

Improving Palliative Care Using Patient Level Prediction

Nigam Shah nigam@stanford.edu

Palliative care in the USA

Palliative care at Stanford

^{*}Screening admissions over 2 weeks using the INOVA palliative care tool

Mortality as a surrogate for need

Deceased	131,006	
with V66.7	4,657	3.55%
with V66.7 at least		
6 mon prior to death	105	0.08%

Problem set up

A predictive model for mortality

Avati et al, IEEE International Conference on Bioinformatics and Biomedicine Kansas City, MO, USA, November 13 - 16, 2017

We have a model, what next?

- Can we explain the predictions?
- What would the intervention be?
- Who dispenses the intervention?
- What are the mechanics of dispensing the intervention?
 - What is the capacity to intervene?
- What is the threshold for action?
 - How many false positives can there be in the top k predictions?
- What performance measure do we use?
 - Physician agreement | useful consult | or accuracy (F1 etc.)
- What are the outcomes we track?
 - Consult rates | time between AD setup and death | Rate of AD set up | Increase in no. of in home deaths | ?
- Where would we deploy the model (in SHC, or SOM)?

Explaining the predictions

Patient MRN	XXXXXXX	
Probability score	0.946	

Factors	Code	Value	Influence	Description	
Top Diagnostic factors	V10.51	4	0.0051	Personal history of malignant neoplasm of bladder	
	V10.46	5	0.0019	9 Personal history of malignant neoplasm of prostate	
	518.5	1	0.0012	Pulmonary insufficiency following trauma and surgery	
	518.82	1	0.0008	Other pulmonary insufficiency	
	88.75	1	0.0006	Diagnostic ultrasound of urinary system	
Top Procedural factors	88331	1	0.0017	Pathology consultation during surgery with FS	
	75984	1	0.0014	Transcatheter Diagnostic Radiology Procedure	
	72158	1	0.0013	MRI and CT Scans of the Spine	
	Code_Type_Count	76	0.0011	Summary statistic (count of all ICD/CPT codes)	
	76005	1	0.0007	Fluroscopic guidance and localization of needle or catheter tip for spine	
Top Medication factors					
Top Encounter factors	Hx Scan	21	0.0012	Number of scan encounters of all types	
	Inpatient	60	0.0004	Number of days patient was admitted	
	Var_Codes_per_Day	8	0.0002	Summary statistic (variance in number of codes assigned per day)	
	Code_Day_Count	88	0.0001	Number of days any encounter code was assigned	
Top Demographic factors	Age	81	0.0010	Age of patient in years at prediction time	

Taking prediction models into practice

- Ask what would you do with the prediction in hand?
- Look for situations where the NNT for an action is 1-3:
 100 and a model can get it to 3-5: 10
- Think of the model output as a ranking metric
- Think of the model as a screening test
 - Don't get hung up on AUROC, AUPRC, the exact probabilities.
- Understand your capacity for action
 - Focus on precision @ K.
- Explanation of the prediction is over-rated
 - Separate prediction from action

Pilot project participants

People

- Stephani Harman, Medical director of Palliative Care services at SHC
- Yohan Vetteth, VP of Analytics at SHC
- Topher Sharp, CMIO at SHC
- Kenneth Jung, Dept of Medicine
- Lance Downing, Dept of Medicine
- Anand Avati, Dept of Computer Science
- Andrew Ng, Dept of Computer Science

Funding

- Seed funding from Dept.
- Stanford Data Science Institute