
Overview of the
CohortMethod package

Martijn Schuemie

CohortMethod is part of the
OHDSI Methods Library

s

New-user cohort studies using
large-scale regression for
propensity and outcome
models

Cohort Method

s

Self-Controlled Case Series
analysis using few or many
predictors, includes splines for
age and seasonality.

Self-Controlled Case Series

s

A self-controlled cohort
design, where time preceding
exposure is used as control.

Self-Controlled Cohort

s

A self-controlled design, but
using temporal patterns
around other exposures and
outcomes to correct for time-
varying confounding.

IC Temporal Pattern Disc.

s

Build and evaluate predictive
models for user-specified
outcomes, using a wide array
of machine learning
algorithms.

Patient Level Prediction

s

Use negative control
exposure-outcome pairs to
profile and calibrate a
particular analysis design.

Empirical Calibration

s

Use real data and established
reference sets as well as
simulations injected in real
data to evaluate the
performance of methods.

Method Evaluation

s

Connect directly to a wide
range of database platforms,
including SQL Server, Oracle,
and PostgreSQL.

Database Connector

s

Generate SQL on the fly for
the various SQL dialects.

Sql Render

s

Highly efficient
implementation of regularized
logistic, Poisson and Cox
regression.

Cyclops

s

Support tools that didn’t fit
other categories, including
tools for maintaining R
libraries.

Ohdsi R Tools

Es
tim

at
io

n
m

et
ho

ds

Pr
ed

ic
tio

n
m

et
ho

ds

M
et

ho
d

ch
ar

ac
te

riz
at

io
n

Su
pp

or
tin

g
pa

ck
ag

es

Under construction

s

Automatically extract large
sets of features for user-
specified cohorts using data in
the CDM.

Feature Extraction

s

Case-control studies,
matching controls on age,
gender, provider, and visit
date. Allows nesting of the
study in another cohort.

Case-control

Technologies

CohortMethod uses
• DatabaseConnector and SqlRender to interact with the CDM

data
– SQL Server
– Oracle
– PostgreSQL
– Amazon RedShift
– Microsoft APS

• ff to work with large data objects
• Cyclops for large scale regularized regression

Graham study steps

1. Getting the necessary data from the database
2. Defining the study population
3. Creating a propensity model
4. Matching
5. Fitting the outcome model

+ generating various diagnostics

Generic study steps

1. Getting the necessary data from the database
2. Defining the study population
3. [Creating a propensity model]
4. [Trimming / Matching / Stratification]
5. Fitting the outcome model

+ generating various diagnostics

Replication of Garbe et al. using the
OHDSI framework

What is the design used by Garbe et al?

Input parameter Design choice

Target cohort (T) Celecoxib new users

Comparator cohort (C) Traditional non-steroid antiflammatory
drugs (NSAID) new users

Outcome cohort (O) Upper gastrointestinal complications
(UGIC)

Time-at-risk cohort start  cohort end

Model specification 1:1 propensity score-matched
multivariable conditional Poisson
regression

Step 1: Getting the necessary
data from the database

Step 1: Getting the necessary data from
the database

• Target, comparator, and outcome cohorts
– From the cohort table in the CDM (ATLAS)
– From a table with the same structure as the cohort table
– From the drug_era and/or condition_era tables
– CohortMethod can

• limit to first exposure
• remove subjects in both cohorts
• enforce washout period

• Covariates
– Automatically constructed default set
– Custom defined covariates (see FeatureExtraction package)
– Need to exclude drugs of interest (done automatically when

using drug_era)

getDbCohortMethodData

Arguments for connecting to the database:
• connectionDetails: How to connect to the database
• cdmDatabaseSchema: The database schema of the CDM
• oracleTempSchema: Only used on Oracle
• cdmVersion: currently 4 or 5 are supported

getDbCohortMethodData

Arguments for finding the exposures:
• exposureDatabaseSchema: Database schema of exposures
• exposureTable: Table of exposures
• targetId: Cohort definition ID or drug concept ID
• comparatorId: Cohort definition ID or drug concept ID
• firstExposureOnly: restrict to first exposure per person
• removeDuplicateSubjects: remove subjects in both cohorts
• washoutPeriod: enforce minimum amount of observation

prior to index
• studyStartDate, studyEndDate: Also truncates follow-up time

getDbCohortMethodData

Arguments for finding the outcomes:
• outcomesDatabaseSchema: Database schema of outcomes
• outcomesTable: Table of outcomes
• outcomeIds: Cohort definition IDs or condition concept IDs

getDbCohortMethodData

Arguments for creating the covariates:
• covariateSettings: Created using the covariateSettings

function
• excludeDrugsFromCovariates: Automatically exclude drugs of

interest from the covariates (only works if targetId and
comparatorId are concept IDs)

getDbCohortMethodData

Result:

An object of type cohortMethodData

Need to save and load using saveCohortMethodData and
loadCohortMethodData

Diagnostics
Run summary() on cohortMethodData object
• Do target, comparator, and outcomes have subjects?
• Are covariates constructed?

CohortMethodData object summary

Treatment concept ID: 1
Comparator concept ID: 2
Outcome concept ID(s): 3

Treated persons: 17058
Comparator persons: 13566

Outcome counts:
 Event count Person count
3 6535 4279

Covariates:
Number of covariates: 17
Number of non-zero covariate values: 70605

Now try it yourself!

• Go to http://hix.jnj.com/atlas/#/estimation/5
• Click on Export and then R Code
• Run the library commands
• Specify the connection details…

http://hix.jnj.com/atlas/%23/estimation/5

Now try it yourself!

• Specify the connection details…
• Run commands up to and including saveCohortMethodData

command
• Run summary on cohortMethodData object
• Did everything go ok?

This is what you should get
CohortMethodData object summary

Treatment concept ID: 1
Comparator concept ID: 2
Outcome concept ID(s): 3

Treated persons: 17058
Comparator persons: 13566

Outcome counts:
 Event count Person count
3 6535 4279

Covariates:
Number of covariates: 17
Number of non-zero covariate values: 70605

Step 2: Defining the study
population

Step 2: Defining the study population

• Select one of the outcomes of interest
• Enforce additional filtering criteria
• Define risk window

createStudyPopulation

Misc arguments:
• cohortMethodData: As created using

getDbCohortMethodData
• outcomeId: The ID of the outcome of interest
• firstExposureOnly, removeDuplicateSubjects,

washoutPeriod: Same as in getDbCohortMethodData
• removeSubjectsWithPriorOutcome: Remove subjects who

have the outcome prior to the index date?
• priorOutcomeLookback: How many days should we look back

createStudyPopulation

Arguments for risk window:
• riskWindowStart: Start day relative to index
• addExposureDaysToStart: Set to TRUE if riskWindowStart

should be relative to exposure end date instead
• riskWindowEnd: End day relative to index
• addExposureDaysToEnd: Set to TRUE if riskWindowEnd

should be relative to exposure end date instead
• minDaysAtRisk: Remove subjects with less than this number

of days at risk

Risk window = time exposed
riskWindowStart = 0
addExposureDaysToStart = FALSE
riskWindowEnd = 0
addExposureDaysToEnd = TRUE

Risk window = intent to treat
riskWindowStart = 0
addExposureDaysToStart = FALSE
riskWindowEnd = 9999
addExposureDaysToEnd = FALSE

Risk window = time exposed + 30 days
riskWindowStart = 0
addExposureDaysToStart = FALSE
riskWindowEnd = 30
addExposureDaysToEnd = TRUE

Risk window = 30 days following index
riskWindowStart = 0
addExposureDaysToStart = FALSE
riskWindowEnd = 30
addExposureDaysToEnd = FALSE

createStudyPopulation

Result:

A data frame specifying the study population

Diagnostics

run getAttritionTable or drawAttritionDiagram
• Are the number of dropouts what you’d expect?

Now try it yourself!

• Run code in section Defining the study population
• Check the attrition diagram

This is what you should get:

Step 3: Creating a
propensity model

Step 3: Creating a propensity model

𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑋𝑋) = 𝑓𝑓(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + …)
With prior for every 𝛽𝛽:

Using regularized logistic regression

Hyper-parameter

What is the right width of the prior distribution?

Too wide:
- convergence problems
- overfitting

Too narrow:
- ‘underfitting’: missing important predictors

Default: select hyper-parameter through 10-fold cross-validation.
This aims to optimize the out-of-sample likelihood

createPs
Important arguments:
• cohortMethodData: As created using

getDbCohortMethodData
• population: The study population
• prior: object as created using createPrior

– priorType: “laplace” or “none”
– variance: variance of the prior (when not using cross-validation)
– useCrossValidation: TRUE or FALSE
– exclude: exclude these covariate IDs from regularization

• control: object as created using createControl
– tolerance: numerical tolerance
– folds: number of cross-validation folds
– cvRepetitions: number of cross-validation repetitions
– threads: number of CPU threads to use

createPs

Returns:

The study population data frame with an extra column for the
propensity score

Diagnostics

• Did createPs complain about perfect prediction?
• Run computePsAuc: 0.5 < AUC < 1?
• Run getPsModel: Strongest predictors are not the drugs of

interest?
• Run plotPs: overlap between cohorts?

Good: Bad:

Now try it yourself!

• Run code in section Propensity scores up to
head(propensityModel)
– Modify the number of threads!

• Inspect the PS distribution plot
• Inspect the PS model

This is what I should get:

Step 4:
Matching / Stratification /

Trimming

Step 4:
Matching / Stratification / Trimming

Matching
For every treated
subject, select n
comparators using
greedy matching

Stratification
Stratify into equally-
sized strata based on
PS

Trimming
Remove subjects with
high and low PS

matchOnPs &
matchOnPsAndCovariates

Arguments for both functions:
• population: population object with propensity scores
• caliper: maximum allowed difference in PS
• caliperScale: “standardized” or “propensity score”
• maxRatio: maximum number of comparators per target

Arguments for matchOnPsAndCovariates:
• cohortMethodData: As created using

getDbCohortMethodData
• covariateIds: must match on these covariates

stratifyByPs &
stratifyByPsAndCovariates

Arguments for both functions:
• population: population object with propensity scores
• numberOfStrata: number of strata

Arguments for stratifyByPsAndCovariates :
• cohortMethodData: As created using

getDbCohortMethodData
• covariateIds: must match on these covariates

trimByPs & trimByPsToEquipoise

Argument for both functions:
• population

Argument for trimByPs :
• trimFraction: Fraction to be removed from each group

Argument for trimByPsToEquipoise :
• bounds: Bounds on the preference score

Diagnostics

• Run getAttritionTable or drawAttritionDiagram: did we not
lose everyone?

• Run computeCovariateBalance and
plotCovariateBalanceScatterPlot: standardized difference <
0.1 for all covariates?

Now try it yourself!

• Run the rest of the code in section Propensity scores
• Inspect the attrition diagram
• Inspect the balance scatter plot

This is what you should get:

Step 5: Fitting the outcome
model

Step 5: Fitting the outcome model
Regression for outcome with at least treatment as predictor

Types:
• Logistic: compares risks
• Poisson: compares rates
• Cox: compares time-to-event

Conditioning:
• Not conditioned
• Conditioned on matches set / strata

Covariates:
• None
• Same as used in propensity model

fitOutcomeModel
Arguments:
• population: population with or without strata
• cohortMethodData: As created using getDbCohortMethodData
• modelType: “logistic”, “poisson”, or “cox”
• stratified: condition on strata?
• useCovariates: add same covariates as used in PS?
• prior: object as created using createPrior

– priorType: “laplace” or “none”
– variance: variance of the prior (when not using cross-validation)
– useCrossValidation: TRUE or FALSE
– exclude: exclude these covariate IDs from regularization

• control: object as created using createControl
– tolerance: numerical tolerance
– folds: number of cross-validation folds
– cvRepetitions: number of cross-validation repetitions
– threads: number of CPU threads to use

Diagnostics

• For Cox models run plotKaplanMeier: Evidence of non-
proportionality?

Now try it yourself!

1. Run code in the section Outcome Model
2. Change the model to Cox regression

This is what you should get after step 2:

Model type: cox
Stratified: TRUE
Use covariates: FALSE
Status: OK

 Estimate lower .95 upper .95 logRr seLogRr
treatment 0.62500 0.18883 1.87314 -0.47000 0.5853

Generic study steps

1. Getting the necessary data from the database
2. Defining the study population
3. [Creating a propensity model]
4. [Trimming / Matching / Stratification]
5. Fitting the outcome model

+ generating various diagnostics

All-by-all support

CohortMethod

Target – (Comparator) - Outcome Analysis settings
Target – (Comparator) - Outcome

Target – (Comparator) - Outcome
Drug – Comparator - Outcome

Analysis settings
Analysis settings

Analysis settings

Estimates, Diagnostics

47

For:
• Sensitivity analyses
• Including negative controls
• Methods research
• Safety surveillance

Negative controls as study diagnostics

• Negative control outcomes are outcomes not
believed to be caused by either exposure

• Assume true HR = 1
• Observe distribution of estimates

Negative control distribition

Approx. 95% of estimates should have 1 inside 95%
confidence interval

Further things to try

• Change code to use all covariates (instead of
handpicked ones)

• Remove people with prior outcomes
• Create a Kaplan-Meier plot

Counterfactual – other track

• Learned how to create the cohorts we used

Counterfactual – other track

• Learned how to create the cohorts we used
• Learned to think about the study design
• Learned how to use Atlas to generate starting

R code

	Overview of the CohortMethod package
	CohortMethod is part of the �OHDSI Methods Library
	Technologies
	Graham study steps
	Generic study steps
	Replication of Garbe et al. using the OHDSI framework
	What is the design used by Garbe et al?
	Step 1: Getting the necessary data from the database
	Step 1: Getting the necessary data from the database
	getDbCohortMethodData
	getDbCohortMethodData
	getDbCohortMethodData
	getDbCohortMethodData
	getDbCohortMethodData
	Diagnostics
	Now try it yourself!
	Now try it yourself!
	This is what you should get
	Step 2: Defining the study population
	Step 2: Defining the study population
	createStudyPopulation
	createStudyPopulation
	createStudyPopulation
	Diagnostics
	Now try it yourself!
	Step 3: Creating a propensity model
	Step 3: Creating a propensity model
	Hyper-parameter
	createPs
	createPs
	Diagnostics
	Now try it yourself!
	Step 4: �Matching / Stratification / Trimming
	Step 4: �Matching / Stratification / Trimming
	matchOnPs & matchOnPsAndCovariates
	stratifyByPs & stratifyByPsAndCovariates
	trimByPs & trimByPsToEquipoise
	Diagnostics
	Now try it yourself!
	Step 5: Fitting the outcome model
	Step 5: Fitting the outcome model
	fitOutcomeModel
	Diagnostics
	Now try it yourself!
	Generic study steps
	All-by-all support
	Negative controls as study diagnostics
	Negative control distribition
	Further things to try
	Counterfactual – other track
	Counterfactual – other track

