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CohortMethod is part of the  
OHDSI Methods Library 

s 

New-user cohort studies using 
large-scale regression for 
propensity and outcome 
models 

Cohort Method 

s 

Self-Controlled Case Series 
analysis using few or many 
predictors, includes splines for 
age and seasonality. 

Self-Controlled Case Series 

s 

A self-controlled cohort 
design, where time preceding 
exposure is used as control. 

Self-Controlled Cohort 

s 

A self-controlled design, but 
using temporal patterns 
around other exposures and 
outcomes to correct for time-
varying confounding. 

IC Temporal Pattern Disc. 

s 

Build and evaluate predictive 
models for user-specified 
outcomes, using a wide array 
of machine learning 
algorithms. 

Patient Level Prediction 

s 

Use negative control 
exposure-outcome pairs to 
profile and calibrate a 
particular analysis design. 

Empirical Calibration 

s 

Use real data and established 
reference sets as well as 
simulations injected in real 
data to evaluate the 
performance of methods. 

Method Evaluation 

s 

Connect directly to a wide 
range of database platforms, 
including SQL Server, Oracle, 
and PostgreSQL. 

Database Connector 

s 

Generate SQL on the fly for 
the various SQL dialects. 

Sql Render 

s 

Highly efficient 
implementation of regularized 
logistic, Poisson and Cox 
regression. 

Cyclops 

s 

Support tools that didn’t fit 
other categories, including 
tools for maintaining R 
libraries. 

Ohdsi R Tools 
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Under construction 

s 

Automatically extract large 
sets of features for user-
specified cohorts using data in 
the CDM. 

Feature Extraction 

s 

Case-control studies, 
matching controls on age, 
gender, provider, and visit 
date. Allows nesting of the 
study in another cohort. 

Case-control 



Technologies 

CohortMethod uses 
• DatabaseConnector and SqlRender to interact with the CDM 

data 
– SQL Server 
– Oracle 
– PostgreSQL 
– Amazon RedShift 
– Microsoft APS 

• ff to work with large data objects 
• Cyclops for large scale regularized regression 
 



Graham study steps 

1. Getting the necessary data from the database 
2. Defining the study population 
3. Creating a propensity model 
4. Matching 
5. Fitting the outcome model 
 
+ generating various diagnostics 

 



Generic study steps 

1. Getting the necessary data from the database 
2. Defining the study population 
3. [Creating a propensity model] 
4. [Trimming  / Matching / Stratification] 
5. Fitting the outcome model 
 
+ generating various diagnostics 

 



Replication of Garbe et al. using the 
OHDSI framework 



What is the design used by  Garbe et al? 

Input parameter Design choice 

Target cohort (T) Celecoxib new users 

Comparator cohort (C) Traditional non-steroid antiflammatory 
drugs (NSAID) new users 

Outcome cohort (O) Upper gastrointestinal complications 
(UGIC) 

Time-at-risk cohort start  cohort end 

Model specification 1:1 propensity score-matched 
multivariable conditional Poisson 
regression 



Step 1: Getting the necessary 
data from the database 



Step 1: Getting the necessary data from 
the database 

• Target, comparator, and outcome cohorts 
– From the cohort table in the CDM (ATLAS) 
– From a table with the same structure as the cohort table 
– From the drug_era and/or condition_era tables 
– CohortMethod can 

• limit to first exposure 
• remove subjects in both cohorts 
• enforce washout period 

• Covariates 
– Automatically constructed default set 
– Custom defined covariates (see FeatureExtraction package) 
– Need to exclude drugs of interest (done automatically when 

using drug_era) 
 



getDbCohortMethodData 

Arguments for connecting to the database: 
• connectionDetails: How to connect to the database 
• cdmDatabaseSchema: The database schema of the CDM 
• oracleTempSchema: Only used on Oracle 
• cdmVersion: currently 4 or 5 are supported 
 

 



getDbCohortMethodData 

Arguments for finding the exposures: 
• exposureDatabaseSchema: Database schema of exposures 
• exposureTable: Table of exposures 
• targetId: Cohort definition ID or drug concept ID 
• comparatorId: Cohort definition ID or drug concept ID 
• firstExposureOnly: restrict to first exposure per person 
• removeDuplicateSubjects: remove subjects in both cohorts 
• washoutPeriod: enforce minimum amount of observation 

prior to index 
• studyStartDate, studyEndDate: Also truncates follow-up time 

 



getDbCohortMethodData 

Arguments for finding the outcomes: 
• outcomesDatabaseSchema: Database schema of outcomes 
• outcomesTable: Table of outcomes 
• outcomeIds: Cohort definition IDs or condition concept IDs 

 
 



getDbCohortMethodData 

Arguments for creating the covariates: 
• covariateSettings: Created using the covariateSettings 

function 
• excludeDrugsFromCovariates: Automatically exclude drugs of 

interest from the covariates (only works if targetId and 
comparatorId are concept IDs) 
 
 



getDbCohortMethodData 

Result: 
 
An object of type cohortMethodData 
 
Need to save and load using saveCohortMethodData and 
loadCohortMethodData 



Diagnostics 
Run summary() on cohortMethodData object 
• Do target, comparator, and outcomes have subjects? 
• Are covariates constructed? 

 
 

CohortMethodData object summary 
 
Treatment concept ID: 1 
Comparator concept ID: 2 
Outcome concept ID(s): 3 
 
Treated persons: 17058 
Comparator persons: 13566 
 
Outcome counts: 
  Event count Person count 
3        6535         4279 
 
Covariates: 
Number of covariates: 17 
Number of non-zero covariate values: 70605 



Now try it yourself! 

• Go to http://hix.jnj.com/atlas/#/estimation/5 
• Click on Export and then R Code 
• Run the library commands 
• Specify the connection details… 

 

 

http://hix.jnj.com/atlas/%23/estimation/5


Now try it yourself! 

• Specify the connection details… 
• Run commands up to and including saveCohortMethodData 

command 
• Run summary on cohortMethodData object 
• Did everything go ok? 

 

 



This is what you should get 
CohortMethodData object summary 
 
Treatment concept ID: 1 
Comparator concept ID: 2 
Outcome concept ID(s): 3 
 
Treated persons: 17058 
Comparator persons: 13566 
 
Outcome counts: 
  Event count Person count 
3        6535         4279 
 
Covariates: 
Number of covariates: 17 
Number of non-zero covariate values: 70605 



Step 2: Defining the study 
population 



Step 2: Defining the study population 

• Select one of the outcomes of interest 
• Enforce additional filtering criteria 
• Define risk window 

 



createStudyPopulation 

Misc arguments: 
• cohortMethodData: As created using 

getDbCohortMethodData  
• outcomeId: The ID of the outcome of interest 
• firstExposureOnly, removeDuplicateSubjects, 

washoutPeriod: Same as in getDbCohortMethodData  
• removeSubjectsWithPriorOutcome: Remove subjects who 

have the outcome prior to the index date? 
• priorOutcomeLookback: How many days should we look back 

 
 
 



createStudyPopulation 

Arguments for risk window: 
• riskWindowStart: Start day relative to index 
• addExposureDaysToStart: Set to TRUE if riskWindowStart 

should be relative to exposure end date instead 
• riskWindowEnd: End day relative to index 
• addExposureDaysToEnd: Set to TRUE if riskWindowEnd 

should be relative to exposure end date instead 
• minDaysAtRisk: Remove subjects with less than this number 

of days at risk 
 
 
 
 

Risk window = time exposed 
riskWindowStart   = 0 
addExposureDaysToStart  = FALSE 
riskWindowEnd   = 0 
addExposureDaysToEnd  = TRUE 

Risk window = intent to treat 
riskWindowStart   = 0 
addExposureDaysToStart  = FALSE 
riskWindowEnd   = 9999 
addExposureDaysToEnd  = FALSE 

Risk window = time exposed + 30 days 
riskWindowStart   = 0 
addExposureDaysToStart  = FALSE 
riskWindowEnd   = 30 
addExposureDaysToEnd  = TRUE 

Risk window = 30 days following index 
riskWindowStart   = 0 
addExposureDaysToStart  = FALSE 
riskWindowEnd   = 30 
addExposureDaysToEnd  = FALSE 



createStudyPopulation 

Result: 
 
A data frame specifying the study population 
 
 

 



Diagnostics 

run getAttritionTable or drawAttritionDiagram 
• Are the number of dropouts what you’d expect? 
 



Now try it yourself! 

• Run code in section Defining the study population 
• Check the attrition diagram 

 
This is what you should get: 



Step 3: Creating a 
propensity model 



Step 3: Creating a propensity model 

𝑃𝑃  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑋𝑋) = 𝑓𝑓( 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + … ) 
With prior for every 𝛽𝛽: 

Using regularized logistic regression 



Hyper-parameter 

What is the right width of the prior distribution? 
 
Too wide:  
- convergence problems 
- overfitting 
 
Too narrow:  
- ‘underfitting’: missing important predictors 

 
Default: select hyper-parameter through 10-fold cross-validation. 
This aims to optimize the out-of-sample likelihood 
 
 
 
 



createPs 
Important arguments: 
• cohortMethodData: As created using 

getDbCohortMethodData 
• population: The study population 
• prior: object as created using createPrior 

– priorType: “laplace” or “none” 
– variance: variance of the prior (when not using cross-validation) 
– useCrossValidation: TRUE or FALSE 
– exclude: exclude these covariate IDs from regularization  

• control: object as created using createControl 
– tolerance: numerical tolerance 
– folds: number of cross-validation folds 
– cvRepetitions: number of cross-validation repetitions 
– threads: number of CPU threads to use 



createPs 

Returns: 
 
The study population data frame with an extra column for the 
propensity score 

 



Diagnostics 

• Did createPs complain about perfect prediction? 
• Run computePsAuc: 0.5 < AUC < 1?  
• Run getPsModel: Strongest predictors are not the drugs of 

interest? 
• Run plotPs: overlap between cohorts? 

Good: Bad: 



Now try it yourself! 

• Run code in section Propensity scores up to 
head(propensityModel) 
– Modify the number of threads! 

• Inspect the PS distribution plot 
• Inspect the PS model 

 
This is what I should get: 



Step 4:  
Matching / Stratification / 

Trimming 



Step 4:  
Matching / Stratification / Trimming 

Matching  
For every treated 
subject, select n 
comparators using 
greedy matching 

Stratification  
Stratify into equally-
sized strata based on 
PS 

Trimming  
Remove subjects with 
high and low PS 



matchOnPs & 
matchOnPsAndCovariates 

Arguments for both functions: 
• population: population object with propensity scores 
• caliper: maximum allowed difference in PS 
• caliperScale: “standardized” or “propensity score” 
• maxRatio: maximum number of comparators per target 

 
Arguments for matchOnPsAndCovariates: 
• cohortMethodData: As created using 

getDbCohortMethodData 
• covariateIds: must match on these covariates 



stratifyByPs & 
stratifyByPsAndCovariates 

Arguments for both functions: 
• population: population object with propensity scores 
• numberOfStrata: number of strata 

 
Arguments for stratifyByPsAndCovariates : 
• cohortMethodData: As created using 

getDbCohortMethodData 
• covariateIds: must match on these covariates 



trimByPs & trimByPsToEquipoise 

Argument for both functions: 
• population 

 
Argument for trimByPs : 
• trimFraction: Fraction to be removed from each group 
 
Argument for trimByPsToEquipoise : 
• bounds: Bounds on the preference score 

 



Diagnostics 

• Run getAttritionTable or drawAttritionDiagram: did we not 
lose everyone? 

• Run computeCovariateBalance and 
plotCovariateBalanceScatterPlot: standardized difference < 
0.1 for all covariates? 
 



Now try it yourself! 

• Run the rest of the code in section Propensity scores 
• Inspect the attrition diagram 
• Inspect the balance scatter plot 

 
This is what you should get: 



Step 5: Fitting the outcome 
model 



Step 5: Fitting the outcome model 
Regression for outcome with at least treatment as predictor 
 
Types: 
• Logistic: compares risks 
• Poisson: compares rates 
• Cox: compares time-to-event 

 
Conditioning: 
• Not conditioned 
• Conditioned on matches set / strata 

 
Covariates: 
• None 
• Same as used in propensity model 



fitOutcomeModel 
Arguments: 
• population: population with or without strata 
• cohortMethodData: As created using getDbCohortMethodData 
• modelType: “logistic”, “poisson”, or “cox” 
• stratified: condition on strata? 
• useCovariates: add same covariates as used in PS? 
• prior: object as created using createPrior 

– priorType: “laplace” or “none” 
– variance: variance of the prior (when not using cross-validation) 
– useCrossValidation: TRUE or FALSE 
– exclude: exclude these covariate IDs from regularization  

• control: object as created using createControl 
– tolerance: numerical tolerance 
– folds: number of cross-validation folds 
– cvRepetitions: number of cross-validation repetitions 
– threads: number of CPU threads to use 



Diagnostics 

• For Cox models run plotKaplanMeier: Evidence of non-
proportionality? 



Now try it yourself! 

1. Run code in the section Outcome Model 
2. Change the model to Cox regression 

 
This is what you should get after step 2: 

Model type: cox 
Stratified: TRUE 
Use covariates: FALSE 
Status: OK 
 
            Estimate  lower .95  upper .95     logRr  seLogRr 
treatment    0.62500    0.18883    1.87314   -0.47000   0.5853 



Generic study steps 

1. Getting the necessary data from the database 
2. Defining the study population 
3. [Creating a propensity model] 
4. [Trimming  / Matching / Stratification] 
5. Fitting the outcome model 
 
+ generating various diagnostics 

 



All-by-all support 

CohortMethod 

Target – (Comparator) - Outcome Analysis settings 
Target – (Comparator) - Outcome 

Target – (Comparator) - Outcome 
Drug – Comparator - Outcome 

Analysis settings 
Analysis settings 

Analysis settings 

Estimates, Diagnostics 

47 

For: 
• Sensitivity analyses 
• Including negative controls 
• Methods research 
• Safety surveillance 



Negative controls as study diagnostics 

• Negative control outcomes are outcomes not 
believed to be caused by either exposure 

• Assume true HR = 1 
• Observe distribution of estimates 



Negative control distribition 

Approx. 95% of estimates should have 1 inside 95% 
confidence interval 

 



Further things to try 

• Change code to use all covariates (instead of 
handpicked ones) 

• Remove people with prior outcomes 
• Create a Kaplan-Meier plot 



Counterfactual – other track 

• Learned how to create the cohorts we used 



Counterfactual – other track 

• Learned how to create the cohorts we used 
• Learned to think about the study design 
• Learned how to use Atlas to generate starting 

R code 
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