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Intro

• Reasons to map: 
• International (with only 5% of the world population, the US is limited in what 

observational research it can do)
• join future data (ICD10-CM plus problem lists plus NLP)
• shift away from billing codes as the primary means of specifying patients



Question

To what extent does OHDSI preserve patient membership in phenotype 
cohorts?
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Experimental Design: Compare patient cohorts 
defined by a) original concept sets on unmapped 
data, b) mapped concept sets on mapped data



Original ICD9-CM concept set: no mappings

What: Original ICD9-CM concept set generated by the phenotype author. 
How: Run against patients’ original ICD9-CM terms.
Why: Show what would have happened before either data or concept sets were mapped.

Algorithm (from eMERGE) Original ICD9-CM concept set‡
Heart failure (HF) [1] 428.*
Heart failure as exclusion diagnosis (HF2) [2] 428.*
Type-1 diabetes mellitus (T1DM) [3] 250.x1, 250.x3
Type-2 diabetes mellitus (T2DM) [4] 250.x0, 250.x2
Appendicitis  (Appy) [6] 540.*
Attention deficit hyperactivity disorder (ADHD) 
[5]

314, 314.0, 314.01, 314.1, 314.2, 314.8, 314.9

Cataract (Catar) [7] 366.10, 366.12, 366.13, 366.14, 366.15, 
366.16, 366.17, 366.18, 366.19, 366.21, 
366.30, 366.41, 366.45, 366.8, 366.9

Crohn’s disease (Crohn) [8] 555, 555.0, 555.1, 555.2, 555.9
Rheumatoid arthritis (RA) [9] 714, 714.0, 714.1, 714.2 (M05*, M06*)



Author’s INTENT source concept set: 
no mappings

• We extended original ICD9-CM concepts to include similar ICD10 and 
SNOMED CT codes

• This allows us to acquire a cohort, using unmapped data/queries, that 
would reflect the author’s intent under a broader availability of 
terminologies

• Also corrected obvious errors in original concept set



Knowledge engineered concept set
(map data only)
• What: By-hand SNOMED CT concept sets
• How: Run against OHDSI-mapped data in the form of SNOMED CT 

terms
• 2 intentions of concept set mapping:

1. SNOMED “mimic“
• Designed to mimic the original ICD9-CM concept set as much as possible, ignoring data 

from other vocabularies
2. SNOMED “optimize”: 

• Designed to carry out phenotype author’s intent to ICD9-CM, ICD10-CM, and SNOMED-
CT



Knowledge engineered concept set:
SNOMED mimic 
• Mimic original ICD9-CM concept set as much as possible
• Create a SNOMED concept set expected to ONLY find people who had 

the original ICD9 codes
• E.g. Does not try to find patients who might have a related ICD10-CM 

code



Knowledge engineered concept set:
SNOMED optimize 
• Interpret and extend author’s original intent (e.g. Find people with 

appendicitis)

• Find patients with relevant ICD9-CM, ICD10-CM, and SNOMED-CT 
codes (e.g. that would reflect author’s intent, as demonstrated by 
their ICD9 concept set)



Automatically generated concept sets
(map data AND concept sets)
• What: generated automatically from the original ICD9-CM set using OHDSI 

vocabulary mappings
• How: Run against OHDSI-mapped data in the form of SNOMED CT terms.
• 4 granularities for concept set mapping:

1. SNOMED “no descendants“
• OHDSI mappings from ICD9-CM to SNOMED-CT, without SNOMED hierarchy.

2. SNOMED “all descendants“
• includes descendants of mapped terms

3. SNOMED “descendants x child“
• includes descendants of mapped terms only if none of the term’s CHILDREN are also in the 

concept set. (limited descendants)
4. SNOMED “descendants x descendants“

• includes descendants of mapped terms only if none of the term’s DESCENDANTS are also in 
the concept set. (more limited descendants)



Results – code level

• Some knowledge engineered mappings just worked
• Multiple source codes (ICD) to one standard code (SNOMED CT)
• One source code (ICD) to multiple standard codes (SNOMED CT)
• Missing OMOP codes
• Information gain



Results – code level

• Some knowledge engineered mappings just worked
• Acute appendicitis – 1 code and descendants
• Crohn’s disease – 2 codes and descendants
• Heart failure as an exclusion diagnosis – 3 codes and descendants
• Heart failure as an inclusion diagnosis – 29 code and some descendants



Results – code level

• Multiple source codes (ICD) to one standard code (SNOMED CT)

• Biggest challenge

• Causes ambiguity so that either need to gain or lose patients

• Attention deficit hyperactivity disorder

• Includes ICD9-CM 314.0 “Attention deficit disorder of childhood” but excludes its child, 

314.00 “Attention deficit disorder without mention of hyperactivity”

• Both of these terms map to SNOMED CT 192127007 “Child attention deficit disorder”

• Type-2 diabetes mellitus

• Type-1 diabetes mellitus 

• Rheumatoid arthritis

• Cataract



Results – code level

• One source code (ICD) to multiple standard codes (SNOMED CT)
• Mostly happens with compound ICD9-CM terms
• Can solve with conjunction in SNOMED
• Type-1 diabetes mellitus

• More of an oversight; did not need conjunction
• Type-2 diabetes mellitus

• More of an oversight; did not need conjunction



Results – code level

• Missing OMOP codes
• Generally new codes that have not been added to OHDSI yet
• Type-1 diabetes mellitus

• Not used for patient data yet so no consequence
• Type-2 diabetes mellitus

• Not used for patient data yet so no consequence



Results – code level

• Information gain
• Superior hierarchy of SNOMED CT versus strict hierarchy of ICD9-CM can 

improve the concept set
• E.g., find codes in different areas of the ICD9-CM hierarchy
• Heart failure as an exclusion diagnosis

• Added terms



Results – patient cohort level

• Mapped Cohorts vs Original ICD9 cohort
• Mapped Cohorts vs Author’s Intent
• Automated batch analysis
• 122 eMERGE concept sets
• original ICD9 cohort vs AUTO mappings



Results: Appendicitis

Pheno #Cases ICD9 set‡ SNOMED 
mimic

SNOMED 
optimize

SNOMED no 
desc

SNOMED 
all desc

Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss
VS original 9,887 0 0 0 0 0 0 0 0 0 0

-0 patient loss with any query

‡ This column is used as the gold standard and therefore must have perfect performance



Results: Appendicitis

Pheno #Cases ICD9 set‡ SNOMED 
mimic

SNOMED 
optimize

SNOMED no 
desc

SNOMED 
all desc

Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss
VS original 9,887 0 0 0 0 0 0 0 0 0 0
VS intent 9,920 0 33 0 0 0 0 0 8 0 0

-0 patient loss with any query (vs original)
-same queries are extendable to capture author’s intent

‡ This column is used as the gold standard and therefore must have perfect performance



Results: ADHD

Pheno #Cases ICD9 set‡ SNOMED 
mimic

SNOMED 
optimize

SNOMED no 
desc

SNOMED 
all desc

Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss
VS original 14,399 0 0 0 19 0 19 1362 0 1362 0
VS intent 14,547 0 148 0 39 0 19 1359 19 1359 0

-no perfect mapped query
-tradeoff between gain and loss
-automated don’t perform well
-0.1% loss from knowledge engineering is probably better than 9.4% gain with 
auto-mapping
-KE queries are extendable to capture author’s intent



Results: Mapped Cohorts vs Original ICD9 cohort

Pheno #Cases ICD9 set‡ SNOMED 
mimic

SNOMED 
optimize

SNOMED no 
desc

SNOMED 
all desc

Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss
HF 75,312 0 0 0 0 0 0 0 0 1262 0
HF2 75,312 0 0 0 0 0 0 0 0 1262 0
T1DM 27,861 0 0 0 23 0 23 108 0 943 0
T2DM 125,342 0 0 3 30 3 30 34 0 1318 0
Appy 9,887 0 0 0 0 0 0 0 0 0 0
ADHD 14,399 0 0 0 19 0 19 1362 0 1362 0
Catar 50,879 0 0 50 0 74 0 50 0 2491 0
Crohn 4,679 0 0 0 0 0 0 0 0 0 0
RA 9,655 0 0 0 16 0 16 0 0 25103 0
‡ This column is used as the gold standard and therefore must have perfect performance

-0 patient loss from automatic mappings
-MIMIC does a good job a mimicing the patient cohort



Results: Mapped Cohorts vs Author’s Intent
• Author’s Intent brings in new patients, compared to only original ICD9 codes.

Pheno #Cases ICD9 set

Gain Loss
HF 75,626 0 314
HF2 76,958 0 1646
T1DM 27,935 0 74
T2DM 126,828 0 1486
Appy 9,920 0 33
ADHD 14,547 0 148
Catar 50,953 0 194
Crohn 4,679 0 0
RA 9,655 0 0



Results: Mapped Cohorts vs Author’s Intent
• Author’s Intent brings in new patients, compared to only original ICD9 codes.
• OPTIMIZE does a good job of finding patients that reflect the author’s intent
• Generally <1:1000 (worst is RA at 0.013)

Pheno Cases# ICD9 set SNOMED 
mimic

SNOMED 
optimize

SNOMED no 
desc

SNOMED 
all desc

Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss
HF 75,626 0 314 0 0 0 0 0 0 1332 0
HF2 76,958 0 1646 0 1332 0 0 0 1332 0 0
T1DM 27,935 0 74 0 23 0 23 108 67 943 0
T2DM 126,828 0 1486 3 1412 3 30 34 1486 1317 0
Appy 9,920 0 33 0 0 0 0 0 8 0 0
ADHD 14,547 0 148 0 39 0 19 1359 19 1359 0
Catar 50,953 0 194 39 26 39 2 39 26 2451 0
Crohn 4,679 0 0 0 0 0 0 0 0 0 0
RA 9,655 0 0 113 0 113 16 113 0 25289 0



Results: Patient Gain/Loss using only 
automatically mapped queries



Results: Patient Gain/Loss using only 
automatically mapped queries
• Patient loss was almost always 

exactly 0.
• Exceptions occurred when 

invalid ICD9 codes were 
specified

• Patient gain was usually <4% 
(70% of concept sets).

• Patient gain was sometimes 
very large (e.g. > 100%)

• Concpet sets with largest %-
gain had obvious flaws:
• Missing icd9 codes that 

probably  should be 
included

• Typos



Discussion 1

• 5/9 concept sets had code mapping issues
• But effect on patient cohort is minimal
• 8/9 concept sets produced error < 1/700, 9th was 1.3%
• Small compared to coding error 2% to 50%

• Mapping process can improve queries
• 2/9 mapping revealed codes that were clearly intended but missed from the 

original list



Discussion 2

• Not designed for concept sets
• Automated mappings did not perform well consistently (versus KE)

• OHDSI retains the source data so can always go back to the original if 
needed


