

Common Data Model Of Everything in Medicine:

Journey for integration of Environmental,
Genomic data, Radiology, and PatientGenerated Health Data with clinical data in
OMOP-CDM

Seng Chan You

Finding the missing link for big biomedical data

Physics: A search for Simplicity, Beauty and Symmetry

- The identification of the degree of symmetry of an object or idea with the degree of perfection of that object or idea is both as old as the ancient Greeks and as new as the current ideas of modem physics.
- From its beginnings in ancient astronomy, the goal of the science of physics has always been to find 'the simple Theory Of Everything'
- Symmetry in Mathematics
 - A symmetry operation is a mathematical operation which leaves the final state **indistinguishable** from the initial state

Physics: A search for Simplicity, Beauty and Symmetry

Symmetry in Physics

- At the ultimate extreme of contraction the instant of the "big bang," all particles and all forces would be indistinguishable.
- Only as the universe cools and expands do particles separate into quarks then into protons and neutrons, and the primordial single force splits into distinct gravitational, electromagnetic and nuclear forces.
- Modern physicists would like nothing better than to prove that the universe really does behave according to this model of "perfect symmetry."

OHDSI: A Journey for Simplicity, Beauty and Symmetry in Medical Data

- Symmetry in medical data
 - By grand unification across all aspects of health data, various types of medical data, such as clinical, genomic, radiologic, and patientgenerated data, would be indistinguishably accessible in the single database
 - OHDSI tools ecosystem can work across various types of medical data

OHDSI: A Journey for Simplicity, Beauty and Symmetry in Medical Data

- Symmetry in medical data
 - By grand unification across
 all aspects of health data,
 various types of medical data,
 such as clinical, genomic,
 radiologic, and patient generated data, would be
 indistinguishably accessible
 in the single database
 - OHDSI tools ecosystem can work across various types of medical data

Data are Like Lego Bricks for Phenotyping in CDM

Conditions

Drugs

Procedures

Measurements

Observations

Visits

Data are Like Lego Bricks for Phenotyping in CDM

Conditions

Genomic variants

Drugs

Radiology

Procedures

Topics from Free-Text

Measurements

Patient-Generated Health Data

Visits

Environment

OHDSI Tools Ecosystem

Cohort Method

New-user cohort studies using large-scale regression for propensity and outcome models

Self-Controlled Case Series

Self-Controlled Case Series analysis using few or many predictors, includes splines for age and seasonality.

Self-Controlled Cohort

A self-controlled cohort design, where time preceding exposure is used as control.

IC Temporal Pattern Disc.

A self-controlled design, but using temporal patterns around other exposures and outcomes to correct for timevarying confounding.

Case-control

Estimation methods

Prediction methods

Method characterization

Case-control studies, matching controls on age, gender, provider, and visit date. Allows nesting of the study in another cohort.

Case-crossover design

Case-crossover

including the option to adjust for time-trends in exposures (so-called case-time-control).

Patient Level Prediction

Build and evaluate predictive models for user-specified outcomes, using a wide array of machine learning algorithms.

Feature Extraction

Automatically extract large sets of features for userspecified cohorts using data in the CDM.

Use real data and established reference sets as well as simulations injected in real data to evaluate the performance of methods.

Method Evaluation

ATLAS

Empirical Calibration

Use negative control exposure-outcome pairs to profile and calibrate a particular analysis design.

Database Connector

Connect directly to a wide range of database platforms, including SQL Server, Oracle, and PostgreSQL.

Sql Render

Generate SQL on the fly for the various SQL dialects.

Cyclops Cyclops

Highly efficient implementation of regularized logistic, Poisson and Cox regression.

Ohdsi R Tools

Support tools that didn't fit other categories, including tools for maintaining R libraries.

Supporting packages

Common Data Model of Everything in Medicine

Common Data Model of Everything in Medicine

Environment in Health

Because everyone matters.

Exponential Growth in New Forms of Data Will Play an Increasing Important Role in Enabling Better Outcomes

Exogenous data
(Behavior, Socio-economic, Environmental, ...

of determinants of health

Volume, Variety, Velocity, Veracity

Genomics data

30% of determinants of health Volume

Clinical data

10% of determinants of health Variety

1100 Terabytes

Generated per lifetime

Per lifetime

Per lifetime

Source: "The Relative Contribution of Multiple Determinants to Health Outcomes", Lauren McGover et al., Health Affairs, 33, no.2 (2014).

IBM Health and Social Programs Summit | #IBMHSPS14 | #smartercare | #socialprograms

Environmental information and precision medicine

- We need to harness all of environmental, genetic, and clinical data to maximize personal and population health
 - "... the prevailing focus on an individual's genes and biology insufficiently incorporates the important role of environmental factors in disease etiology and health"
 - "... a better understanding of the relationship between environmental exposure and the epigenome might lead to more efficient preventive measures"
 - "... embracing the impact of the environment on health will require a new framework to guide both research and its application, and to steer public investment and research efforts"

The definition of environment in medicine

- Environment is everything that is around us
 - https://simple.wikipedia.org/wiki/Environment
- Environmental medicine is a multidisciplinary fields... Environmental factors can be classified into:
 - Physical
 - Chemical
 - Biological
 - Social (including Psychological and Culture variables)
 - Ergonomic
 - Safety
 - Any combination of the above

What is the environment in medicine?

Environment is everything that is around us

https://simple.wikipedia.org/wiki/Environment

- Environmental medicine is a multidisciplinary fields... Environmental factors can be classified into:
 - Physical: e.g. Weather
 - Chemical: e.g. Pollution
 - Biological: e.g. Zoonotic source (Lyme disease)
 - Social: e.g. Culture, Economic status

https://en.wikipedia.org/wiki/Environmental_medicine

What is the environment in medicine?

• Environment is everything that is around us

https://simple.wikipedia.org/wiki/Environment

- Environmental medicine is a multidisciplinary fields... Environmental factors can be classified into:
 - Physical: e.g. Weather
 - Chemical: e.g. Pollution
 - Biological: e.g. Zoonotic source (Lyme disease)
 - Social: e.g. Culture, Economic status

https://en.wikipedia.org/wiki/Environmental_medicine

 All above are based on Geographic Information System

AEGIS- An open source spatial analysis tool based on CDM

Jaehyeong Cho, B.S.¹, Seng Chan You, M.D. M.S.², Kyehwon Kim, B.E.³, Doyeop Kim, B.E.², Rae Woong Park, M.D., Ph.D.^{1,2}

Dept. of Biomedical Sciences, Ajou University Graduate School of Medicine, Yeongtong-gu, Suwon

Dept. of Biomedical Informatics, Ajou University School of Medicine, Yeongtong-gu, Suwon

Yeungnam University Graduate school of Medicine, Nam-gu, Daegu

- AEGIS development
 - AEGIS : Application for Epidemiological Geographic Information System
 - A tool to conduct disease mapping and cluster analysis considering age and gender-adjustment and spatial autocorrelation using GIS database based on CDM
 - AEGIS is open-source software, which is harmonized within OHDSI eco-system

 Based on Global Administrative Database (GADM), AEGIS can depicts cohorts on the map according to the country's own administrative district.

 Based on Global Administrative Database (GADM), AEGIS can depicts cohorts on the map according to the country's own administrative district.

 Clustering of emergency department visit due to asthma among patients with asthma

Identification of Disease Cluster

AEGIS

Association of Asthma Exacerbation and Air pollution

Air pollution map in Korea (PM-10)

NATIONAL INSTITUTE OF ENVIRONMENTAL RESEARCH, 2018

 Association of Asthma Exacerbation and House price

Common Data Model of Everything in Medicine

Seng Chan You, MD¹, Youngin Kim, MD², Jaehyung Cho¹, Rae Woong Park, MD, PhD¹,³

¹Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea;

²Medicine, Noom, Inc, Seoul, Korea

Patient-Generated Health Data

Because everyone matters.

IBM

Exponential Growth in New Forms of Data Will Play an Increasing Important Role in Enabling Better Outcomes

Exogenous data

(Behavior, Socio-economic Environmental, ...)

60%

of determinants of health

Volume, Variety, Velocity, Veracity

Genomics data

30% of determinants of health

Clinical data

10% of determinants of health Variety 1100 Terabytes

Generated per lifetime

6 TB

Per lifetime

0.4 TB Per lifetime

Source: "The Relative Contribution of Multiple Determinants to Health Outcomes", Lauren McGover et al., Health Affairs, 33, no.2 (2014)

IBM Health and Social Programs Summit | #IBMHSPS14 | #smartercare | #socialprograms

Apple Health

Applications in smartphone collecting

health data

Google Fit

4.104

4.104 #8

7시간 1분

NOOM

Efil

Samsung Medical Center Diabetes Note

Basic concept for standardization of patient generated health data

- Data Sources
 - Measuring
 - Phone / Wearable / medical device /Report
 - SmartPhone
 - iOS: AppleHealth
 - Android: GoogleFit, S-Health
 - Third-party Applications
 - Samsung Medical Center: Diabetes Note
 - NOOM
 - Life Semantics: Efil
- CDM Database Schema
 - OMOP-CDM

Basic concept for standardization of patient generated health data

- Data Sources
 - Measuring
 - Phone / Wearable / medical device /Report
 - SmartPhone
 - iOS: AppleHealth
 - Android: GoogleFit, S-Health
 - Third-party Applications
 - Samsung Medical Center: Dialetes Note
 - NOOM
 - Life Semantics: Efil
- CDM Database Schema
 - OMOP-CDM

Start PGHD Working Group in OHDSI

Patient Generated Health Data (PGHD) Working Group 🖋

http://forums.ohdsi.org/t/patient-generated-health-data-pghd-working-group/4612

Data types in PGHD

- 1. Activity
 - Steps, Flight climbed, Distance
- 2. Nutrition
 - Calorie intake (24hr / breakfast, lunch, dinner)
 - Nutrients
- 3. Sleep
 - Total minutes / Minutes asleep, Time to fall sleep, Number of sleep periods
- 4. Body measurements
 - Height, Weight, BMI, Lean body, Body fat
- 5. Vital signs
 - HR, BP, ...
- 6. Self-medication
 - Insulin
- 7. Laboratory measurement
 - Glucose
- 8. Self-report
- 9. Mindfulness

Granularities of Data in PGHD

Macro-level

- 1. Activity
 - Steps, Flight climbed, Distance
- 2. Nutrition
 - Calorie intake (24hr / breakfast, lunch, dinner)
 - Nutrients
- 3. Sleep
 - Total minutes / Minutes asleep, Time to fall sleep, Number of sleep periods
- 4. Body measurements
 - Height, Weight, BMI, Lean body, Body fat
- 5. Vital signs
 - HR, BP, ...
- 6. Self-medication
 - Insulin
- 7. Laboratory measurement
 - Glucose
- 8. Self-report
- 9. Mindfulness

Micro-level

- 1. Activity
 - Acceleration, Angular velocity unit value (GyroMeter)
- 2. Nutrition
 - Temporal relationship to meal
- 3. Sleep
 - Temporal relationship to sleep, REM/non-REM sleep
- 4. Body measurements
 - Body location, Body posture, Ventilation cycle time
- 5. Self-report
 - Ambient temperature, Geoposition, Magnetic force

ETL convention for macro-level PGHD

PGHD Types	Source Value	Domain	Event_ID	Concept_ID
Activity	Steps	OBSERVATION	1	3034985
	Flight climbed	OBSERVATION	2	4121036
	Distance	OBSERVATION	3	3031111
	Active Calories	OBSERVATION	4	3032128
Nutrition	Dietary Calories	OBSERVATION	5	4037128
	Nutrients			
Sleep	Sleep start	CONDITION_OCCURRENCE	1	4086839
	Sleep end	CONDITION_OCCURRENCE	1	4086839
	Minutes asleep			
	Time to fall sleep			
	Number of sleep periods			
	Total sleep minutes			
	Weight	MEASUREMENT	1	3025315
	BMI	MEASUREMENT	2	3032843
Body measurement	Lean Body Mass	MEASUREMENT	3	3010914
	Body Fat Percentage	MEASUREMENT	4	3012888
	Body Temperature			
Vital signs	Heart Rate	MEASUREMENT	5	3028737
	Blood Pressure (Systolic)	MEASUREMENT	6	3038553
	Blood Pressure (Diastolic)	MEASUREMENT	7	4239408
	Respiratory Rate			
Self-medication	Insulin			
	Inhaler Usage			
Laboratory measurement	Blood Glucose			

NOOM converted their data into CDM

Noom is a behavior change company that uses A.I., Human Coaching and Mobile

Technology to create the world's most effective solutions for lifestyle & chronic conditions

NOOM converted their data into CDM

1. Stacy, click here to

2. Select your coaching

3. Prepare your scale

4. Start eating less

5. Create your group

Noom Solution: **Effective & Scalable**Behavior Change Courses

270
Active users

What the user sees

- 100% mobile, interactive & customized courses renewing every 2 - 8 months
- Dedicated personal & group coach for each user
- Best-in-class tools like 3.7M Food
 DB with predictive search
- Durable results: 84% who start, complete; 60% keep off lost weight a year later¹

noom

¹ One-year follow-up data; published in JMIR 2018;6(5):e93

Behind the scenes

- Al-enabled coaching tools
- Proprietary coach dashboard
- 401 coaches worldwide (90% remote)
- Virtual clinical supervision & Noomiversity
- 3.1 billion virtual & human coaching data points (causal data)

ETL result of sample data from NOOM

- NOOM converted their sample data (n=100) into CDM
 - weight, daily step count, and daily dietary calories

4												
measurem	person_ic	J measurem	value_sou	unit_sourc	measurem	concept_name	measurement_date	measurement_datetime	value_as_r	unit_conc	{unit_conc	cemeasurem
1	7	1 Weight	103.4	kg	3025315	Body weight	2017-05-08	2017-05-08 22:56	103.4	4122383	kg	44818704
2	7	1 Weight	108	3 kg	3025315	Body weight	2017-03-22	2017-03-23 10:27	105	4122383	kg	44818704
3	7	1 Weight	109	kg	3025315	Body weight	2017-03-04	2017-03-04 9:46	106.7	4122383	kg	44818704
31	7	2 Weight	69.9	kg	3025315	Body weight	2017-07-11	2017-07-11 9:30	69.9	4122383	kg	44818704
32	7	2 Weight	70) kg	3025315	Body weight	2018-04-26	2018-04-26 9:39	65.8	4122383	kg	44818704
33	7	2 Weight	69.8	, kg	3025315	Body weight	2018-02-28	3 2018-02-28 9:24	69.8	4122383	kg	44818704
												-

observatio pers	son_id observation_source_value	value_sourunit_sourc	observatio concept_name	observation_date	value_as_number	unit_conce	unit_conceobservation	observatio	Observation_type_concept_name
1	1 Steps	9097 count	3034985 Number of steps in 24 hour Measured	2017-07-04	9348	44777556	per 24 hours	44814721	App generated
2	1 Steps	1600 count	3034985 Number of steps in 24 hour Measured	2017-04-24	1519	44777556	per 24 hours	44814721	App generated
3	1 Steps	7200 count	3034985 Number of steps in 24 hour Measured	2017-05-15	7269	44777556	per 24 hours	44814721	App generated
170	2 Steps	4944 count	3034985 Number of steps in 24 hour Measured	2018-04-28	4944	44777556	per 24 hours	44814721	App generated
171	2 Steps	1800 count	3034985 Number of steps in 24 hour Measured	2017-08-09	1687	44777556	per 24 hours	44814721	App generated
172	2 Steps	4381 count	3034985 Number of steps in 24 hour Measured	2018-02-14	4943	44777556	per 24 hours	44814721	App generated
173	2 Steps	8735 count	3034985 Number of steps in 24 hour Measured	2017-09-15	3626	44777556	per 24 hours	44814721	App generated
9147	19 Dietary Calories	1598000 calorie	4037128 Dietary calorie intake	2018-04-03	1498000	9472	calorie	44814721	Patient reported
9148	19 Dietary Calories	1186000 calorie	4037128 Dietary calorie intake	2018-04-04	1176000	9472	calorie	44814721	Patient reported
9149	19 Dietary Calories	1772000 calorie	4037128 Dietary calorie intake	2018-04-05	1672000	9472	calorie	44814721	Patient reported
9150	19 Dietary Calories	1329000 calorie	4037128 Dietary calorie intake	2018-04-06	1309000	9472	calorie	44814721	Patient reported

Basic concept for standardization of patient generated health data

- Development of PGHD ETL convention
 - Macro-level Data: Convert PGHD of each data source into conventional OMOP-CDM by the ETL guidance
 - Micro-level Data: Add new extension model (tables) to OMOP-CDM
 - Extract converted PGHD from 3rd-party apps
- Integration of PGHD from and EHR
 - Send PGHD data (CDM) from IT company to the hospital when patients approves it
 - PGHD will be integrated with EHR data in the format of CDM
- Analytic Tool
 - Development of Visualization tool for Time-Series data
 - Development of Standardized Time-Series Analysis Tool
- Ultimate goal
 - Clinicians can utilize integrated PGHD data in their practice

Common Data Model of Everything in Medicine

Seng Chan You, MD, MS¹, Kwang Soo Jeong¹, Si Hyung No², Kwon-Ha Yoon, MD, PhD³, Chang-Won Jeong, PhD², Rae Woong Park, MD, PhD^{1,4}

¹Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea;

²Imaging Science based Lung and Bone Disease Research Center, Wonkwang University, Iksan, Korea;

Why do we need CDM extension for Radiology (R-CDM)?

Oncology radiology imaging integration into CDM ?

CDM Builders

Patrick Ryan V

Dec '16

Team: I'm in Sweden right now, they've got some exciting research going on that involves linking various national registries (including prescription, hospitalization, and cancer) with a new dataset that pulls out radiology images of tumor sites, that can then be used for predictive modeling via deep learning and other algorithms. The team at Karolinska Institute have already demonstrated successful ETL for most of the registers, but as a community, we don't yet have a common solution for storing the imaging files and whatever associated records to link to them. Has anyone in the community worked on this problem, whether it be for oncology or for other areas? @Rijnbeek, does the work you've led in EKG imaging have some applicability here?

created

Dec 14, '16

last reply

54 mins

replies

1.6k views

13 users

links

Collaborative and Reproducible Research using Radiology data

- Combining imaging biomarkers with genomic and clinical phenotype data is the foundation of precision medicine research efforts
- Current image studies are scattered across numerous archives, hindering collaborative and reproducible research using radiology data
- By definition, reproducible science requires being able to reproduce results. Without access to another researcher's code and data, there is no way a third party can duplicate that researcher's results. Github and Docker vastly lower the learning curve required to share code and runtime environments-for those who want to. What they do no address is the commonality of dataset.

Basic concept for standardization of radiology data (R-CDM)

- Most of radiologic images are stored in DICOM (Digital Imaging and Communications in Medicine) format
 - DICOM provides a standard for medical image storage and a set of network operations for transmission and retrieval
 - DICOM file contains required and optional metadata fields: patient ID, row, columns (pixel), modality, manufacturer, phase, etc.

Table 1 Examples of commonly available metadata

Element	Source	Example	Storage location
PatientsName	EHR/ADT	MARY^JONES^B	DICOM header
PatientID	EHR/ADT	1232391-3	DICOM header
StudyDescription	RIS	CT BRAIN W/O	DICOM header
Rows	Imaging modality	512	DICOM header
Columns	Imaging modality	512	DICOM header
BitsStored	Imaging modality	12	DICOM header

Basic concept for standardization of radiology data (R-CDM)

- Why do we need R-CDM if we have DICOM?
 - In practice, data fields in DICOM are often filled incorrectly or left blank
 - Study description heterogeneity between institutions (eg, 'brain CT', 'CT brain', 'CT brain non-contrast', etc.)
 - We need standard vocabulary and map local study description to the standard vocabulary for radiology.
 - De-identified datasets of DICOM may result in the removal of metadata that is required for advanced processing

Ontology for R-CDM

- LOINC RSNA radiology playbook: Unified terminology of RadLex and LOINC
 - RadLex is a comprehensive lexicon of radiology terms for indexing and retrieval of radiology information resources, specifically aimed at representing clinical content associated with radiology reports
 - RadLex has been incorporated into LOINC, and OMOP vocabulary!

Journal of the American Medical Informatics Association, 25(7), 2018, 885–893

doi: 10.1093/jamia/ocy053

Advance Access Publication Date: 29 May 2018

Research and Applications

Research and Applications

The LOINC RSNA radiology playbook - a unified terminology for radiology procedures

Daniel J Vreeman,^{1,2} Swapna Abhyankar,¹ Kenneth C Wang,^{3,4} Christopher Carr,⁵ Beverly Collins,⁶ Daniel L Rubin,^{7,8} Curtis P Langlotz⁸

Basic concept for standardization of radiology data (R-CDM)

- MetaData and Path of images are stored in two tables
 - Radiology_Occurrence: each row represents single radiologic procedure
 - Device, Modality(CT/MRI,...), Total image counts, Radiology dosages, path, and etc.
 - Radiology_Image: each row represents single image from radiologic procedure
 - Phase (Non-contrast/contrast), Image number, pixel data, path, and etc.

Radiology_Occurrence		
PK	Radiology occurrence ID	VARCHAR(255)
	Radiology occurrence date	DATE
N	Radiology occurrence datetime	DATETIME
	Person ID	VARCHAR(64)
FK,N	Condition_occurrence_ID	INT
FK	Device_concept_id	VARCHAR(25)
	Radiology_modality_concept_id	VARCHAR(5)
N	Person orientation concept id	VARCHAR(10)
	Radiology_protocol_concept_id	VARCHAR(100)
	Image total count	INT
N	Anatomic_site_concept_id	INT
N	Radiology_comment	VARCHAR(3000)
N	Image dosage unit concept id	VARCHAR(5)
	Dosage_value_as_number	FLOAT
N	Image exposure time unit concept id	VARCHAR(5)
N	Image_exposure_time	FLOAT
	Radiology_dirpath	VARCHAR(255)
N	Visit occurrence id	INT ` ´

Radiology_Image		
PK	Image ID	INT
	Source ID	VARCHAR(255)
FK	Radiology occurrence ID	VARCHAR(255)
	Person ID	VARCHAR(64)
	Person orientation concept id	VARCHAR(4)
N	Image_type	VARCHAR(255)
N	Radiology_phase_concept_id	VARCHAR(128)
	Image_no	INT
	Phase_total_no	INT
	Image_resolution_rows	INT
	Image resolution columns	INT
N	Image Window Level Center	VARCHAR(25)
N	Image Window Level Width	VARCHAR(25)
N	Image_slice_thickness	FLOAT
	Image_filepath	VARCHAR(255)

Basic concept for standardization of radiology data (R-CDM)

Common Data Model of Everything in Medicine

Seo Jeong Shin, MS¹, Seng Chan You, MD, MS¹, Jin Roh, MD, PhD², Rae Woong Park, MD, PhD^{1, 3}

¹Dept. of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; ²Dept. of Pathology, Ajou University Hospital, Suwon, South Korea; ³Dept. of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea

Exponential Growth in New Forms of Data Will Play an Increasing Important Role in Enabling Better Outcomes

Exogenous data

(Behavior, Socio-economic, Environmental, ...)

60% of determinants of health

Genomics data

30% of determinants of health Volume

Clinical data

10% of determinants of health Variety

1100 Terabytes

Generated per lifetime

6 TB

Per lifetime

0.4 TB Per lifetime

Source: "The Relative Contribution of Multiple Determinants to Health Outcomes", Lauren McGover et al., Health Affairs, 33, no.2 (2014)

IBM Health and Social Programs Summit | #IBMHSPS14 | #smartercare | #socialprograms

Background: Surge of genomic data

- Global waves of 'precision medicine'
 - Precision medicine initiative in US: Population of 1M, \$215M
 - Precision medicine initiative in China
- Insurance coverage of NGS in Korea
 - Since March 2017, national insurance coverage for targeted NGS in cancer patients has started in Korea.
 - No. of target genes
 - level 1: 5~50 (cost paid by the patient: \$450)
 - Level 2: 51~ (cost paid by the patient: \$640)
- Despite much progress, genomic and clinical data are still generally collected and studies in silos, in individual institutions, or individual nations

Background: Surge of genomic data

Collaborative research platform for genomic data in Oncology

Development of G-CDM based ISO standard

TECHNICAL SPECIFICATION

ISO/TS 20428

> First edition 2017-05

Health informatics — Data elements and their metadata for describing structured clinical genomic sequence information in electronic health records

Informatique de santé — Éléments de données et leurs métadonnées pour décrire l'information structurée de la séquence génomique clinique dans les dossiers de santé électroniques

- ISO (International Organization for Standardization): a worldwide federation of national standards bodies
- Scope of this document (ISO/TS 20428)
 - Genetic variation from human sample
 - Whole genome sequencing, whole exome sequencing, targeted sequencing with NGS (not including Sanger)
 - Clinical application (eg, clinical trial, translational; not including basic or other area research)

Brief review: G-CDM

1. Sequencing

- Each row represents each sequencing
- Linking Clinical Information
- Sequencing Process
 (Patient, Pathologic Diagnosis, Tumor Stage, Somatic/Germ-line, Sequencer, Reference Genome, Alignment Library, Quality Score etc.)

2. Variant_occurrence

- Each row represents each variant
- Structural / Functional variant classification
- HGVS Nomenclature
- Quality Score

3. Variant_annotation

- Each row represents each annotation
- Flexibility for any annotation tool

Brief review: G-CDM

- Overall, three tables are added
- Priority: compatibility with existing OMOP-CDM and OHDSI tools (eg Feature Extraction / Patient Level Prediction package)
- Sequencing table
 - Each row represents each sequencing (multiple sequencing is possible for same specimen of same patients)
 - Foreign keys (person, specimen, procedure, note, device)
 - Sequencing process (sequencer, reference genome, library for alignment, QC, ...)
- Variant_occurrence table
 - Each row represents each variant (SNP, insertion, deletion, translocation, CNV)
 - Chromosome / Position (1st and 2nd for translocation/CNV)
 - HGVS nomenclature (according to the ISO)
 - Quality
- Variant_annotation table
 - Each row represent each secondary information resulted from variable annotation library for variant on variants (eg, clinical implication / eg, gnomAD, ClinVar, COSMIC)
 - Flexibility for any annotation tool (like Measurement table)

Relationship between G-CDM and OMOP-CDM

NGS result

Conversion of G-CDM

The data structures of the two institutes were unified.

Study Results:

Waterfall plot of adenocarcinoma and squamous cell carcinoma of lung

Study Results:

Waterfall plot of adenocarcinoma and squamous cell carcinoma of lung

[Onco-Achilles] Future plans for Oncology

Converting whole cancer patients data from National Insurance Claim data Cancer statistics across OHDSI networks: ONCO-ACHILLES >

Researchers

SCYou Seng Chan You

1 / 17d

Dear colleagues,

As I mentioned earlier, we decided to convert whole Korean cancer patients data into CDM from National Insurance data (2007-2017).

SCYou:

Hi everyone, We're planning to convert whole Korean cancer patients data into CDM from National Insurance data of HIRA (Korean national insurance data covers almost 99% population of Korea. This insurance covers 95% of cancer-related claim (If the patients should pay 100\$ for the treatment, it covers 95\$). Then, we can run @rchen 's treatment pattern in cancer patient on much bigger data. We'll perform descriptive analysis about incidence, overall survival and the whole cost within 1, 3 and 5 ...

I will extract three components of information from this as the first research:

- 1. Quarterly incidence of each cancer from 2008-2017 according to the birth year (5-year base) and sex (and hopefully ethnic groups)
- 2. All-cause mortality within 1-year, 3-year and 5-year after cancer diagnosis from 2008-2017 in these quarterly cohorts according to the birth year and sex (and ethnic group)
- 3. Whole medical expenditure, cost amount paid by insurer, cost amount paid by the patients within 1-month, 6-months, 1-year, 3-year and 5-year after cancer diagnosis from 2008-2017 in these quarterly cohorts

[Onco-Achilles] Onco-ACHILLES

- Converting whole cancer patients data from National Insurance Claim data
 - Quarterly incidence of each cancer from 2008-2017 according to the birth year (5-year base) and sex (and hopefully ethnic groups)
 - All-cause mortality within 1-year, 3-year and 5-year after cancer diagnosis from 2008-2017 in these quarterly cohorts according to the birth year and sex (and ethnic group)
 - Whole medical expenditure, cost amount paid by insurer, cost amount paid by the patients within 1-month, 6months, 1-year, 3-year and 5-year after cancer diagnosis from 2008-2017 in these quarterly cohorts according to birth year and sex.

Finding the missing link for big biomedical data

Data are Like Lego Bricks for Phenotyping

Conditions

Genomic variants

Drugs

Radiology

Procedures

Topics from Free-Text

Measurements

Patient-Generated Health Data

Visits

Environment

OHDSI Tools Ecosystem

Cohort Method

New-user cohort studies using large-scale regression for propensity and outcome models

Self-Controlled Case Series

Self-Controlled Case Series analysis using few or many predictors, includes splines for age and seasonality.

Self-Controlled Cohort

A self-controlled cohort design, where time preceding exposure is used as control.

IC Temporal Pattern Disc.

A self-controlled design, but using temporal patterns around other exposures and outcomes to correct for timevarying confounding.

Case-control

Estimation methods

Prediction methods

Method characterization

Case-control studies, matching controls on age, gender, provider, and visit date. Allows nesting of the study in another cohort.

Case-crossover

Case-crossover design including the option to adjust for time-trends in exposures (so-called case-time-control).

Patient Level Prediction

Build and evaluate predictive models for user-specified outcomes, using a wide array of machine learning algorithms.

Feature Extraction

Automatically extract large sets of features for userspecified cohorts using data in the CDM.

Empirical Calibration

Use negative control exposure-outcome pairs to profile and calibrate a particular analysis design.

Method Evaluation

Use real data and established reference sets as well as simulations injected in real data to evaluate the performance of methods. 📂

ATLAS

Database Connector

Connect directly to a wide range of database platforms, including SQL Server, Oracle, and PostgreSQL.

Sql Render

Generate SQL on the fly for the various SQL dialects.

Cyclops

Highly efficient implementation of regularized logistic, Poisson and Cox regression.

Ohdsi R Tools

Support tools that didn't fit other categories, including tools for maintaining R libraries.

Supporting packages

OHDSI Tools Ecosystem with CDM of Everything

CDM of Everything

DATABASE CONNECTION

Phenotyping & Cohort Generation

Feature Extraction

Prediction & Estimation

Patient Level Prediction

Build and evaluate predictive

models for user-specified outcomes, using a wide array

of machine learning

algorithms.

Database Connector

Connect directly to a wide range of database platforms, including SQL Server, Oracle, and PostgreSQL.

Sql Render

Generate SQL on the fly for the various SQL dialects.

ATLAS

Cohort generation by Phenotyping

Feature Extraction

Automatically extract large sets of features for user-specified cohorts using data in the CDM.

Cohort Method

New-user cohort studies using large-scale regression for propensity and outcome models

Symmetry in medical data

- By grand unification across all aspects of health data, various types of medical data would be indistinguishably accessible in the single database
- OHDSI tools ecosystem can work across various types of medical data

OHDSI: A Journey for Simplicity, Beauty and Symmetry in Medical Data

Status of Korean OHDSI Network

Data Detaroletwork of 41 Hospitals, 55M Patients

I need your help!

- The Scientific Revolution has not been a revolution of knowledge. It has been above all a revolution of ignorance. The great discovery that launched the Scientific Revolution was the discovery that humans do not know the answers to their most important questions (Yuval Harari, A Brief history of Humankind, Ch14. Ignoramus). এই ক্রিটিন স্বিক্রিটিন স্বির্দ্ধ স্বিত্তি স্বিল্লিটিন স্বির্দ্ধ স্বিল্লিটিন স্বির্দ্ধ স্বিত্তি স্বিল্লিটিন স্বির্দ্ধ স্বিত্তি স্বিল্লিটিন স্বির্দ্ধ স্বিত্তি স্বিল্লিটিন স্বির্দ্ধ স্বির্
- Understanding human history in the millennia following the Agricultural Revolution boils down to a single question: how did humans organise themselves in mass-cooperation networks, when they lacked the biological instincts necessary to sustain such networks? (Yuval Harari, A Brief history of Humankind, Ch8. There is No Justice in History)

농업 혁명 이후 수천 년에 이르는 인간의 역사를 이해하려는 시도는 단 하나의 질문으로 귀결된다. 인류는 어떻게 자신들을 **대규모 협력망**으로 엮었는가? 그런 망을 지탱할 생물할적 본능이 결핍된 상태에서 말이다.

