Welcome to the OHDSI Face-to-face NYC 2018

Patrick Ryan, PhD
Janssen Research and Development,
Columbia University Medical Center
Why are we here?
Take 10 minutes to complete survey

Look in your email for note from Maura/Kristin or go to:

https://goo.gl/forms/nkYtjBmgWcghUDsH3
The journey to real-world evidence

- Patient-level data in source system/schema
- Reliable evidence

[Diagram showing the journey from patient-level data to reliable evidence]
Different types of observational data:

- **Populations**
 - Pediatric vs. elderly
 - Socioeconomic disparities

- **Care setting**
 - Inpatient vs. outpatient
 - Primary vs. secondary care

- **Data capture process**
 - Administrative claims
 - Electronic health records
 - Clinical registries

- **Health system**
 - Insured vs. uninsured
 - Country policies
The journey to real-world evidence

Types of evidence desired:
- **Cohort identification**
 - Clinical trial feasibility and recruitment
- **Clinical characterization**
 - Treatment utilization
 - Disease natural history
 - Quality improvement
- **Population-level effect estimation**
 - Safety surveillance
 - Comparative effectiveness
- **Patient-level prediction**
 - Precision medicine
 - Disease interception
Agenda

Day 1
• Group: align on shared problem(s)
• Group photos! 10am
• Break out: design and implement the study
• Group: review progress

Day 2
• Group: execute study across data partners
• Group: synthesize results
• Group: Discuss evidence generation process
F2F objectives

1. Answer a clinical question:

“Predicting randomized clinical trial results with real-world evidence: A case study in the comparative safety of tofacitinib, adalimumab and etanercept in patients with rheumatoid arthritis” Lead: Bridget Wang

2. Learn about improving the real-world evidence generation process:

“It takes a village: An open-science approach to improving the quality and efficiency of the real-world evidence generation process” Lead: Kristin Feeney
Comparative safety of tofacitinib, adalimumab and etanercept in patients with rheumatoid arthritis – Clinical Background and Motivation

Runsheng “Bridget” Wang, MD
Division of Rheumatology, CUMC
Department of Biomedical Informatics, Columbia University
Rheumatoid Arthritis

- A **chronic** inflammatory condition, primarily involving joints.
 - Inflammation in synovium -> pain and swelling of joint
 - Uncontrolled inflammation -> damage in cartilage and bone -> joint damage
- Affecting 1.5 million people in the United States
- Clinical presentation:
 - Chronic joint pain, swelling, morning stiffness
 - Symmetrical, small joints > large joints
 - Extra-articular involvement: rheumatoid nodules, myositis, vasculitis, interstitial lung diseases, pericarditis/myocarditis, scleritis/episcleritis, Sjogren’s syndrome, hematologic abnormalities
- Comorbidities and Mortality:
 - Infection
 - Lymphoproliferative disorders
 - Cardiovascular disorders
 - Increased risk for premature mortality
- Diagnosis: Clinical symptoms, blood tests, imaging studies
Management of RA

• Goal of treatment:
 – stop inflammation
 – prevent joint damage
 – improve/reserve physical function
 – reduce long-term complications
Pharmacologic Management of RA

• **Disease-Modifying AntiRheumatic Drugs**: DMARDs
 – conventional synthetic DMARDs (csDMARDs) – first line treatment
 • Methotrexate (MTX), Sulfasalazine (SSZ), Hydroxychloroquine (HCQ), Leflunomide (LEF), etc.
 – biologic DMARDs (bDMARDs) – infusion or injection
 • TNFi: e.g. Adalimumab (ADA), Etanercept (ETN), etc.

• CTLA antagonist: abatacept (ABT)
Pharmacologic Management of RA

• When patient failed first csDMARDs:
 – Treatment decision is based on:
 – Efficacy
 • No significant difference between bDMARDs vs. tsDMARDs 1,2,3
 – ORAL Strategy trial: TOF vs. TOF + MTX vs. ADA + MTX
 – Safety
 • Short-term safety data: RCTs
 • Long-term safety data: observational studies, e.g. LTE, registries, cohort studies, etc.

1, Chatzidionysiou et al, 2017
2, Nam et al, 2017
3, Fleischmann et al, 2017
<table>
<thead>
<tr>
<th></th>
<th>Tofacitinib (TOF)</th>
<th>Adalimumab (ADA)</th>
<th>Etanercept (ETN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Jak Kinase inhibitor</td>
<td>TNF monoclonal Ab</td>
<td>TNF receptor antagonist</td>
</tr>
<tr>
<td>Dosage/Route</td>
<td>Oral, 5mg twice a day</td>
<td>SubQ inj, 40mg Q2W</td>
<td>SubQ inj, 50mg QW</td>
</tr>
<tr>
<td>Warnings and Precautions</td>
<td>Serious infections</td>
<td>Serious infections</td>
<td>Serious infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive fungal infection</td>
<td>Fungal infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HepB reactivation</td>
<td>HepB reactivation</td>
</tr>
<tr>
<td></td>
<td>Lymphoma & Malignancy</td>
<td>Lymphoma & malignancy</td>
<td>Lymphoma & malignancy</td>
</tr>
<tr>
<td></td>
<td>GI perferation</td>
<td>Demyelinating diseases</td>
<td>Demyelinating disease</td>
</tr>
<tr>
<td></td>
<td>Lymphopenia, neutropenia, anemia</td>
<td>Cytopenia,</td>
<td>Pancytopenia, aplastic anemia</td>
</tr>
<tr>
<td></td>
<td>Liver enzyme elevation</td>
<td>Heart failure</td>
<td>Heart failure</td>
</tr>
<tr>
<td></td>
<td>Lipid abnormalities</td>
<td>Lupus-like syndrome</td>
<td>Lupus-like syndrome Autoimmune hepatitis</td>
</tr>
</tbody>
</table>
Safety Outcomes

- Infections
 - Serious infections
 - Opportunistic infections: e.g. tuberculosis, herpes zoster
- Malignancies
- Cardiovascular diseases
- Mortalities
- Lab abnormalities: lipid profile, renal function, liver enzymes
- Hematological abnormalities
- GI side effects
- Demyelinating disease
- Induction of autoimmune diseases
- Teratogenicity
Tofacitinib vs. TNFi -

- **ORAL Strategy trial**\(^1\):
 - TOF (n=384) vs.
 - TOF + MTX (n=376) vs.
 - TOF + ADA (n=386)

- **Efficacy:**
 - TOF + MTX was non-inferior to TOF + ADA when assessing ACR50 at 6 months

- **Safety:**

<table>
<thead>
<tr>
<th></th>
<th>Tofacitinib monotherapy (n=384)</th>
<th>Tofacitinib and methotrexate (n=376)</th>
<th>Adalimumab and methotrexate (n=386)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of adverse events*</td>
<td>598</td>
<td>652</td>
<td>620</td>
</tr>
<tr>
<td>Patients with adverse events</td>
<td>226 (59%)</td>
<td>231 (61%)</td>
<td>253 (66%)</td>
</tr>
<tr>
<td>Patients with treatment-related adverse events</td>
<td>101 (26%)</td>
<td>111 (30%)</td>
<td>133 (35%)</td>
</tr>
<tr>
<td>Patients with serious adverse events</td>
<td>35 (9%)</td>
<td>27 (7%)</td>
<td>24 (6%)</td>
</tr>
<tr>
<td>Patients discontinuing due to adverse events</td>
<td>23 (6%)</td>
<td>26 (7%)</td>
<td>37 (10%)</td>
</tr>
<tr>
<td>Patients with severe adverse events (defined by the investigator)</td>
<td>24 (6%)</td>
<td>17 (5%)</td>
<td>23 (6%)</td>
</tr>
<tr>
<td>Deaths†</td>
<td>2 (1%)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adverse events of special interest</th>
<th>Tofacitinib monotherapy</th>
<th>Tofacitinib and methotrexate</th>
<th>Adalimumab and methotrexate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious infections</td>
<td>6 (2%)</td>
<td>10 (3%)</td>
<td>6 (2%)</td>
</tr>
<tr>
<td>Herpes zoster (serious and non-serious)</td>
<td>4 (1%)</td>
<td>8 (2%)</td>
<td>6 (2%)</td>
</tr>
<tr>
<td>Herpes zoster (serious and non-serious) in patients who were vaccinated</td>
<td>1/69 (1%)</td>
<td>2/75 (3%)</td>
<td>0/72 (0%)</td>
</tr>
<tr>
<td>Opportunistic infections (excluding tuberculosis)</td>
<td>2 (1%)</td>
<td>1 (<1%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>0</td>
<td>2 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>MACE (non-fatal)</td>
<td>0</td>
<td>0</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Malignancy (excluding non-melanoma skin cancer)</td>
<td>1 (<1%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non-melanoma skin cancer</td>
<td>2 (1%)</td>
<td>0</td>
<td>1 (<1%)</td>
</tr>
</tbody>
</table>

Data are n, n (%), or n/N (%). MACE=major adverse cardiovascular event (includes non-fatal myocardial infarction, fatal cardiovascular event, and non-fatal cerebrovascular event). *Patients could have had more than one adverse event. †One patient died of urosepsis; one patient died of atypical pneumonia and respiratory distress syndrome associated with influenza A.

Table 3: Summary of adverse events, serious adverse events, and discontinuations in the safety analysis set

1. Fleischmann et al. 2017
• Observational study1:
 – MarketScan database (2011-2014)
 • DMARDs (n=5399) vs.
 • TNFi +/- DMARDs (n=13367) vs.
 • Non-TNFi Biologics +/- DMARDs (n=2902) vs.
 • TOF +/- DMARDs (n=164)
 – Effectiveness – assessed by a claim-based algorithm
 • Overall low
 • TNFi, non-TNFi bio > TOF > DMARDs
 – Safety – Hazards of serious infection were not significantly different

1 Machado et al. 2018
An ongoing Phase 3b/4 study

- Safety Study Of Tofacitinib Versus Tumor Necrosis Factor (TNF) Inhibitor In Subjects With Rheumatoid Arthritis (NCT02092467)
- Study Subjects:
 - I/C:
 - Age > 50 yo
 - moderate to severe RA
 - IR to MTX
 - One CV risk factor
 - E/C:
 - Current or recent infection
 - Clinically significant lab abnormalities
 - pregnancy
- Intervention: TOF 5mg BID vs. TOF 10mg BID vs. ADA or ETN
- Primary Outcomes: malignancy, Incidence of MACE
- Secondary Outcomes: Opportunistic Infections, Hepatic events, CV events other than MACE, all cause mortality, DAS28, ACR20, CDAI, ACR50, ACR70, HAQ-DI
Agenda

Day 1
• Group: align on shared problem(s)
• Group photos! 10am
• Break out: design and implement the study
• Group: review progress

Day 2
• Group: execute study across data partners
• Group: synthesize results
• Group: Discuss evidence generation process
Group photo!