Development of a Phenotype Evaluator

Joel Swerdel Epidemiology Analytics Janssen R&D

PHARMACEUTICAL COMPANIES OF Johmon Johmon

Agenda

- What is a phenotype and why do we need them?
- Why do we need a phenotype evaluator?
- Development of the evaluator
- Results from the evaluation

Case Definitions and Phenotyping Algorithms

 Jeff Actors and Cases of effinition describes characteristics that a patient must possess to have a disease from a clinical perspective." A collaborative approach to developing an electronic health record phenotyping
 algorithm for drug induced liver injury ithm is the translation of the case definition and control of the case definition of

Case Definition – Myocardial Infarction

Published by Oxford University Press on behalf of the International Epidemiological Association

International Journal of Epidemiology 2011;40:139-146

• "Millis defined by the demonstration of myocardial cell necrosis

cardonesto significant and sustained ischaemia."

World Health Organization definition of myocardial methological Organization ST segment elevation or depression;

Shanthi Mendis,¹* Kristian Thygesen,² Kari Kuulasmaa,³ Simona Giampaoli,⁴ Markku Mähönen,³ Kathleen Ngu Blackett,⁵ Liu Lisheng⁶ and Writing group on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction[†]

- experts of the WHO consultation for revision of WHO definition of myocardial infarction[†]
 (ii) history of typical or atypical angina pectoris, together with changes on the ECG and elevated enzymes;
- (iii) history of typical angina pectoris and elevated enzymes with no changes on the ECG or not available

Phenotyping Algorithm

Abstract

Purpose—To validate an algorithm based upon International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) codes for acute myocardial infarction (AMI) documented within the Mini-Sentinel Distributed Database (MSDD).

Methods—Using an ICD-9-CM-based algorithm (hospitalized patients with 410.x0 or 410.x1 in primary position), we identified a random sample of potential cases of AMI in 2009 from 4 Data

Partners participating in the Mini-Sentinel Program. Cardiologist reviewers used information abstracted from hospital records to assess the likelihood of an AMI diagnosis based on criteria from the joint European Society of Cardiology and American College of Cardiology Global Task Force. Positive predictive values (PPVs) of the ICD-9-based algorithm were calculated. Results—Of the 153 potential cases of AMI identified, hospital records for 143 (93%) were retrieved and abstracted. Overall, the PPV was 86.0% (95% confidence interval; 79.2%, 91.2%). PPVs ranged from 76.3% to 94.3% across the 4 Data Partners.

Conclusions—The overall PPV of potential AMI cases, as identified using an ICD-9-CM-based algorithm, may be acceptable for safety surveillance; however, PPVs do vary across Data Partners. This validation effort provides a contemporary estimate of the reliability of this algorithm for use in future surveillance efforts conducted using the FDA's MSDD.

What is a phenotype and why do we need them

- Tendency to equate the case definition with the phenotype algorithm (or the cohort definition) – the algorithm is the coded *approximation* of the case definition.
- Case definitions must be translated into algorithms for working with observational datasets
- But many properties of case definitions are lost in an algorithm causing imprecision when using an algorithm
- How much imprecision? \rightarrow Need for validation

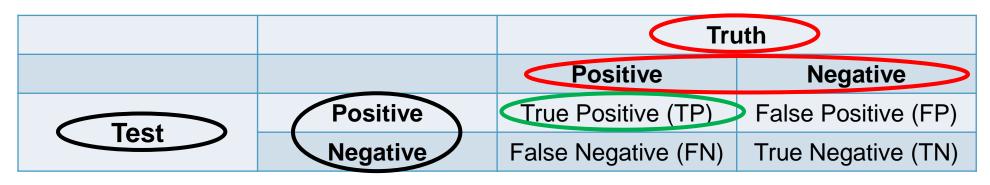
HARMACEUTICAL COMPANIES

Validating Algorithms

Many research studies have attempted to validate algorithms

Review

Use of electronic health records to ascertain, validate and phenotype acute myocardial infarction: A systematic review and recommendations


CrossMark

Bruna Rubbo^{a,*}, Natalie K. Fitzpatrick^a, Spiros Denaxas^a, Marina Daskalopoulou^b, Ning Yu^a, Riyaz S. Patel^{a,c}, UK Biobank Follow-up and Outcomes Working Group, Harry Hemingway^a

- Examined 33 studies
- Found significant heterogeneity in algorithms used, validation methods, and results

Validating an Algorithm

Test – Comes from the algorithm/cohort definition Truth – Some form of "gold standard" reference Ex.: True Positive (TP) – Test and Truth agree Positive

For a complete validation of the algorithm we need:

- 1) Sensitivity: TP / (TP + FN)
- 2) Specificity: TN / (TN + FP)
- 3) Positive Predictive Value: TP / (TP + FP)

Evaluating Performance of Algorithm - Examples

Abstract

Purpose—To validate an algorithm based upon International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) codes for acute myocardial infarction (AMI) documented within the Mini-Sentinel Distributed Database (MSDD).

Methods—Using an ICD-9-CM-based algorithm (hospitalized patients with 410.x0 or 410.x1 in primary position), we identified a random sample of potential cases of AMI in 2009 from 4 Data

Partners participating in the Mini-Sentinel Program. Cardiologist reviewers used information abstracted from hospital records to assess the likelihood of an AMI diagnosis based on criteria from the joint European Society of Cardiology and American College of Cardiology Global Task Force. Positive predictive values (PPVs) of the ICD-9-based algorithm were calculated.

Results—Of the 153 potential cases of AMI identified, hospital records for 143 (93%) were retrieved and abstracted. **Overall, the PPV was 86.0% (95% confidence interval; 79.2%, 91.2%).**

PPVs ranged from 76.3% to 94.3% across the 4 Data Partners.

Conclusions—The overall PPV of potential AMI cases, as identified using an ICD-9-CM-based algorithm, may be acceptable for safety surveillance; however, PPVs do vary across Data Partners. This validation effort provides a contemporary estimate of the reliability of this algorithm for use in future surveillance efforts conducted using the FDA's MSDD.

Evaluating Performance of Algorithm - Examples

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2009; 18: 1064–1071

Published online 28 August 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/pds.1821

SUMMARY

Purpose Studies of non-steroidal anti-inflammatory drugs (NSAIDs) and cardiovascular events using administrative data require identification of incident acute myocardial infarctions (AMIs) and information on whether confounders differ by NSAID status.

Methods We identified patients with a first AMI hospitalization from Tennessee Medicaid files as those with primary ICD-9 discharge diagnosis 410.x and hospitalization stay of>2 calendar days. Eligible persons were non-institutionalized, aged 50–84 years between 1999–

potential first AMI, a systematic sample (n¹/₄350) was selected for review. Using defined criteria, we classified events using chest pain history, EKG, and cardiac enzymes, and calculated the positive predictive value (PPV) for definite or probable AMI.

and no AMI, respectively. PPV for any definite or probable AMI was 92.8% (95% CI 89.6–95.2); for an AMI without an event in the past year 91.7% (95% CI 88.3–94.2), and for an incident AMI was 72.7% (95% CI 67.7–77.2). Age-adjusted prevalence of current smoking (46.4% vs.

Section, practices and aspirin use (Socera vs. Socera, practice) was similar among NSAID users and non-users Conclusions ICD-9 code 410.x had high predictive value for identifying AMI. Among those with AMI, smoking and aspirin use was similar in NSAID exposure groups, suggesting these factors will not confound the relationship between NSAIDs and cardiovascular outcomes. Copyright # 2009 John Wiley & Sons, Ltd.

HARMACEUTICAL COMPANIES

Evaluating Performance of Algorithm - Examples

Yonsei Medical Journal Vol. 41, No. 5, pp. 570-576, 2000 Abstract

We attempted to assess the accuracy of the International Classification of Diseases (ICD) codes for myocardial infarction (MI) in medical insurance claims, and to investigate the reasons for any inaccuracy. This study was designed as a preliminary study to establish a surveillance system for cardiovascular diseases in Korea. A sample of 258 male patients who were diagnosed with MI from 1993 to 1997 was selected from the Korea Medical Insurance Corporation cohort (KMIC cohort: 183,461 people). The registered medical record administrators were trained in the survey technique, and gathered data by investigating the medical records of the study subjects from March 1999 to May 1999. The definition of MI for this study included symptoms pursuant to the diagnostic criteria of chest pain, electrocardiogram (ECG) findings, cardiac enzyme and results of coronary angiography or nuclear scan. We asked the record administrators for the reasons of incorrectness for cases where the final diagnosis was 'not MI'. The accuracy rate of the ICD codes for MI in medical insurance claims was 76.0% (196 cases) of the study sample, and 3.9% (ten cases) of the medical records were not available due to hospital closures, non-computerization or missing information. Nineteen cases (7.4%) were classified as insufficient due to insufficient records of chest pain, ECG findings, or cardiac enzymes. The major reason of inaccuracy in the disease code for MI in medical insurance claims was 'to meet the review criteria of medical insurance benefits (45.5%). The department responsible for the inaccuracy was the department of inspection for medical insurance benefit of the hospitals.

Evaluating Performance of Algorithm

Author (year; country)	n	Cross-		ncing ele				PPV% (95%CI)
Secondary care EHR vs. chart review Gronski et al. (2012; USA)								
	294	1 i		i	• •			20.0 (16.4-25.7)
Roger et al. (2002; USA)*	4061		•		•	-		40 (38.5-41.5)+
Kimm et al. (2012; South Korea) ⁹	78							73.1 (62-82)+
Deserved et al. (2004; USA)s	12000	-	-	-				26 (24 6 26 0)
Ryu et al. (2000; South Korea)	258		•	•	•			76 (70.4-80.8)*
Heckbert of al. (2004, 05.4)	075							76 (75-61)
Joensen et al. (2008; Denmark)	1072	i • i	•		• •			81.9 (79.5-84.2)
Metcalfe st al. (2013; Canada)	169	1 • 1		1	•			82.8 (76-88)+
Ainla at al (2006: Estamia)	255	1 1		1				\$3.5 /78.5-\$7.60+
Cutrona et al. (2012; USA)	143	i • i	•		•			86.0 (79.2-91.2)
	112				•			
Whal st al. (2010; USA)	200	•		1	•			88.4 (83.2-92.5)
Escosteguy et al. (2005, Brezil)	204		-		-			91.7 (00.3-94.2)
Choma et al. (2009; USA)	337		•		•			92.8 (89.6-95.2)
KIYOI2 #1. dl (2004; USA)	1921		•	•	1			94.1 (95.0-95.2)
Barchielli et al. (2010; Italy)	372	1 • i	•	•	• •			94.6 (92.3-96.9)
Hammar et al. (2001; Sweden)	713		•		•		*	95 (93.1-96.3)+
Varas-Lorenzo et al. (2008; Canada)	193		•	•	•			95 (91-98)
Harriss et al. (2011; Australia)	202	· • ;	•	i .	•		-8-	95.5 (91.7-97.6)
Quan et al. (2008; Canada)	385			1	•		-+	95.9 (93.4-97.4)*
Yeh et al. (2010; USA)	640	•	•	1				96.7 (95.0-97.8)*
Linnersjo <i>et al.</i> (2000; Sweden) Coloma <i>et al.</i> (2013; Danish data)	2101	i • i	•		•			98 (97.2-98.5)+
Coloma et al. (2013; Danish data)	148							100.0 (100-100)

Evaluating Performance of Algorithm

- Conclusion for MI \rightarrow no "gold standard" algorithm available
- Process is very costly and time consuming
- Small sample sizes → wide variation in estimates with wide confidence intervals
 - In 33 studies "validating" algorithms, all reported PPV but:
 - Only 11 reported sensitivity
 - Only 5 reported specificity
 - Is this really validation?

harmaceutical companies f **Johnson Johnson**

The Value of Positive Predictive Value

- PPV is almost always reported in validation studies easiest to assess
- Sensitivity and Specificity much less frequently reported
 - High cost and time to evaluate
- BUT sensitivity and specificity are the actual characteristics of the test
 - PPV is a function of sensitivity, specificity and <u>prevalence</u> of Heath Outcome of Interest (HOI)

PPV Example – 1 Test, 2 Populations

Test Characteristics: Sensitivity = 75% Specificity = 99.9%

Population = 10,000

Prevalence = 1%		Truth		
		Positive	Negative	
Toot	Positive	75	10	
Test –	Negative	25	9890	
	Total	100	9900	
Prevalence = 5%		Truth		
		Positive	Negative	
Teet	Positive	375	10	
Test –	Negative	125	9490	
		500	9500	

PPV = 75 / (75 + 10) = **88%**

PPV = 375 / (375 + 10) = **97%**

janssen 丿

PPV Example – 1 Population, 2 Tests

PPV = 90% Population = 10,000

	Tr	uth		
	Positive	Negative	PPV = 90/(90+10) = 90%	
Positive	90	10	Sens = 90/500 = 18%	
Negative	410	9490		
Total	500 9500		Spec = 9490/9500 = 99.9%	
Prevalence = 5%		uth		
	Positive	Negative	PPV = 360/(360+40) = 90%	
Positive	360	40	Sens = 360/500 = 72%	
Negative	140	9460		
500		9500	Spec = 9460/9500 = 99.6	
	Negative Total Positive	PositivePositivePositive90Negative410Total500TrPositivePositive360Negative140	Positive9010Negative4109490Total5009500Total5009500PositiveNegativePositive36040Negative1409460	

Living with Algorithms

- Algorithms are used in most research with observational data
- Many ways to define an algorithm for any health outcome
- Each definition will have its own performance characteristics
 - Need to validate the algorithm to understand these characteristics
- Validation of an algorithm to be used in an observational dataset through chart review is likely not possible
 - Costly
 - Time consuming
 - Data is usually not available

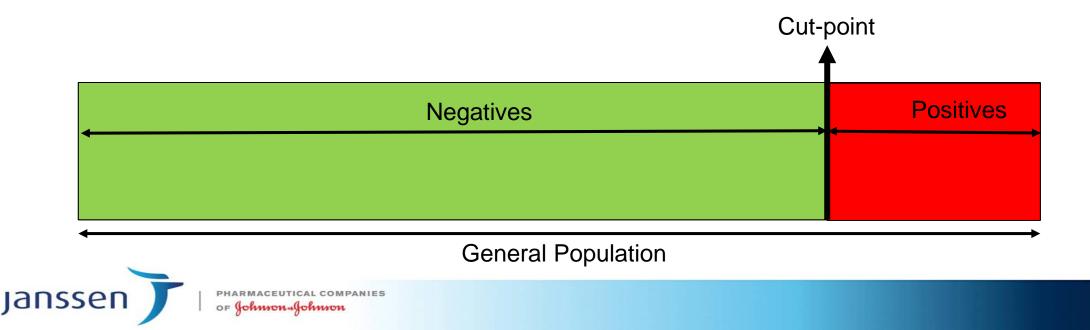
Validating Algorithms in Observational Data

				Truth		
				Positive	Negative	
	Test	Positive	True Positive (TP)		False Positive (FP)	
		Negative	False Negative (FN)		True Negative (T	N)

Test – Comes from the algorithm/cohort definition Truth – Some form of "gold standard" reference

Possible alternative for finding the "Truth" Diagnostic Predictive Models

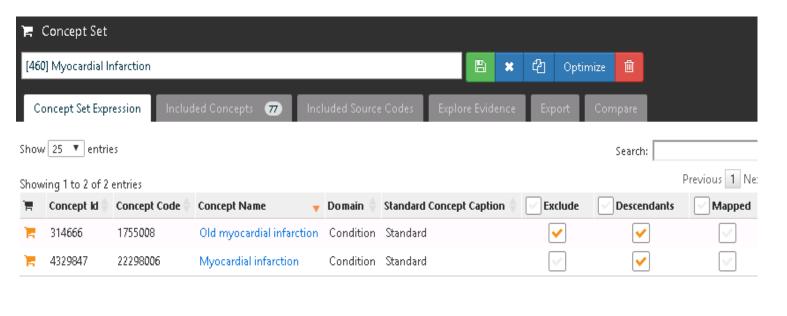
Prediction models used to estimate the probability of having a particular disease or outcome.

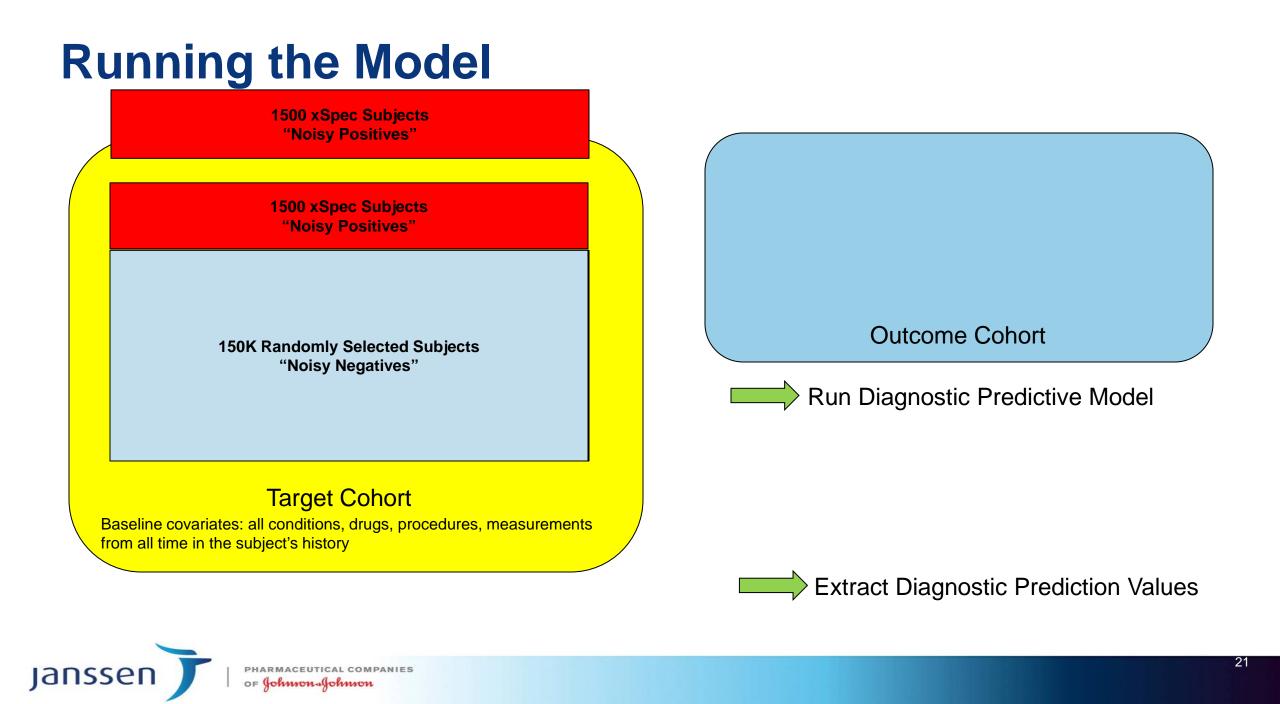

Finding the Truth – using Diagnostic Predictive Models

Step 1: Find a Gold standard of subjects for the HOI

Step 2: Develop the predictive model

Step 3: Apply the model to a general population

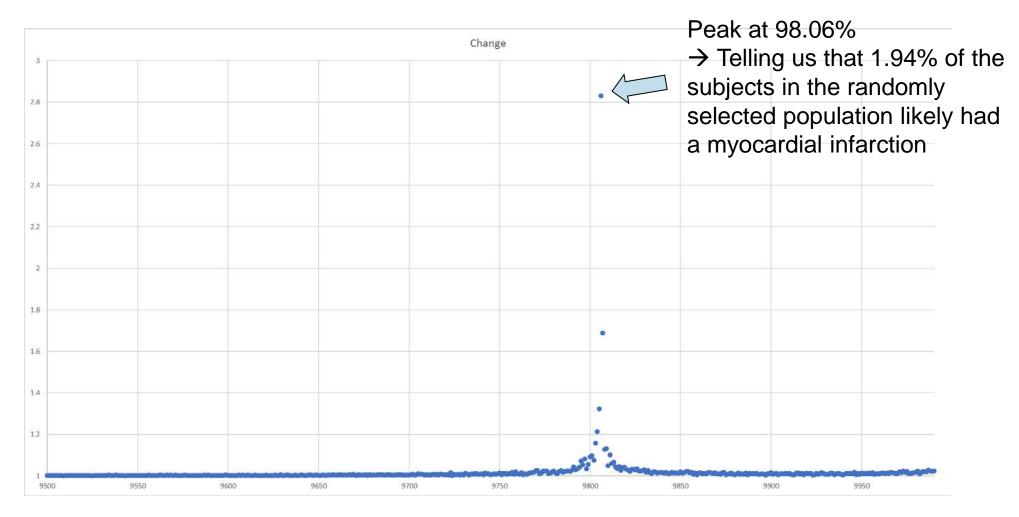

Step 4: Determine a cut-point from the model


Finding a Gold Standard

- It turns out that having a very good set of positives is good enough a "noisy" model
- We use an "extremely specific" (xSpec) cohort

[46	0] MI Positive Noisy Model V2 - 5 X MI IP - Forward
D	Definition 🍘 Concept Sets Generation Reporting Export
ent	ter a cohort definition description here
In	itial Event Cohort
	People having any of the following:
	a visit occurrence of Any Visit -
	with continuous observation of at least $0 \mathbf{\nabla}$ days before and $0 \mathbf{\nabla}$ days after event index date .imit initial events to: earliest event $\mathbf{\nabla}$ per person.
	itial event inclusion criteria: From among the initial events, include:
h	naving all 🔹 of the following criteria:
	with at least 🔻 5 💌 using all accurrences of:
	a condition occurrence of 🛛 [460] Myocardial Infarction 🚽
	🗙 with a Visit occurrence of: 🗮 Emergency Room and Inpatient Visit) 🗮 Inpatient Visit) Add Import
	starting between 🛛 🔻 days Before 🔻 and All 💌 days After 🔻 event index date <u>and ending any time.</u>

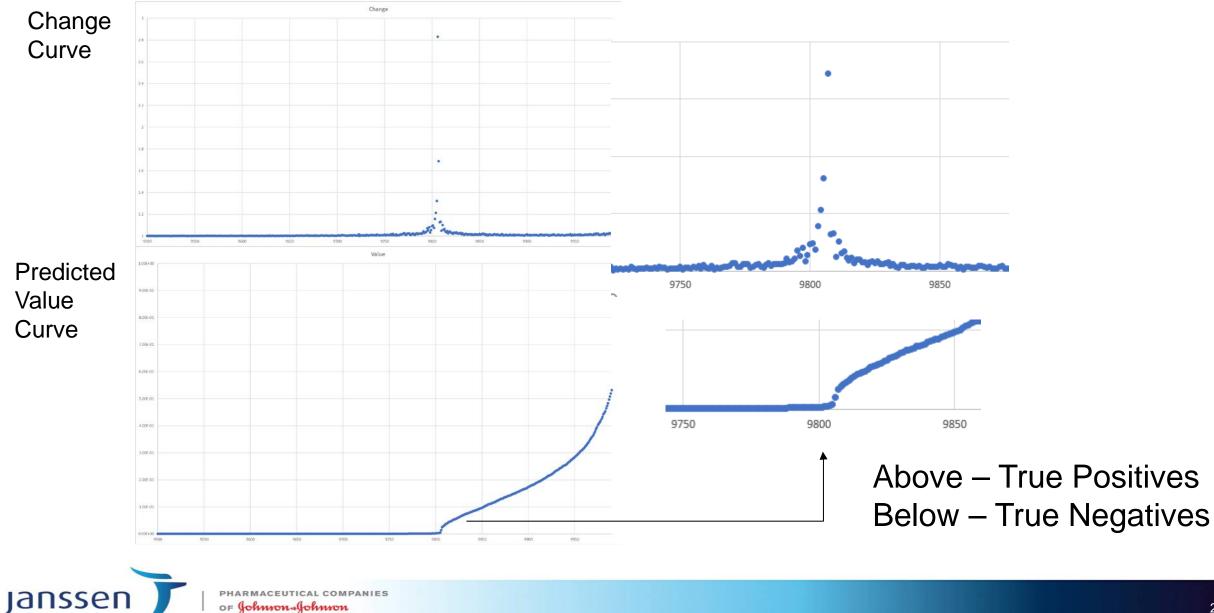
PHARMACEUTICAL COMPANIES OF **Johnson Johnson**



Determining the Cut-Point

- We hypothesized that there should be a obvious change in the predictive values if you have the outcome or you don't
 - i.e., a subject doesn't "sorta" have a myocardial infarction
- We take the randomly chosen subjects and order them by predictive value
- Extract 10,000 subjects evenly spaced (by count) each 0.01%

Prediction Curves – Myocardial Infarction


Change – Difference in predictive value between each point and the previous point

PHARMACEUTICAL COMPANIES OF Johmon Johmon

Comparing Curves

OF Johnson + Johnson

Testing the Phenotypes

Typical Phenotypes for MI:

- 1 X MI (Myocardial Infarction SNOMED concept ID 22298006)
- 2 X MI, second MI diagnosis within 5 days of first MI diagnosis
- 1 X MI, In-patient
- 1 X MI, In-patient in first position
- Mini-Sentinel ICD-9 410.x0 or 410.x1, In-patient in first position

Diagnostic testing:

- DRG codes (Optum only) discharge codes not in concept set
- 5 X MI (xSpec) acts as a positive control
- Pneumonia acts as a negative control

Comparing Results from Multiple Datasets

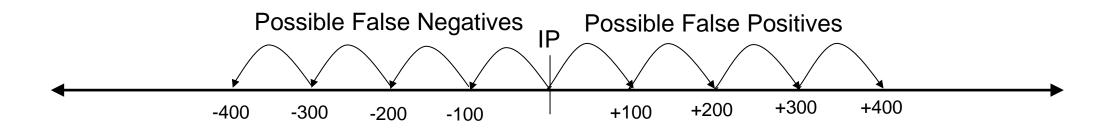
CDM	Pheno_Cohort_Name	Sens	PPV	Spec
dod	1 x MI	0.993	0.785	0.995
ccae	1 x MI	0.994	0.734	0.998
mdcr	1 x MI	0.984	0.84	0.99
mdcd	1 x MI	0.983	0.732	0.994
dod	2 x MI	0.597	0.913	0.999
ccae	2 x MI	0.713	0.896	> 0.999
mdcr	2 x MI	0.555	0.922	0.998
mdcd	2 x MI	0.558	0.847	0.998
dod	1 x MI - In-Patient	0.839	0.908	0.999
ccae	1 x MI - In-Patient	0.896	0.899	> 0.999
mdcr	1 x MI - In-Patient	0.78	0.918	0.996
mdcd	1 x MI - In-Patient	0.752	0.824	0.997
dod	1 x MI, IP - 1st Position	0.709	0.952	0.999
ccae	1 x MI, IP - 1st Position	0.834	0.934	> 0.999
mdcr	1 x MI, IP - 1st Position	0.693	0.952	0.998
mdcd	1 x MI, IP - 1st Position	0.59	0.89	0.999

s PPV Spec	Sens	Pheno_Cohort_Name	CDM
3 0.941 0.99	0.123	1 x MI DRG	dod
4 0.953 0.999	0.704	Mini-Sentinel	dod
3 0.934 0.99	0.833	Mini-Sentinel	ccae
9 0.952 0.998	0.689	Mini-Sentinel	mdcr
6 0.89 0.999	0.586	Mini-Sentinel	mdcd
8 > 0.999 + 0.99	0.108	Pos. control (5 X MI IP)	dod
3 > 0.999 + 0.99	0.173	Pos. control (5 X MI IP)	ccae
1 > 0.999 + 0.99	0.091	Pos. control (5 X MI IP)	mdcr
> 0.999 + 0.99	0.1	Pos. control (5 X MI IP)	mdcd
2 0.108 0.938	0.452	Neg. control (Pneumonia	dod
5 0.029 0.96 9	0.206	Neg. control (Pneumonia	ccae
3 0.154 0.85 9	0.483	Neg. control (Pneumonia	mdcr
5 0.091 0.914	0.495	Neg. control (Pneumonia	mdcd

Is the Cut-point the "Truth"

- The cut-point is critical for the analysis
- Is there a way to test it's validity?

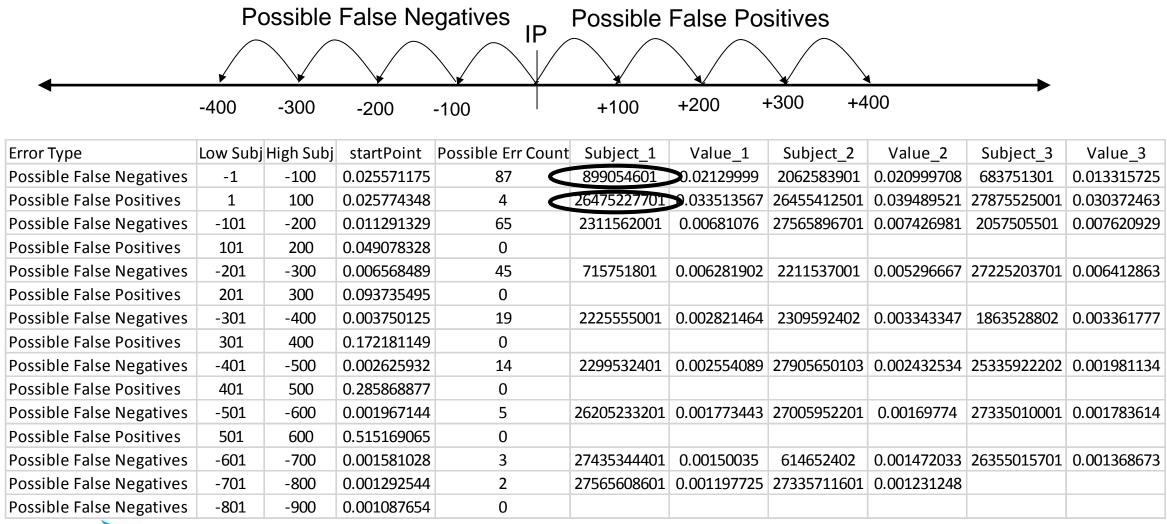
		Truth		
		Positive	Negative	
Test	Positive	672	244	
	Negative	4	149080	


The "truth" says there are 676 (672 + 4) Positives and 149,324 (244 + 149,080) Negatives

That's a lot of testing!

iarmaceutical companies Johnson Johnson

Prioritized Testing



Using 100 subject increments above and below the inflection point (IP)

- Find Possible False Positives (from Model) test subjects above the IP for <u>lack of MI concepts</u> from the concept set
- Find Possible False Negatives (from Model) test subjects below the IP for presence of MI concepts from the concept set

Prioritized Testing

Testing for False Negatives

Subject ID: 899054601

Concept Id	🔶 Concept Name	🔶 Domain	🔶 Start Day	📥 End Day
312327	Acute myocardial infarction	condition	266	266
312327	Acute myocardial infarction	conditionera	266	266
77670	Chest pain	condition	266	266
77670	Chest pain	condition	266	266
77670	Chest pain	condition	266	266
77670	Chest pain	conditionera	266	266
2313816	Electrocardiogram, routine ECG with at least 12 leads; interpretati and report only	ion measurement	266	266
2514436	Emergency department visit for the evaluation and management patient, which requires these 3 key components: A detailed histo detailed examination; and Medical decision making of moderate complexity. Counseling and/or coordination of care with o	ry; A procedure	266	266
9203	Emergency Room Visit	visit	266	267

PHARMACEUTICAL COMPANIES OF Johmon Johmon

Testing for False Positives

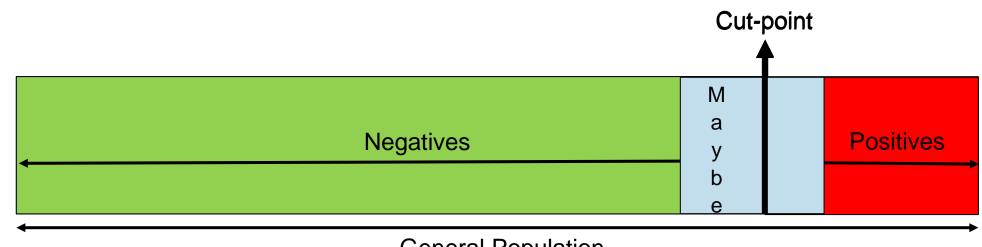
Subject ID: 26475227701

Concept Id	🔶 Concept Name	🔶 Domain	🔷 Start Day	🔺 End Day
314666	Old myocardial infarction	condition	235	235
313878	Respiratory symptom	condition	235	235
314666	Old myocardial infarction	condition	235	235
9201	Inpatient Visit	visit	235	242
9203	Emergency Room Visit	visit	235	235

PHARMACEUTICAL COMPANIES OF Johmon Johmon

Other Disease Phenotypes Tested

- Acute Diseases:
- Hemorrhagic Stroke
- GI Hemorrhage
- Ischemic Stroke
- Acute Respiratory Failure


Chronic Disease:

- Type 2 Diabetes
- Rheumatoid Arthritis
- Heart Failure
- Psoriasis
- Multiple Myeloma

Limitations

- Sparse data for subjects
- Databases vary with overall level of detail
- Complex coding for conditions, e.g., MI v. T2DM

General Population

- Cutrona 10% of patients with insufficient evidence
- Ryo 7.5% of patients with insufficient evidence

Jansse

Conclusion

- Using diagnostic predictive models to assess algorithm performance appears promising
- Having metrics for phenotype performance increases confidence in the use of observational data in research.
- Potential to use results of phenotype evaluation to correct/adjust our estimates
- Next steps: methods to reduce the indeterminants
 - Testing adjusting the xSpec cohort

HARMACEUTICAL COMPANIES

Questions

PHARMACEUTICAL COMPANIES OF Johnson Johnson