results",
  maxCores = 4)
```
Study package user experience

Steps for the user:
1. Install the package (and dependencies)
2. Run the analysis
3. Review the results
4. Share the results
Review the results
Study package user experience

Steps for the user:

1. Install the package (and dependencies)
2. Run the analysis
3. Review the results
4. Share the results
Share the results

Push the StudyResults.zip file to an S3 bucket

```python
submitResults("c:/temp/study_results/export", key = "<key>", secret = "<secret>")
```

S3 is Amazon’s storage service with secure up and download
One bucket per study
Two accounts per bucket:
- Study coordinator can read and write
- Study participants can write
Contact the coordinating center for your study-specific bucket
Under the hood

Executing the analysis typically entails:
1. Instantiating cohorts
2. Running some SQL against the CDM database
3. Do some further processing in R
4. Write results to the export folder
Instantiating cohorts

Adding CIRCE SQL to the package:

```r
OhdsiRTools::insertCirceDefinitionInPackage(2193, "Angioedema")
```

Instantiating the cohort during execution:

```r
sql <- SqlRender::loadRenderTranslateSql("Angioedema.sql",
"KeppraAngioedema",
dbms = connectionDetails$dbms,
oracleTempSchema = oracleTempSchema,
cdm_database_schema = cdmDatabaseSchema,
target_database_schema = workDatabaseSchema,
target_cohort_table = studyCohortTable,
cohort_definition_id = 3)
DatabaseConnector::executeSql(conn, sql)
```

We usually do not use the cohort table in the CDM, but create a study-specific cohort table in another schema.
Running some SQL against the CDM database

Write OhdsiSql and include in package:

Using SqlRender and DatabaseConnector packages to run in local environment:

```r
sql <- SqlRender::loadRenderTranslateSql("GetDenominator.sql", "DrugsInPeds"),
attr(conn, "dbms"),
oracleTempSchema = oracleTempSchema,
cdm_database_scheme = cdmDatabaseScheme,
study_start_date = studyStartDate,
study_end_date = studyEndDate,
split_by_age_group = splitByAgeGroup,
split_by_year = splitByYear,
split_by_gender = splitByGender,
restrict_to_persons_with_data = restrictToPersonsWithData,
useDerived_observation_periods = useDerivedObservationPeriods)

denominator <- DatabaseConnector::querySql(conn, sql)
names(denominator) <- SqlRender::snakeCaseToCamelCase(names(denominator))
write.csv(denominator, file = fileName, row.names = FALSE)
```
Study package structure

- R
 - extras
 - inst
 - man
 - .Rbuildignore
 - .gitignore
 - DESCRIPTION
 - KeppraAngioedema.Rproj
 -NAMESPACE
 - README.md

R contains all user-executable R code
Study package structure

extras contains code used by the study coordinator:
- Code for importing CIRCE definitions
- Testing code
- Code for aggregating data across sites
Study package structure

- R
- extras
- inst
- man
- .Rbuildignore
- .gitignore
- DESCRIPTION
- KeppraAngioedema.Rproj
-NAMESPACE
- README.md

inst is for non-R content of the payload
- SQL
- Settings files
- ...
Study package structure

- DESCRIPTION tells R about package dependencies (E.g. methods in the methods library)
Study package structure

- R
- extras
- inst
- man
- .Rbuildignore
- .gitignore
- DESCRIPTION
- KeppraAngioedema.Rproj
-NAMESPACE
- README.md

README.md is what is shown in the GitHub front page
Essentials

Reading

- OHDSI Collobarative Studies FAQ:
- R packages manual:
 http://r-pkgs.had.co.nz/
- SqlRender vignette:
- OHDSI R and SQL code styles:
 http://www.ohdsi.org/web/wiki/doku.php?id=development:ohdsi_code_style_for_r

Sites:

- SqlRender test site: http://sqlrenderweb.ohdsi.org:2121/

Contacts:

- schuemie@ohdsi.org
- msuchard@ucla.edu
Conclusions

• Anyone can initiate a study and be a study coordinator
 – Follow the steps described in the FAQ
 – Need to have a clear research question
 – Need someone with R and SQL skills

• OHDSI standards for distributed analysis are evolving
 – Check latest study package for most recent ideas

• Martijn and Marc can help with the writing of the package
Not discussed

• How to find partner sites
 – Public Achilles

• Data quality assurance
 – Sharing Achilles Heel?

• Workflow management

• Governance
 – Data use agreement
 – ...

Help wanted