

Overview of the CohortMethod package

Martijn Schuemie

Prediction methods

CohortMethod is part of the **OHDSI Methods Library**

Cohort Method

New-user cohort studies using large-scale regression for propensity and outcome models

Self-Controlled Case Series

Self-Controlled Case Series analysis using few or many predictors, includes splines for age and seasonality.

Self-Controlled Cohort

A self-controlled cohort design, where time preceding exposure is used as control.

IC Temporal Pattern Disc.

A self-controlled design, but using temporal patterns around other exposures and outcomes to correct for timevarying confounding.

Case-control

Case-control studies, matching controls on age, gender, provider, and visit date. Allows nesting of the study in another cohort.

Patient Level Prediction

Build and evaluate predictive models for user-specified outcomes, using a wide array of machine learning algorithms.

Feature Extraction

Automatically extract large sets of features for userspecified cohorts using data in the CDM.

Empirical Calibration

Use negative control exposure-outcome pairs to profile and calibrate a particular analysis design.

Method Evaluation

Use real data and established

reference sets as well as simulations injected in real data to evaluate the performance of methods.

Database Connector

Connect directly to a wide range of database platforms, including SQL Server, Oracle, and PostgreSQL.

Sql Render

Generate SQL on the fly for the various SQL dialects.

Cyclops

Highly efficient implementation of regularized logistic, Poisson and Cox regression.

Ohdsi R Tools

Support tools that didn't fit other categories, including tools for maintaining R libraries.

M Under construction

Technologies

CohortMethod uses

- DatabaseConnector and SqlRender to interact with the CDM data
 - SQL Server
 - Oracle
 - PostgreSQL
 - Amazon RedShift
 - Microsoft APS
- ff to work with large data objects
- Cyclops for large scale regularized regression

Graham study steps

- 1. Getting the necessary data from the database
- 2. Defining the study population
- 3. Creating a propensity model
- 4. Matching
- 5. Fitting the outcome model

+ generating various diagnostics

Generic study steps

- 1. Getting the necessary data from the database
- 2. Defining the study population
- 3. [Creating a propensity model]
- 4. [Trimming / Matching / Stratification]
- 5. Fitting the outcome model
- + generating various diagnostics

Replication of Garbe et al. using the OHDSI framework

Eur J Clin Pharmacol (2013) 69:549–557 DOI 10.1007/s00228-012-1334-2

PHARMACOEPIDEMIOLOGY AND PRESCRIPTION

High-dimensional versus conventional propensity scores in a comparative effectiveness study of coxibs and reduced upper gastrointestinal complications

E. Garbe · S. Kloss · M. Suling · I. Pigeot ·

S. Schneeweiss

Received: 28 February 2012 / Accepted: 6 June 2012 / Published online: 5 July 2012

© Springer-Verlag 2012

What is the design used by Garbe et al?

Input parameter	Design choice
Target cohort (T)	Celecoxib new users
Comparator cohort (C)	Traditional non-steroid antiflammatory drugs (NSAID) new users
Outcome cohort (O)	Upper gastrointestinal complications (UGIC)
Time-at-risk	cohort start → cohort end
Model specification	1:1 propensity score-matched multivariable conditional Poisson regression

Step 1: Getting the necessary data from the database

Step 1: Getting the necessary data from the database

- Target, comparator, and outcome cohorts
 - From the cohort table in the CDM (ATLAS)
 - From a table with the same structure as the cohort table
 - From the drug_era and/or condition_era tables
 - CohortMethod can
 - limit to first exposure
 - remove subjects in both cohorts
 - enforce washout period

Covariates

- Automatically constructed default set
- Custom defined covariates (see FeatureExtraction package)
- Need to exclude drugs of interest (done automatically when using drug_era)

get Db Cohort Method Data

Arguments for connecting to the database:

- connectionDetails: How to connect to the database
- cdmDatabaseSchema: The database schema of the CDM
- oracleTempSchema: Only used on Oracle
- cdmVersion: currently 4 or 5 are supported

Arguments for finding the exposures:

- **exposureDatabaseSchema**: Database schema of exposures
- exposureTable: Table of exposures
- targetId: Cohort definition ID or drug concept ID
- comparatorId: Cohort definition ID or drug concept ID
- firstExposureOnly: restrict to first exposure per person
- removeDuplicateSubjects: remove subjects in both cohorts
- washoutPeriod: enforce minimum amount of observation prior to index
- studyStartDate, studyEndDate: Also truncates follow-up time

Arguments for finding the outcomes:

- outcomesDatabaseSchema: Database schema of outcomes
- outcomesTable: Table of outcomes
- outcomelds: Cohort definition IDs or condition concept IDs

Arguments for creating the covariates:

- covariateSettings: Created using the covariateSettings function
- excludeDrugsFromCovariates: Automatically exclude drugs of interest from the covariates (only works if targetId and comparatorId are concept IDs)

Result:

An object of type cohortMethodData

Need to save and load using saveCohortMethodData and loadCohortMethodData

Diagnostics

Run *summary()* on cohortMethodData object

- Do target, comparator, and outcomes have subjects?
- Are covariates constructed?

CohortMethodData object summary

Treatment concept ID: 1 Comparator concept ID: 2 Outcome concept ID(s): 3

Treated persons: 17058

Comparator persons: 13566

Outcome counts:

Event count Person count

3 6535 4279

Covariates:

Number of covariates: 17

Number of non-zero covariate values: 70605

Now try it yourself!

- Go to http://hix.jnj.com/atlas/#/estimation/5
- Click on Export and then R Code
- Run the *library* commands
- Specify the connection details...

Now try it yourself!

- Specify the connection details...
- Run commands up to and including saveCohortMethodData command
- Run summary on cohortMethodData object
- Did everything go ok?

This is what you should get

CohortMethodData object summary

Treatment concept ID: 1

Comparator concept ID: 2

Outcome concept ID(s): 3

Treated persons: 17058

Comparator persons: 13566

Outcome counts:

Event count Person count

3 6535 4279

Covariates:

Number of covariates: 17

Number of non-zero covariate values: 70605

Step 2: Defining the study population

Step 2: Defining the study population

- Select one of the outcomes of interest
- Enforce additional filtering criteria
- Define risk window

createStudyPopulation

Misc arguments:

- cohortMethodData: As created using getDbCohortMethodData
- outcomeId: The ID of the outcome of interest
- firstExposureOnly, removeDuplicateSubjects,
 washoutPeriod: Same as in getDbCohortMethodData
- removeSubjectsWithPriorOutcome: Remove subjects who have the outcome prior to the index date?
- priorOutcomeLookback: How many days should we look back

createStudyPopulation

Arguments for risk window:

- riskWindowStart: Start day relative to index
- addExposureDaysToStart: Set to TRUE if riskWindowStart should be relative to exposure end date instead
- riskWindowEnd: End day relative to index
- addExposureDaysToEnd: Set to TRUE if riskWindowEnd should be relative to exposure end date instead
- minDaysAtRisk: Remove subjects with less than this number of days at risk

```
Risk window = time e
                     Risk window = time exposed + 30 days
riskWind
                     riskWindowStart
         Risk windov
                                                 Risk window = 30 days following index
addExpo
                     addExposureDaysToStart
        riskWindow
                                                 riskWindowStart
                                                                            = 0
                     riskWindowEnd
riskWind
         addExposure
                                                 addExposureDaysToStart
                                                                            = FALSE
addExpo
                    addExposureDaysToEnd
         riskWindow
                                                 riskWindowEnd
                                                                            = 30
         addExposureDaysToEnd
                                    = FALSE
                                                 addExposureDaysToEnd
                                                                            = FALSE
```


createStudyPopulation

Result:

A data frame specifying the study population

Diagnostics

run getAttritionTable or drawAttritionDiagram

Are the number of dropouts what you'd expect?

Now try it yourself!

- Run code in section Defining the study population
- Check the attrition diagram

This is what you should get:

Step 3: Creating a propensity model

Step 3: Creating a propensity model

Using regularized logistic regression

$$P(treatment \mid X) = f(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ...)$$
 With prior for every β :

Hyper-parameter

What is the right width of the prior distribution?

Too wide:

- convergence problems
- overfitting

Too narrow:

- 'underfitting': missing important predictors

Default: select hyper-parameter through 10-fold cross-validation. This aims to optimize the out-of-sample likelihood

createPs

Important arguments:

- cohortMethodData: As created using getDbCohortMethodData
- population: The study population
- prior: object as created using createPrior
 - priorType: "laplace" or "none"
 - variance: variance of the prior (when not using cross-validation)
 - useCrossValidation: TRUE or FALSE
 - exclude: exclude these covariate IDs from regularization
- control: object as created using createControl
 - tolerance: numerical tolerance
 - folds: number of cross-validation folds
 - cvRepetitions: number of cross-validation repetitions
 - threads: number of CPU threads to use

createPs

Returns:

The study population data frame with an extra column for the propensity score

Diagnostics

- Did *createPs* complain about perfect prediction?
- Run computePsAuc: 0.5 < AUC < 1?
- Run *getPsModel*: Strongest predictors are not the drugs of interest?
- Run plotPs: overlap between cohorts?

Now try it yourself!

- Run code in section Propensity scores up to head(propensityModel)
 - Modify the number of threads!
- Inspect the PS distribution plot
- Inspect the PS model

This is what I should get:

Step 4:
Matching / Stratification /
Trimming

Step 4: Matching / Stratification / Trimming

Matching

For every treated subject, select n comparators using greedy matching

Stratification

Stratify into equallysized strata based on PS

Trimming

Remove subjects with high and low PS

matchOnPs & matchOnPsAndCovariates

Arguments for both functions:

- population: population object with propensity scores
- caliper: maximum allowed difference in PS
- caliperScale: "standardized" or "propensity score"
- maxRatio: maximum number of comparators per target

Arguments for matchOnPsAndCovariates:

- cohortMethodData: As created using getDbCohortMethodData
- covariatelds: must match on these covariates

stratifyByPs & stratifyByPsAndCovariates

Arguments for both functions:

- population: population object with propensity scores
- numberOfStrata: number of strata

Arguments for stratifyByPsAndCovariates:

- cohortMethodData: As created using getDbCohortMethodData
- covariateIds: must match on these covariates

trimByPs & trimByPsToEquipoise

Argument for both functions:

population

Argument for trimByPs:

trimFraction: Fraction to be removed from each group

Argument for trimByPsToEquipoise:

• **bounds**: Bounds on the preference score

Diagnostics

- Run getAttritionTable or drawAttritionDiagram: did we not lose everyone?
- Run computeCovariateBalance and plotCovariateBalanceScatterPlot: standardized difference < 0.1 for all covariates?

Now try it yourself!

- Run the rest of the code in section *Propensity scores*
- Inspect the attrition diagram
- Inspect the balance scatter plot

This is what you should get:

Step 5: Fitting the outcome model

Step 5: Fitting the outcome model

Regression for outcome with at least treatment as predictor

Types:

- Logistic: compares risks
- **Poisson**: compares rates
- Cox: compares time-to-event

Conditioning:

- Not conditioned
- Conditioned on matches set / strata

Covariates:

- None
- Same as used in propensity model

fitOutcomeModel

Arguments:

- population: population with or without strata
- cohortMethodData: As created using getDbCohortMethodData
- modelType: "logistic", "poisson", or "cox"
- stratified: condition on strata?
- useCovariates: add same covariates as used in PS?
- prior: object as created using createPrior
 - priorType: "laplace" or "none"
 - variance: variance of the prior (when not using cross-validation)
 - useCrossValidation: TRUE or FALSE
 - exclude: exclude these covariate IDs from regularization
- control: object as created using createControl
 - tolerance: numerical tolerance
 - folds: number of cross-validation folds
 - cvRepetitions: number of cross-validation repetitions
 - threads: number of CPU threads to use

Diagnostics

• For Cox models run *plotKaplanMeier*: Evidence of non-proportionality?

Now try it yourself!

- 1. Run code in the section Outcome Model
- 2. Change the model to Cox regression

This is what you should get after step 2:

Model type: cox

Stratified: TRUE

Use covariates: FALSE

Status: OK

Estimate lower .95 upper .95

logRr seLogRr

treatment 0.62500 0.18883 1.87314

-0.47000 0.5853

Generic study steps

- 1. Getting the necessary data from the database
- 2. Defining the study population
- 3. [Creating a propensity model]
- 4. [Trimming / Matching / Stratification]
- 5. Fitting the outcome model
- + generating various diagnostics

All-by-all support

Drug – Comparator - Outcome Analysis settings For: CohortMethod Sensitivity analyses Including negative controls Methods research Safety surveillance

Estimates, Diagnostics

Negative controls as study diagnostics

- Negative control outcomes are outcomes not believed to be caused by either exposure
- Assume true HR = 1
- Observe distribution of estimates

Negative control distribition

Approx. 95% of estimates should have 1 inside 95% confidence interval

Further things to try

- Change code to use all covariates (instead of handpicked ones)
- Remove people with prior outcomes
- Create a Kaplan-Meier plot

Counterfactual – other track

Learned how to create the cohorts we used

Counterfactual – other track

- Learned how to create the cohorts we used
- Learned to think about the study design
- Learned how to use Atlas to generate starting
 R code