

OHDSI Tutorial: Patient-level predictive modelling in observational healthcare data

Faculty:

Peter Rijnbeek (Erasmus MC)

Jenna Reps (Janssen Research and Development)

Joel Swerdel (Janssen Research and Development)

Today's Agenda

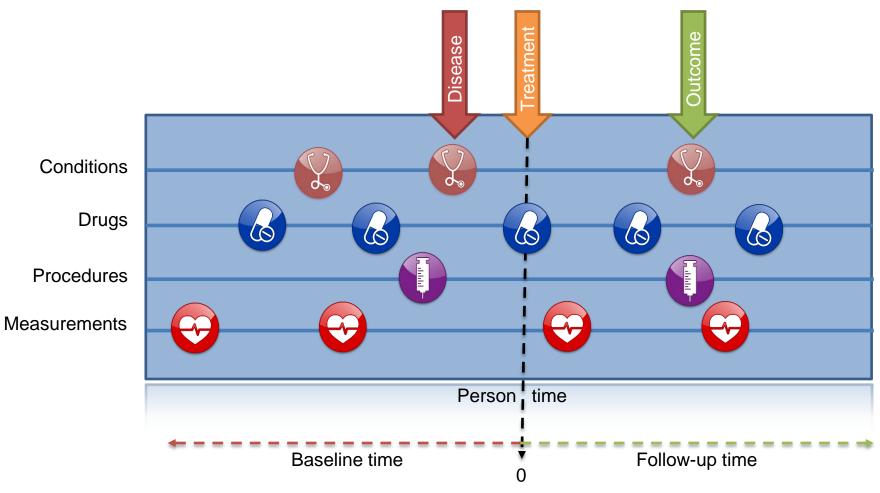
Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

OHDSI's Mission

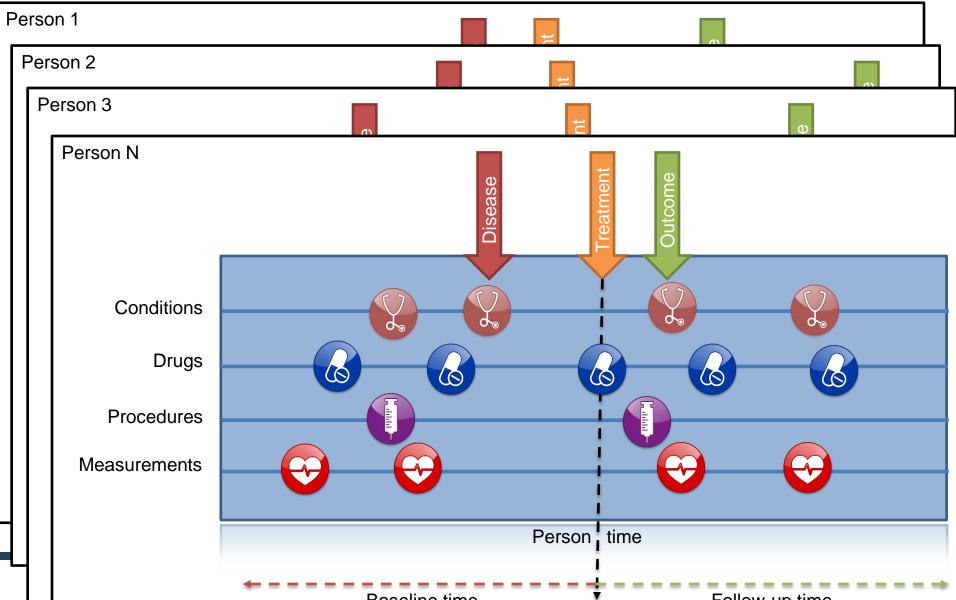
To improve health, by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care.

Hripcsak G, et al. (2015) Observational Health Data Sciences and Informatics (OHDSI): Opportunities for observational researchers. Stud Health Technol Inform 216:574–578.

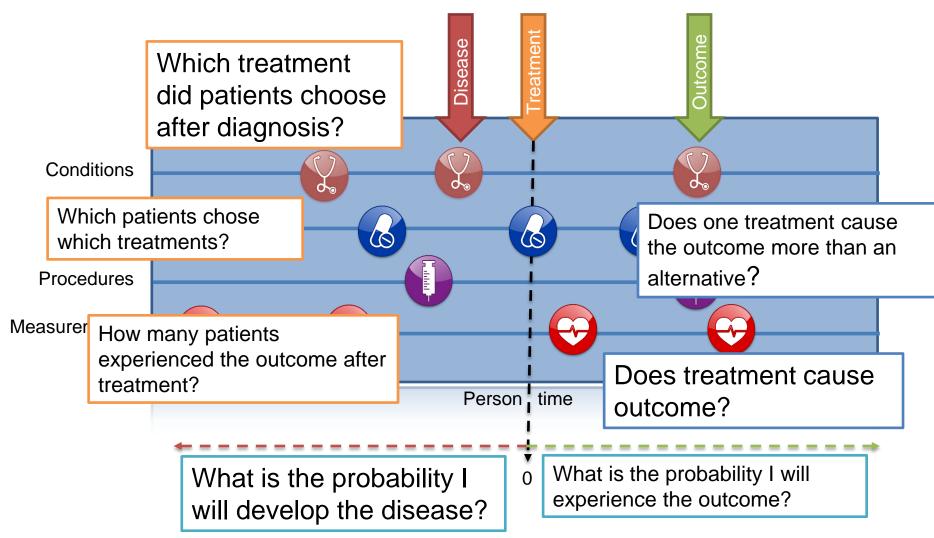
A caricature of the patient journey



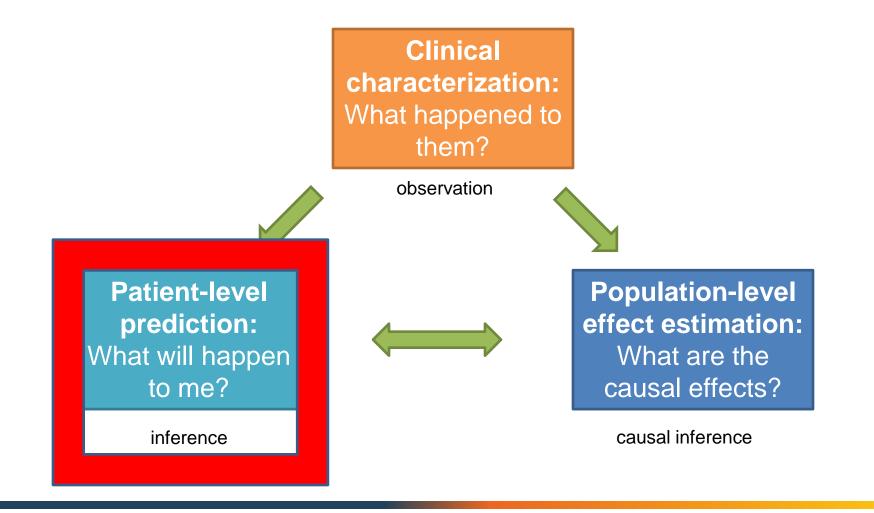
Each observational database is just an (incomplete) compilation of patient journeys



Questions asked across the patient journey



Complementary evidence to inform the patient journey



What is OHDSl's strategy to deliver reliable evidence?

Methodological research

- Develop new approaches to observational data analysis
- Evaluate the performance of new and existing methods
- Establish empirically-based scientific best practices

Open-source analytics development

- Design tools for data transformation and standardization
- Implement statistical methods for large-scale analytics
- Build interactive visualization for evidence exploration

Clinical evidence generation

- Identify clinically-relevant questions that require real-world evidence
- Execute research studies by applying scientific best practices through open-source tools across the OHDSI international data network
- Promote open-science strategies for transparent study design and evidence dissemination

Today's Agenda

Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

What is Patient-Level Prediction?

Peter Rijnbeek, PhD Erasmus MC

Learning Objectives

Part 1: Learn what a patient-level prediction model is?

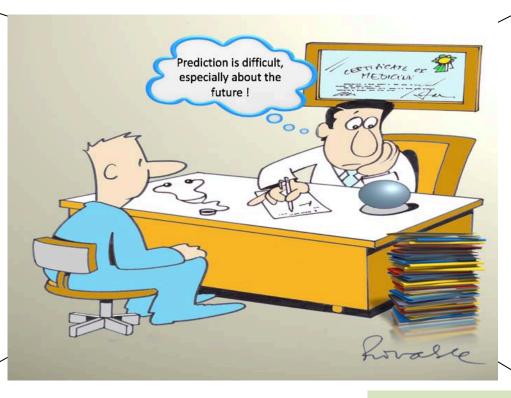
Part 2: Understand the patient-level prediction modelling process

Part 3: Gain insights from a proof-of-concept study in depression patients

Clinicians are confronted with prediction questions on a daily basis. What options do they have?

Deny ability to predict at the individual patient level

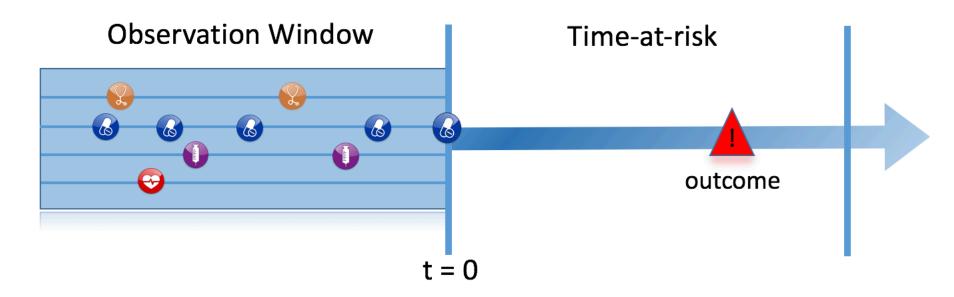
Quote an overall average to all patients



Utilize knowledge and personal experience

Provide a personalized prediction based on an advanced clinical prediction model

Problem definition



Among a target population (T), we aim to predict which patients at a defined moment in time (t=0) will experience some outcome (O) during a time-at-risk Prediction is done using only information about the patients in an observation window prior to that moment in time.

What are the key inputs to a patient-level prediction study?

Input parameter	Design choice
Target cohort (T)	
Outcome cohort (O)	
Time-at-risk	
Model specification -which model(s)? -which parameters? -which covariates?	

Types of prediction problems in healthcare

Туре	Structure	Example
Disease onset and progression	Amongst patients who are newly diagnosed with <insert disease="" favorite="" your="">, which patients will go on to have <another complication="" disease="" or="" related=""> within <time diagnosis="" from="" horizon="">?</time></another></insert>	Among newly diagnosed AFib patients, which will go onto to have ischemic stroke in next 3 years?
Treatment choice	Amongst patients with <indicated disease=""> who are treated with either <treatment 1=""> or <treatment 2="">, which patients were treated with <treatment 1=""> (on day 0)?</treatment></treatment></treatment></indicated>	Among AFib patients who took either warfarin or rivaroxaban, which patients got warfarin? (as defined for propensity score model)
Treatment response	Amongst patients who are new users of <insert chronically-used="" drug="" favorite="" your="">, which patients will <insert desired="" effect=""> in <time window="">?</time></insert></insert>	Which patients with T2DM who start on metformin stay on metformin after 3 years?
Amongst patients who are new users of <insert drug="" favorite="" your="">, which patients will experience <insert adverse="" drug="" event="" favorite="" from="" known="" profile="" the="" your=""> within <time exposure="" following="" horizon="" start="">? Among new users of warfarin, which patients will have GI bleed in 1 year?</time></insert></insert>		
Treatment adherence	Amongst patients who are new users of <insert chronically-used="" drug="" favorite="" your="">, which patients will achieve <adherence metric="" threshold=""> at <time horizon="">?</time></adherence></insert>	Which patients with T2DM who start on metformin achieve >=80% proportion of days covered at 1 year?

Difference between explanatory models and prediction models

People build a prediction model and make causal claims. This is not correct!

Different interpretations of "Model"

"Model" is being interpreted differently in Statistics, Epidemiology, and Data Science

- Statistics: models are used to describe data, it is more about data characterization
- Epidemiologist are trained to think about models as tests of hypotheses to perform causal inference
- Data Scientists interpret the word "model" in the context of predicting future events using the available data

It is important we understand what the difference is between explanatory modelling and predictive modelling!

Shmueli, G. 2011. Predictive Analytics in Information Systems Research. MIS Quarterly (35:3), pp. 553-57

Shmueli, G. 2010. To Explain or to Predict?, Statistical Science (25:3), pp. 289-310

Some definitions

Explanatory Model: Theory-based statistical model for testing causal

hypotheses

Explanatory Power: Strength of the relationship in statistical model

Predictive Model: Empirical model/algorithm for predicting new

observations

Predictive Power: Ability to accurately predict new observations

You can empirically evaluate the predictive power of explanatory model but you cannot empirically evaluate the explanatory power of a predictive model.

The best explanatory model is not necessary the best predictive model!

You do not have to understand the underlying causes in order to predict well!

Explanatory modelling versus Predictive analytics

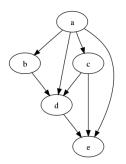


Table 1. Differences Between Explanatory Statistical Modeling and Predictive Analytics		
Step	Explanatory	Predictive
Analysis Goal	Explanatory statistical models are used for testing causal hypotheses.	Predictive models are used for predicting new observations and assessing predictability levels.
Variables of Interest	Operationalized variables are used only as instruments to study the underlying conceptual constructs and the relationships between them.	The observed, measurable variables are the focus.
Model Building Optimized Function	In explanatory modeling the focus is on minimizing model bias. Main risks are type I and II errors.	In predictive modeling the focus is on minimizing the combined bias and variance. The main risk is over-fitting.
Model Building Constraints	Empirical model must be interpretable, must support statistical testing of the hypotheses of interest, must adhere to theoretical model (e.g., in terms of form, variables, specification).	Must use variables that are available at time of model deployment.
Model Evaluation	Explanatory power is measured by strength-of- fit measures and tests (e.g., R ² and statistical significance of coefficients).	Predictive power is measured by accuracy of out-of-sample predictions.

Why should we avoid the term "Risk Factor"

"Risk Factor" is an ambiguous term.

A predictive model is not selecting parameters based on their explanatory power but it is <u>using</u> association to improve predictive accuracy -> <u>association</u> does not equal causation!

If your goal is to search for causal factors you should use population-level effect estimation.

If your goal is to search for association of individual parameters you should use clinical characterization.

We should avoid using the term "risk factors" and use the term predictors to make explicit that we are assessing predictive value.

How to interpret beta values in a logistic regression prediction model?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

Each beta coefficient represents the additional effect of adding that variable to the model, if the effects of all other variables in the model are already accounted for.

any change of the model can result in a change of all the beta coefficients

Value	Association	Causation
b = 0	Unknown	Unknown
b <> 0	Yes	Unknown
b > 0	Positively associated under the assumption that all other beta values are fixed. If the variable is correlated to any other variable the direction of the association is unknown	Unknown
b < 0	Negatively associated under the assumption that all other beta values are fixed. If the variable is correlated to any other variable the direction of the association is unknown	Unknown

Why is predictive modelling still valuable?

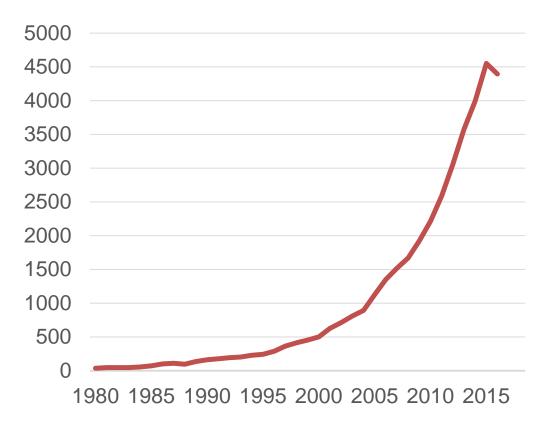
- 1. In healthcare the question "What is going to happen to me?" is often more relevant than "Why?"
- 2. Knowing if something is predictable or not based on the available data is valuable on its own.

Types of prediction problems in healthcare

Туре	Structure	Example
Disease onset and progression	Amongst patients who are newly diagnosed with <insert disease="" favorite="" your="">, which patients will go on to have <another complication="" disease="" or="" related=""> within <time diagnosis="" from="" horizon="">?</time></another></insert>	Among newly diagnosed AFib patients, which will go onto to have ischemic stroke in next 3 years?
Treatment choice	Amongst patients with <indicated disease=""> who are treated with either <treatment 1=""> or <treatment 2="">, which patients were treated with <treatment 1=""> (on day 0)?</treatment></treatment></treatment></indicated>	Among AFib patients who took either warfarin or rivaroxaban, which patients got warfarin? (as defined for propensity score model)
Treatment response	Amongst patients who are new users of <insert chronically-used="" drug="" favorite="" your="">, which patients will <insert desired="" effect=""> in <time window="">?</time></insert></insert>	Which patients with T2DM who start on metformin stay on metformin after 3 years?
Amongst patients who are new users of <insert drug="" favorite="" your="">, which patients will experience <insert adverse="" drug="" event="" favorite="" from="" known="" profile="" the="" your=""> within <time exposure="" following="" horizon="" start="">? Among new users of warfarin, which patients will have GI bleed in 1 year?</time></insert></insert>		
Treatment adherence	Amongst patients who are new users of <insert chronically-used="" drug="" favorite="" your="">, which patients will achieve <adherence metric="" threshold=""> at <time horizon="">?</time></adherence></insert>	Which patients with T2DM who start on metformin achieve >=80% proportion of days covered at 1 year?

Questions?

Growing interest in prediction modelling



Reviews of published prediction models

- 800 models in individuals with CVD (Sessler 2015)
- 396 models for predicting cardiovascular disease (Damen 2016)
- 111 models for prostate cancer (Shariat 2008)
- 102 models for TBI (Perel 2006)
- 83 models for stroke (Counsell 2001)
- 54 models for breast cancer (Altman 2009)
- 43 models for type 2 diabetes (Collins 2011; van Dieren 2012)
 - 30+ more models have since been published!
- 31 models for osteoporotic fracture (Steurer 2011)
- 29 models in reproductive medicine (Leushuis 2009)
- 26 models for hospital readmission (Kansagara 2011)

Predicting Stroke in patients with atrial fibrillation

Validation of Clinical Classification Schemes for Predicting Stroke

Results From the National Registry of Atrial Fibrillation

Brian F. Gage, MD, MSc	
Amy D. Waterman, PhD	
William Shannon, PhD	
Michael Boechler, PhD	-
Michael W. Rich, MD	
Martha J. Radford, MD	

HE ATRIAL FIBRILLATION (AF) population is heterogeneous in terms of ischemic stroke risk. Subpopulations have annual stroke rates that range from less than 2% to more than 10%. 1-5 Because the

Context Patients who have atrial fibrillation (AF) have an increased risk of stroke, but their absolute rate of stroke depends on age and comorbid conditions.

Objective To assess the predictive value of classification schemes that estimate stroke risk in patients with AF.

Design, Setting, and Patients Two existing classification schemes were combined into a new stroke-risk scheme, the CHADS₂ index, and all 3 classification schemes were validated. The CHADS₂ was formed by assigning 1 point each for the presence of congestive heart failure, hypertension, age 75 years or older, and diabetes mellitus and by assigning 2 points for history of stroke or transient ischemic attack. Data from peer review organizations representing 7 states were used to assemble a National Registry of AF (NRAF) consisting of 1733 Medicare beneficiaries aged 65 to 95 years who had nonrheumatic AF and were not prescribed warfarin at hospital discharge.

Main Outcome Measure Hospitalization for ischemic stroke, determined by Medicare claims data.

CHADS2	Score
Congestive Heart Failure	1
Hypertension	1
Age ≥ 75	1
Diabetes	1
Stroke / TIA	2

How to define the CHADS₂ patient-level prediction problem?

Input parameter	Design choice
Target cohort (T)	Patients newly diagnosed with AF
Outcome cohort (O)	Stroke
Time-at-risk	1000 days
Model specification	Logistic Regression using 5 pre-selected covariates

Current status of predictive modelling

Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review

RECEIVED 27 October 2015 REVISED 25 January 2016 ACCEPTED 20 February 2016

Benjamin A Goldstein^{1,2}, Ann Marie Navar^{2,3}, Michael J Pencina^{1,2}, John PA Ioannidis^{4,5}

ABSTRACT

Objective Electronic health records (EHRs) are an increasingly common data source for clinical risk prediction, presenting both unique analytic opportunities and challenges. We sought to evaluate the current state of EHR based risk prediction modeling through a systematic review of clinical prediction studies using EHR data.

Methods We searched PubMed for articles that reported on the use of an EHR to develop a risk prediction model from 2009 to 2014. Articles were extracted by two reviewers, and we abstracted information on study design, use of EHR data, model building, and performance from each publication and supplementary documentation.

Results We identified 107 articles from 15 different countries. Studies were generally very large (median sample size $= 26 \ 100$) and utilized a diverse array of predictors. Most used validation techniques (n = 94 of 107) and reported model coefficients for reproducibility (n = 83). However, studies did not fully leverage the breadth of EHR data, as they uncommonly used longitudinal information (n = 37) and employed relatively few predictor variables (median = 27 variables). Less than half of the studies were multicenter (n = 50) and only 26 performed validation across sites. Many studies did not fully address biases of EHR data such as missing data or loss to follow-up. Average c-statistics for different outcomes were: mortality (0.84), clinical prediction (0.83), hospitalization (0.71), and service utilization (0.71).

Conclusions EHR data present both opportunities and challenges for clinical risk prediction. There is room for improvement in designing such studies.

Current status of predictive modelling

- Inadequate internal validation
- Small sets of features
- Incomplete dissemination of model and results
- No transportability assessment
- Impact on clinical decision making unknown

Relatively few prediction models are used in clinical practice

OHDSI Mission for Patient-Level Prediction

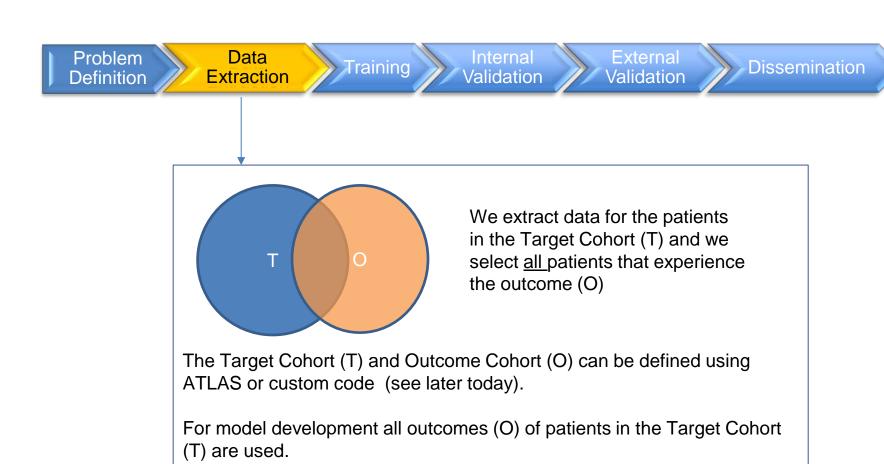
OHDSI aims to develop a systematic process to learn and evaluate large-scale patient-level prediction models using observational health data in a data network

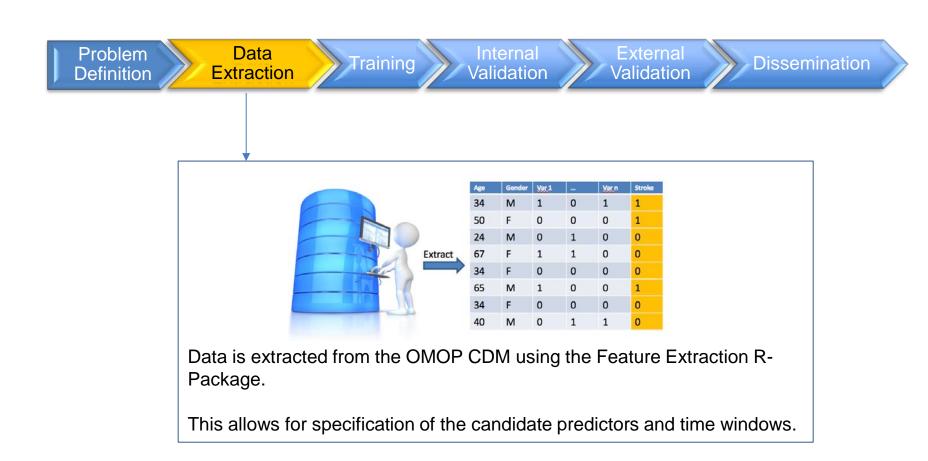
Evidence Evaluation Evidence Dissemination

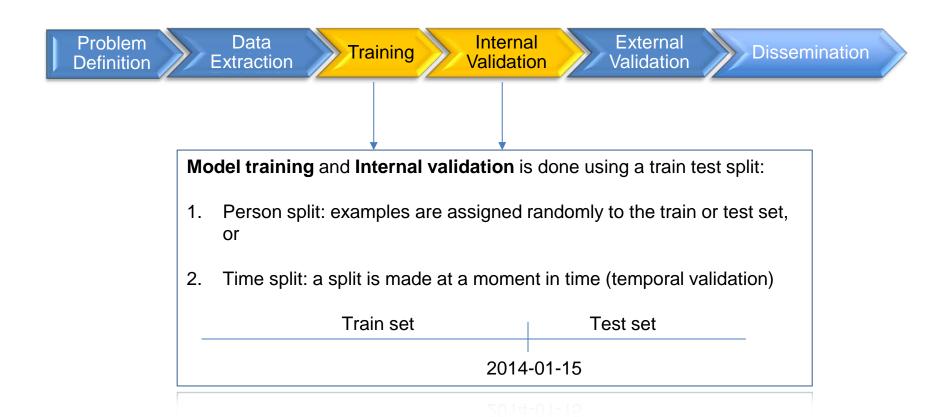
Part 2: How to build and validate a prediction model?

Problem pre-specification. A study protocol should unambiguously prespecify the planned analyses.

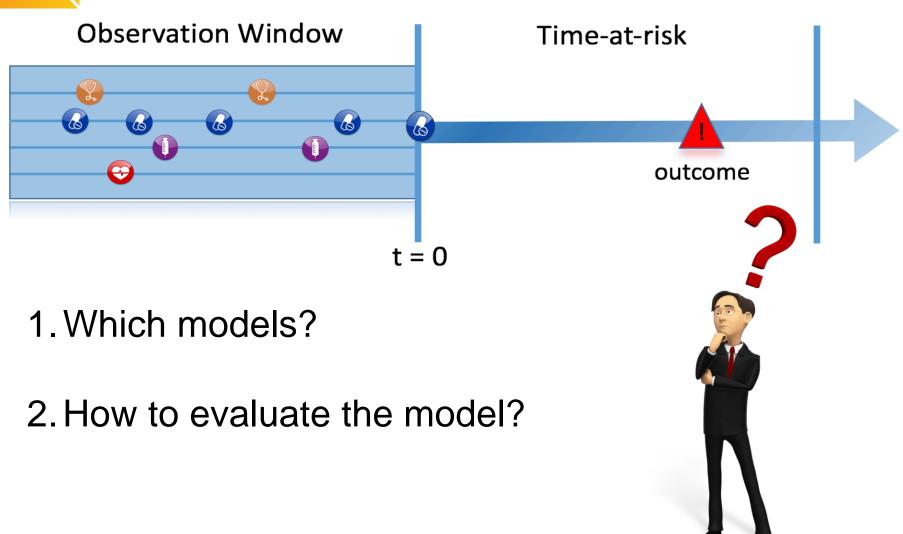
Transparency. Others should be able to reproduce a study in every detail using the provided information. All analysis code should be made available as open source on the OHDSI Github.



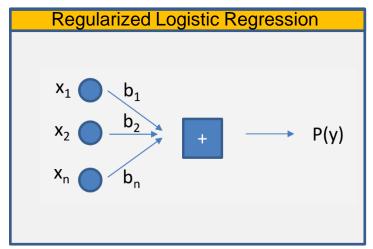


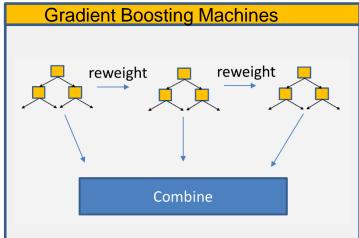


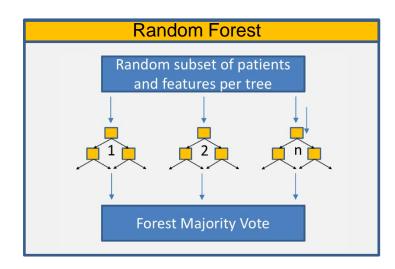
Model Training



Models and Algorithms







Many other models for example:

K-nearest neighbors Naïve Bayes Decision Tree Adaboost Neural Network Etc.

Model selection is an empirical process

The "No Free Lunch" theorem states that there is not one model that works best for every problem. The assumptions of a great model for one problem may not hold for another problem.

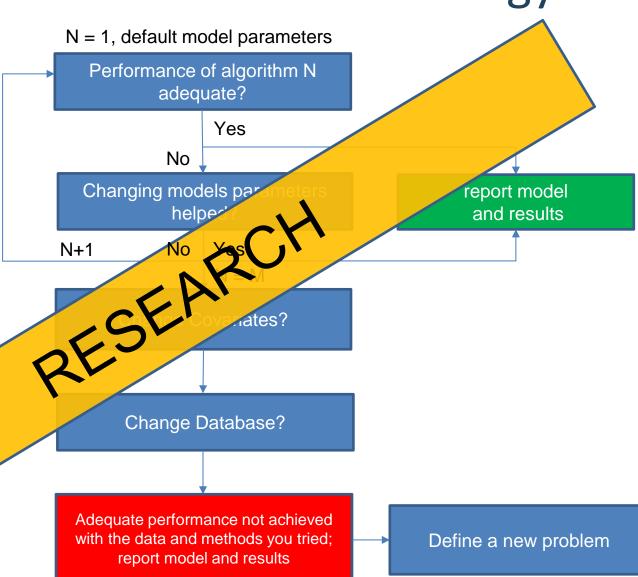
It is common in machine learning to try multiple models and find one that works best for that particular problem.

OHDSI Model Selection Strategy

Suggested ordering of available algorithms in PLP package

N Algorithms

- Lasso Logistic Regression
- 2. Random Forest
- 3. Gradient Boosting Machine
- 4. Neural Network
- 5. KNN
- M. ...



Patient-Level Prediction Roadmap

Evidence Generation Evidence Evaluation

Evidence Dissemination

Protocol Sharing CDM Extractions Code Sharing Train / Test split

Model Validation

What makes a good model?

<u>Discrimination</u>: differentiates between those with and without the event, i.e. predicts higher probabilities for those with the event compared to those who don't experience the event

<u>Calibration:</u> estimated probabilities are close to the observed frequency

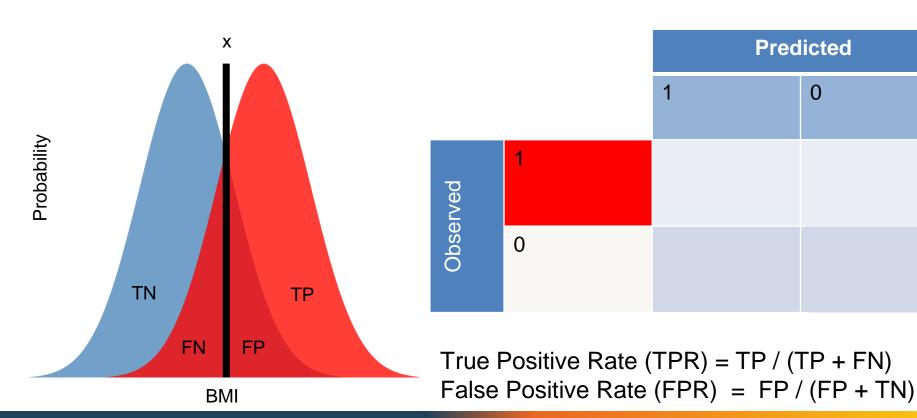
How to assess discrimination?

0

Suppose our classifier is simply BMI > x.

Both classes (blue = 0, red = 1) have their own probability distribution of BMI

The choice of X then determines how sensitive or specific our algorithm is.



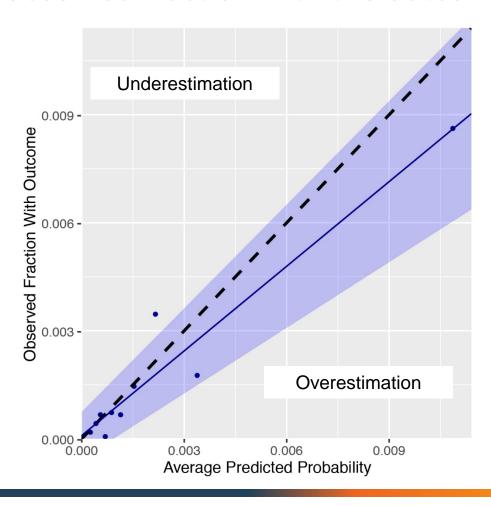
Receiver Operator Characteristic (ROC) curve

Calibration

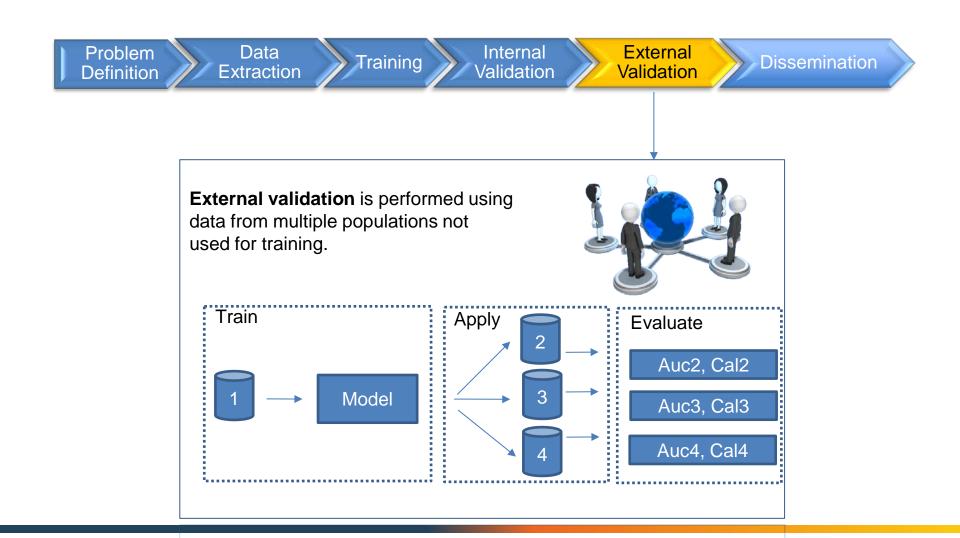
- Agreement between observed and predicted risk
- We want a model that has good calibration across the range of predictions (not just on average)
- A model is well calibrated if for every 100 individuals given a risk of p% close to p have the event.
- For example, if we predict a 12% risk that an atrial fibrillation patient will have a stroke within 365 days, the observed proportion should be approx. 12 strokes per 100 patients

Calibration Assessment

How close is the average predicted probability to the observed fraction with the outcome?



External Validation



Patient-Level Prediction Roadmap

Evidence Generation Evidence Evaluation Evidence Dissemination

Protocol Sharing CDM Extractions Code Sharing Train / Test split Standardized Process
Discrimination
Calibration
External Validation

Dissemination

Dissemination of study results should follow the minimum requirements as stated in the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement ¹.

- Internal and external validation
- Sharing of full model details
- Sharing of all analyses code to allow full reproducibility

Website to share protocol, code, models and results for all databases

¹ Moons, KG et al. Ann Intern Med. 2015;162(1):W1-73

Patient-Level Prediction Roadmap

Evidence Generation Evidence Evaluation Evidence Dissemination

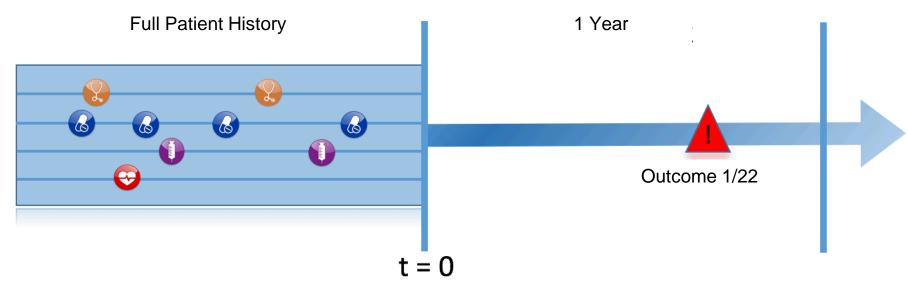
Protocol Sharing CDM Extractions Code Sharing Train / Test split Standardization
Discrimination
Calibration
External Validation

Publications (TRIPOD) Model sharing Full transparency

Questions?

Part 3: Prediction in Patients with Pharmaceutically Treated Depression

Problem definition



First Pharmaceutically Treated Depression

Among patients <u>in 4 different databases</u>, we aim to develop prediction models to predict which patients at a defined moment in time (<u>First Pharmaceutically Treated Depression Event</u>) will experience one out of <u>22 different outcomes</u> during a time-at-risk (<u>1 year</u>). Prediction is done using <u>all demographics</u>, <u>conditions</u>, <u>and drug use</u> data prior to that moment in time.

Target (T) Cohort Definition

Patients are included in the cohort of interest at the date of the first occurrence of Pharmaceutically Treated Depression if the following inclusion criteria apply:

- 1. At least 365 days of history
- 2. At least 365 days of follow-up or the occurrence of the outcome of interest
- 3. No occurrence of the event prior to the index date

Setting

Stroke

Tinnitus

death

Vertigo

Suicide and suicidal ideation

Databases

Database	Depression	Stroke
CCAE	659402	1351
MDCD	79818	356
MDCR	57839	874
OPTUM	363051	1183

Data extraction

- All demographics, conditions, drugs
- All 22 outcome cohorts

Training and testing

- Time split for training and testing
- Transportability for Stroke

Models

- Gradient Boosting
- Random Forest
- Regularized Regression

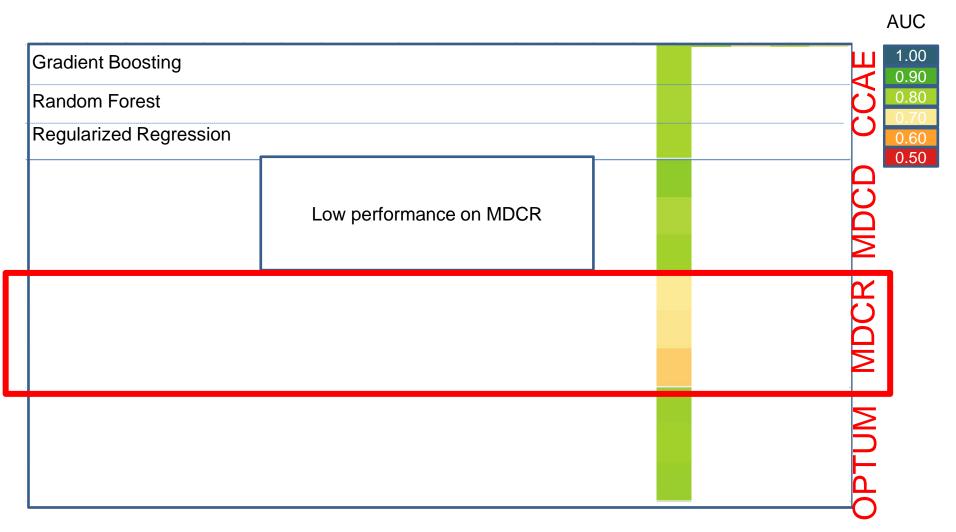
Outcomes Acute liver injury Acute myocardial infarction Alopecia Constipation Decreased libido Delirium Diarrhea Fracture Gastrointestinal hemhorrage Hyperprolactinemia Hyponatremia Hypotension Hypothyroidism Insomnia Nausea Open-angle glaucoma Seizure

Ventricular arrhythmia and sudden cardiac

Model Discrimination Stroke **STROKE AUC Gradient Boosting** 0.90 Random Forest Regularized Regression 0.50

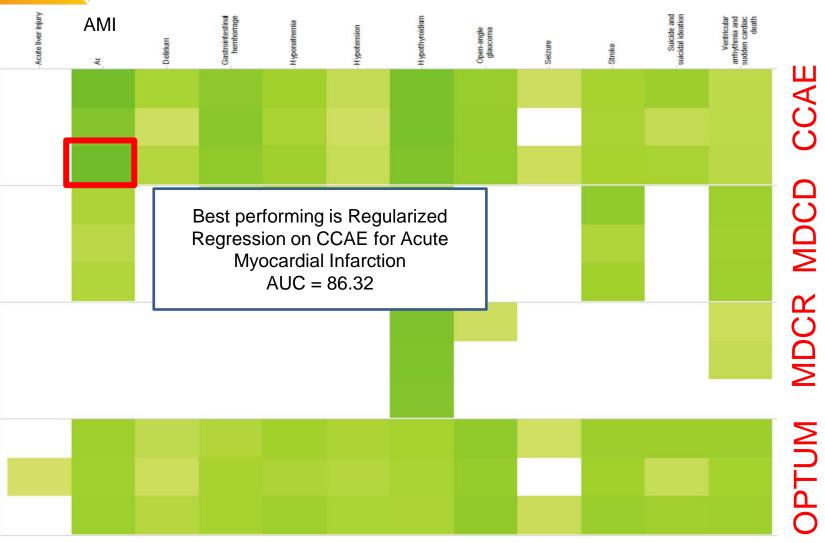
Model Discrimination

Outcomes

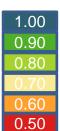


Model Discrimination AMI Nausea Diarrhea Stroke Hypothyroidism **AUC** 1.00 0.90 0.60 0.50 Some outcomes we can predict very well some we cannot

Outcomes with AUC > 0.75

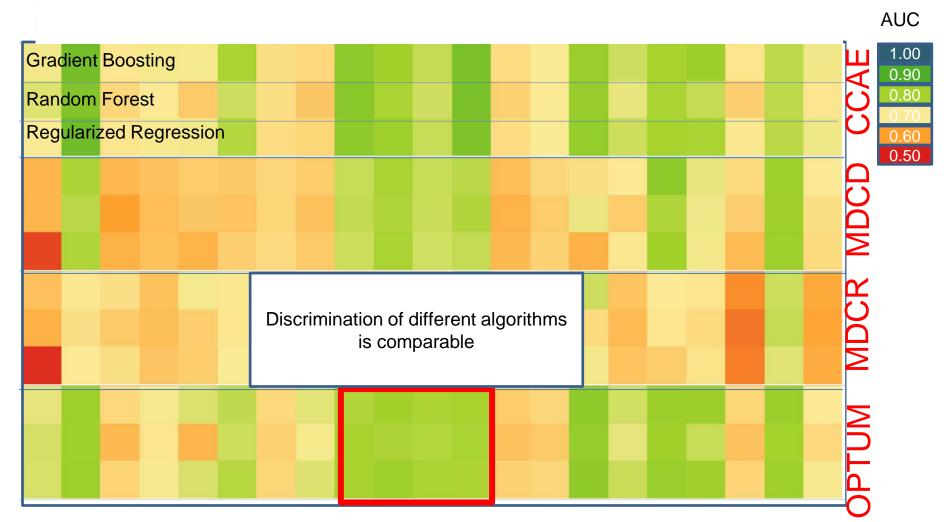


AUC



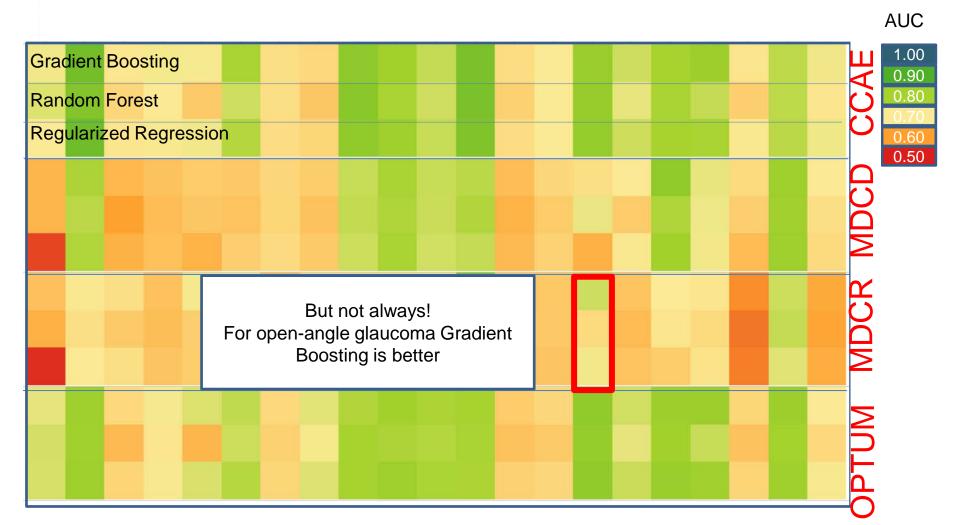
Model Discrimination

Outcomes



Model Discrimination

Outcomes

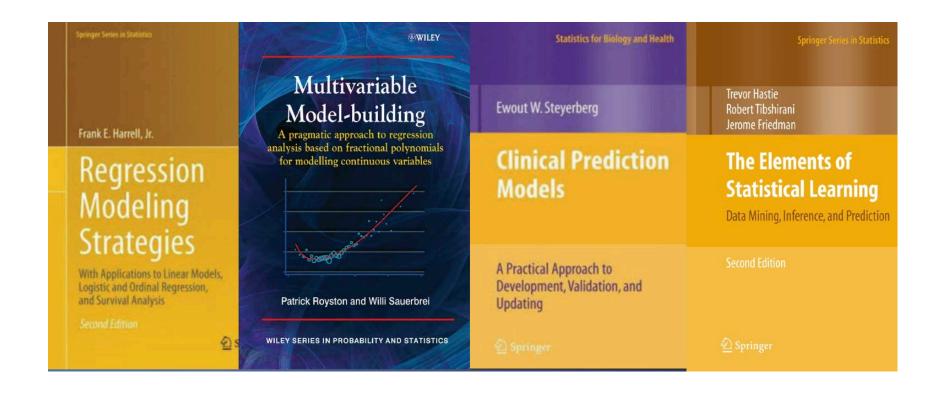


What did we achieve so far?

We showed it is feasible to develop large-scale predictive models for all databases converted to the OMOP CDM. This can now be done for any target cohort (T), outcome (O), and time at risk.

Further Reading if you got very interested!

- Phases of Clinical Prediction Modeling BMJ Series 2009
- Many good textbooks:



Today's Agenda

Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

Learning Goals

- Our 5-step Framework
- What goes into PatientLevelPrediction
- 3. Implement various machine learning techniques
- What comes out of PatientLevelPrediction
- 5 Interpretation of model performance metrics and plots

Learning Goals

Our 5-step Framework

What goes into PatientLevelPrediction

3. Implement various machine learning techniques

What comes out of PatientLevelPrediction

5. Interpretation of model performance metrics and plots

Part 1: Our Framework

1	Specify Problem	
2.	Identify Suitable Data	
3.	Select Predictor Variables	$\overline{\mathbf{Y}}$
4.	Select Models	
5.	Validate	Ø

Specify Problem -

Objective:	Specify the prediction problem in the form: In [target population] predict who will develop [outcome] during [time-at-risk] relative to target index date
Elements:	 Define the target population, the patients to whom you wish to apply to model. Define the outcome for which you wish to predict the risk. Define the time-at-risk period; this is the time interval within which you wish to predict the outcome occurring.
Benefit:	A consistent problem definition increases transparency

Identify Suitable Data

Objective:	Select the dataset that will be used to develop the model (or try various datasets and pick the best model based on validation)
Considerations:	 Check that the target population is of sufficient size for model development. Check that there a sufficient number of outcomes in the target population during the time at risk. What things are captured in the data (are labs and measurements included?)
Note:	The prediction ability can depend on the database

Select Predictor Variables

Objective:	Select from a set of standardized predictor variables or create custom predictors (although we strongly recommend selecting all standardized variables)
Elements:	 Can pick different time periods to construct variables prior to target population cohort start date. Can pick from demographics, conditions, drugs, measurements, procedures and observations concepts. Can group concepts based on a hierarchy in the vocabulary.
Benefit:	The standardisation of variables means the variables are more transparent and reproducible

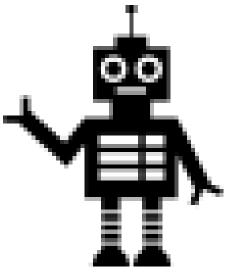
Select Models

Objective:	Select the machine learning models that will be trained, training settings and the model optimisation search strategy.
Elements:	 The machine learning model (lasso logistic regression, gradient boosting machine, decision tree, random forest, ada boost, neural network, KNN) The hyper-parameter search grid The test/train split (% and split by person or time)
Benefit:	It would be useful to explore different models for each prediction problem

Models in PatientLevelPrediction

	Model	
}	Lasso Logistic Regression	ı
W.	Gradient Boosting Machine	I I
2.0	Random Forest	
	Adaboost	
	Decision Tree	
⋖	Neural Network	
i į	K-nearest neighbours	
†	Naïve Bayes	

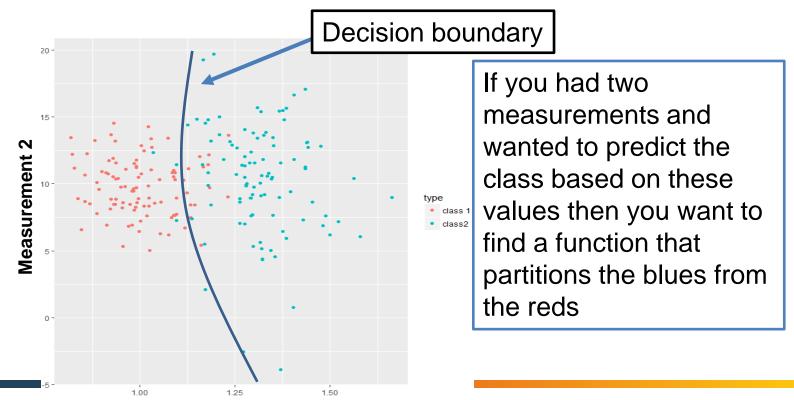
Generalised linear models, boosting, bagging, non-parametric, tree based...



Decision Boundary

•The aim of a model is to learn a function of the inputs that partitions the classes (the decision boundary)

Measurement 1

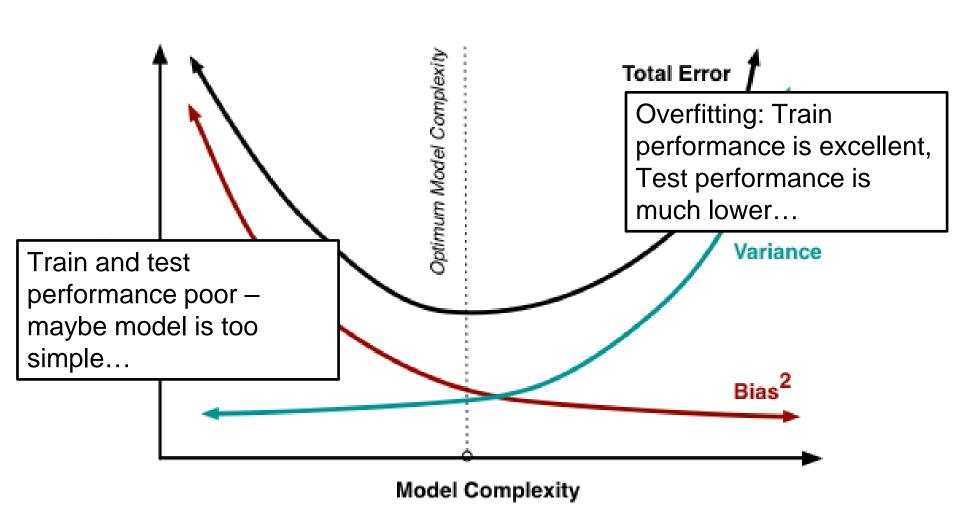


What are hyper-parameters?

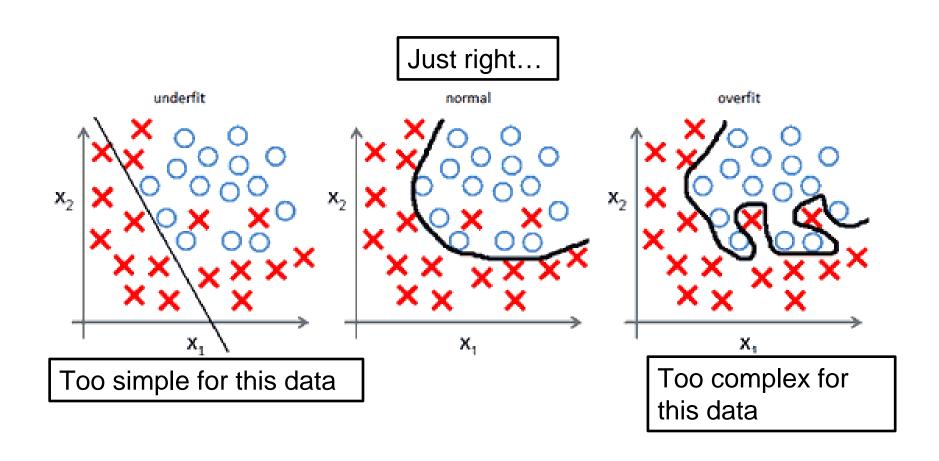
- They control the complexity of a model
- E.g., if we wanted to fit a neural network the topology of the network defines the complexity of the model (few layers and a small number of nodes = more simple)



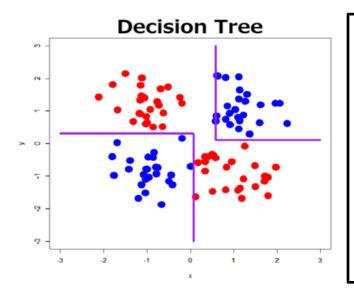
What are hyper-parameters?



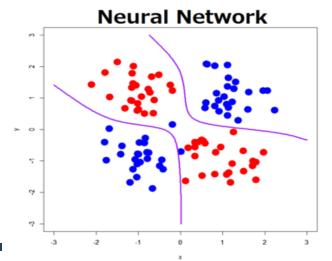
Overfitting

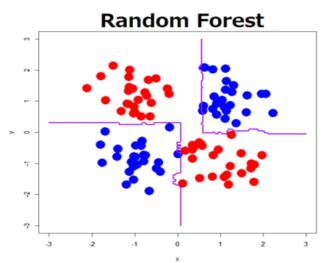


Decision boundaries differ



Different machine learning algorithms have different ways to create the decision boundary – no algorithm is always the best, so we recommend as a best practice to implement all the standard algorithms and pick the best one for the specific prediction problem

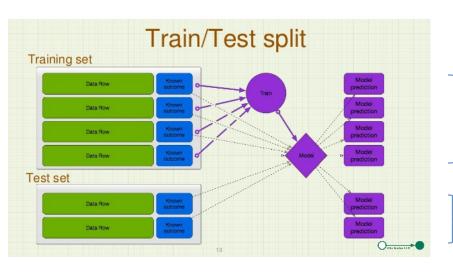




5.

Validate 🍼

Generate and validate each model internally and externally



Model training

Internal validation

Externally validate model across
OHDSI network

The models can be readily shared across the OHDSI network for validation

Question Break

Any questions about the framework, models or validation?

Today's Agenda

Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)

Joel Swerdel
Janssen Research and Development

Agenda

- Basics of good reporting for prediction models
- Review of the TRIPOD Statement
- Small group discussion of sample paper
- Large group summary of small group findings

Basics of good reporting for prediction models

- •Allows clinicians to decide whether the model is applicable and useful for their patients
- Applicable
 - –Was the model developed with patients similar to theirs?
 - —Is the data used to inform the model available to them?

Useful

- —Is the outcome useful to the clinical decisions that need to be made?
- —Can this model be trusted when making a clinical decision?

Basics (cont.)

Reliable

- –Does the prediction from this model provide high enough sensitivity and specificity?
- -Are the limits of the model well understood?

Reproducible

- —Are there enough details in the report to reproduce the model?
- —Are there enough details in the report to validate the model?
- Most models reported in the literature do not provide enough information for model assessment by the reader

The TRIPOD Statement

- TRIPOD Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis
- Analogous to STROBE (STrengthening the Reporting of OBservational studies in Epidemiology)
- Developed through the cooperative effort of a 25+ member committee of prediction modeling experts
- Reduced from 76 to 22 items

1 Title

- Concise summary of the model.
- •Example: "Development and validation of a clinical score to estimate the probability of coronary artery disease in men and women presenting with suspected coronary disease"

3 Background and Objectives

- •What was the goal for developing this model?
- •Example: "The aim of this study was to develop and validate a clinical prediction rule in women presenting with breast symptoms, so that a more evidence based approach to referral—which would include urgent referral under the 2 week rule—could be implemented as part of clinical practice guidance."

4 Methods - Source of Data

- Gives an indication of both applicability and quality of the data
- Example: "The population based sample used for this report included 2489 men and 2856 women 30 to 74 years old at the time of their Framingham Heart Study examination in 1971 to 1974. Participants attended either the 11th examination of the original Framingham cohort or the initial examination of the Framingham Offspring Study. Similar research protocols were used in each study, and persons with overt coronary heart disease at the baseline examination were excluded."

6 Methods- Outcome

- •What was predicted and how was it measured?
- •Example: "Breast Cancer Ascertainment: Incident diagnoses of breast cancer were ascertained by self-report on biennial follow up questionnaires from 1997 to 2005. We learned of deaths from family members, the US Postal Service, and the National Death Index. We identified 1084 incident breast cancers, and 1007 (93%) were confirmed by medical record or by cancer registry data from 24 states in which 96% of participants resided at baseline."

7 Methods- Predictors

- •What was used to inform the model? When was the data collected?
- •Example: "The following data were extracted for each patient: gender, aspartate aminotransferase in IU/L, alanine aminotransferase in IU/L, aspartate aminotransferase/alanine aminotransferase ratio, total bilirubin (mg/dl), albumin (g/dl), transferrin saturation (%), mean corpuscular volume (μ m3), platelet count (\times 103/mm3), and prothrombin time(s). . . . All laboratory tests were performed within 90 days before liver biopsy. In the case of repeated test, the results closest to the time of the biopsy were used. No data obtained after the biopsy were used.

10 Methods - Statistics

- What type of model was used and how was performance assessed?
- Example: "We used the **Cox proportional hazards model** in the derivation dataset to estimate the coefficients associated with each potential risk factor [predictor] for the first ever recorded diagnosis of cardiovascular disease for men and women separately."
- Example: "We assessed the predictive performance of the QRISK2-2011 risk score on the THIN cohort by examining measures of calibration and discrimination... Calibration of the risk score predictions was assessed by plotting observed proportions versus predicted probabilities and by calculating the calibration slope... Discrimination ... quantified by calculating the area under the receiver operating characteristic curve statistic; a value of 0.5 represents chance and 1 represents perfect discrimination."

15 Results - Model Specification

•What were the predictors and how were they used to inform the final prediction?

•Example:

Table 12. Example Table: Presenting the Full Prognostic (Survival) Model, Including the Baseline Survival, for a Specific Time Point*

	β Coefficient	SE	P Value
Age	0.15052	0.05767	0.009
Age ²	-0.00038	0.00041	0.35
Male sex	1.99406	0.39326	0.0001
Body mass index	0.01930	0.01111	0.08
Systolic blood pressure	0.00615	0.00225	0.006
Treatment for hypertension	0.42410	0.10104	0.0001
PR interval	0.00707	0.00170	0.0001
Significant cardiac murmur	3.79586	1.33532	0.005
Heart failure	9.42833	2.26981	0.0001
Male sex × age ²	-0.00028	0.00008	0.0004
Age × significant murmur	-0.04238	0.01904	0.03
Age × prevalent heart failure	-0.12307	0.03345	0.0002

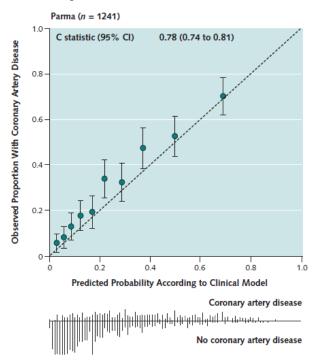
From reference 402.

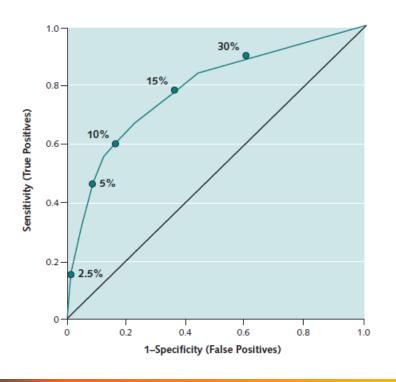
^{*} $S_0(10) = 0.96337$ (10-year baseline survival). β values are expressed per 1-unit increase for continuous variables and for the condition present in dichotomous variables.

16 Results - Performance

•How well did the model perform based on the specified metrics?

•Example:





Small Group Discussion

- •Review "Validation of Clinical Classification Schemes for Predicting Stroke Results From the National Registry of Atrial Fibrillation" Gage et al.
- Group assignment for filling in the TRIPOD table
- •Grade each item:
 - -A: completely fulfills the requirement
 - –C: partially fulfills the requirement
 - -F: does not fulfill the requirement
- Take about 20 minutes

Today's Agenda

Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

Learning Goals

Our 5-step Framework

What goes into PatientLevelPrediction

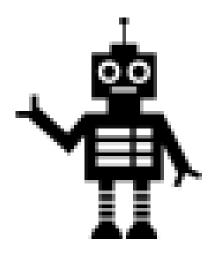
3. Implement various machine learning techniques

4. What comes out of PatientLevelPrediction

5. Interpretation of model performance metrics and plots

Example Task

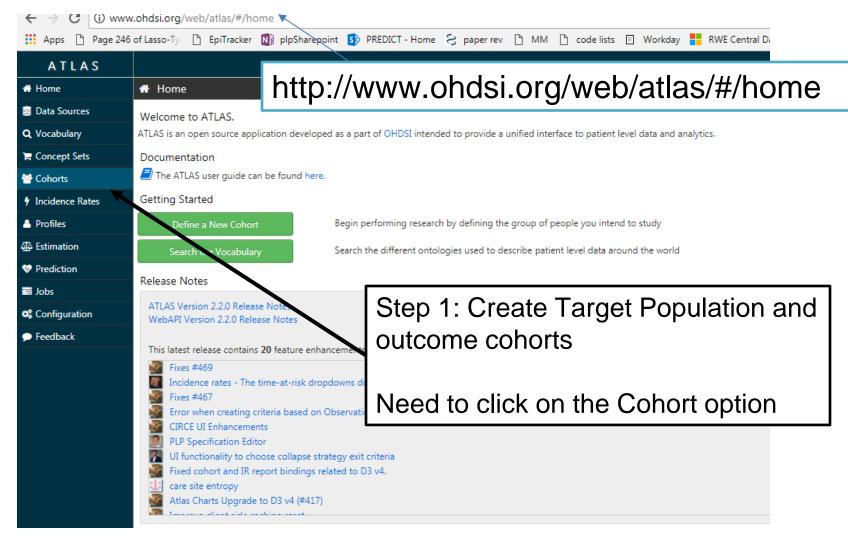
Objective:	Reproduce CHADS2 model using the PatientLevelPrediction package
Specify Problem:	Prediction Problem: In PLP training: T: patients newly diagnosed with Atrial fibrillation predict who will develop PLP training: O - hospitalized ischemic stroke events during the period from 0 days from cohort start date to 1000 days.
Predictors:	Predictors: We will use the 5 variables that are used in the CHAD2 model

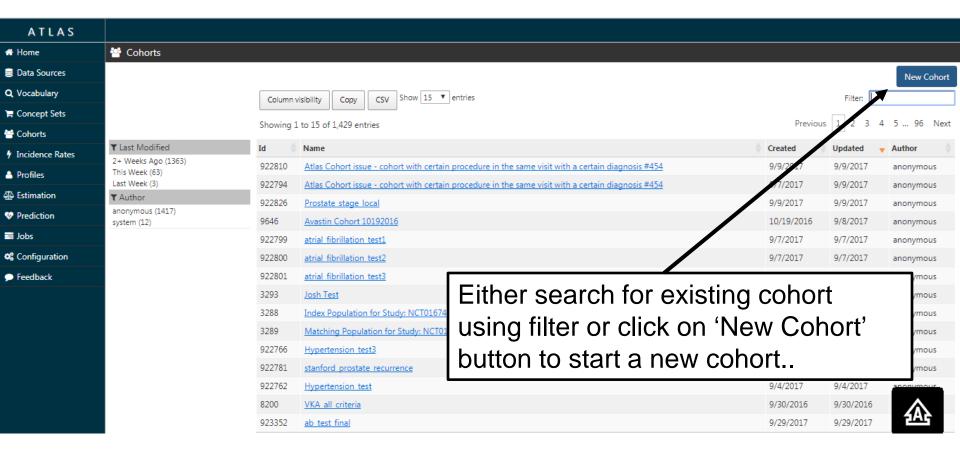


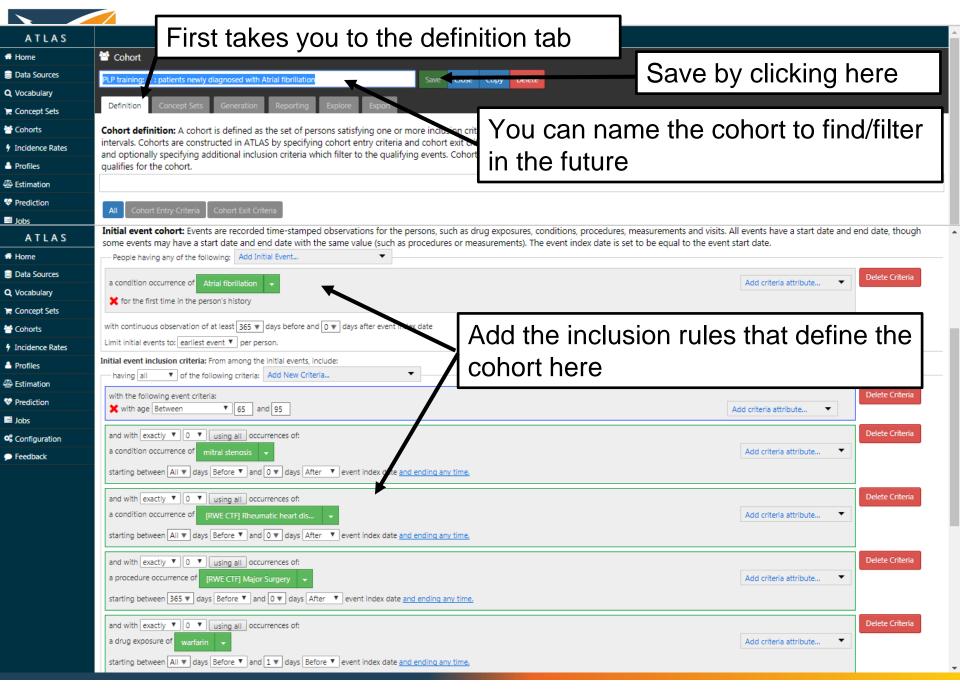
Two Options

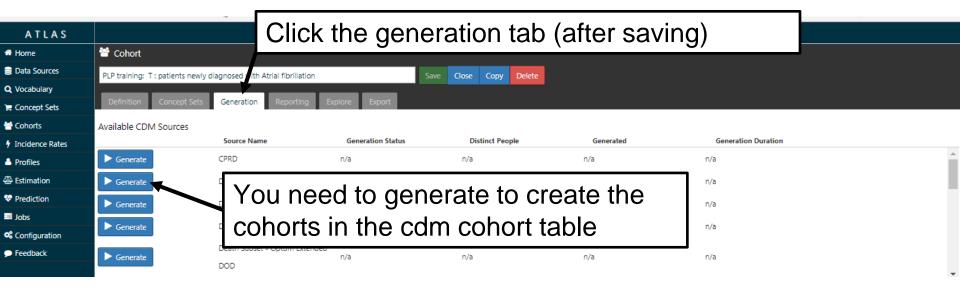
Use Atlas form to generate R code

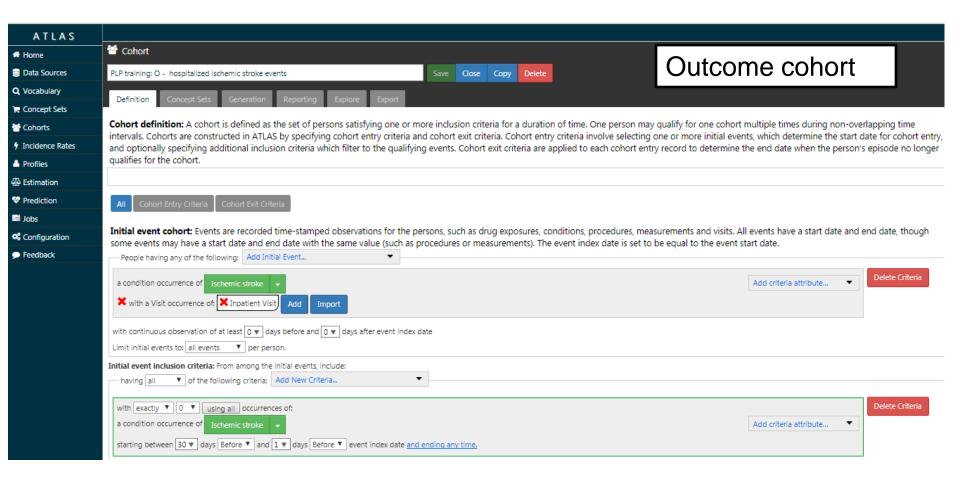
The next few slides will cover the Atlas form options, then we will describe what each R function does

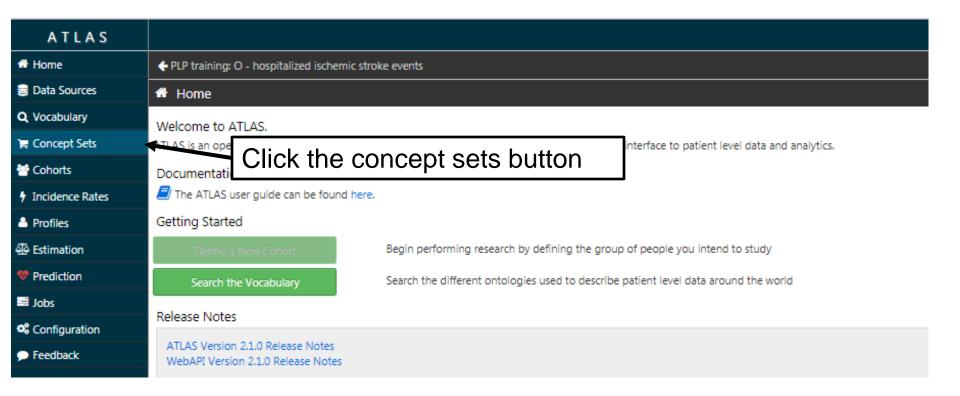


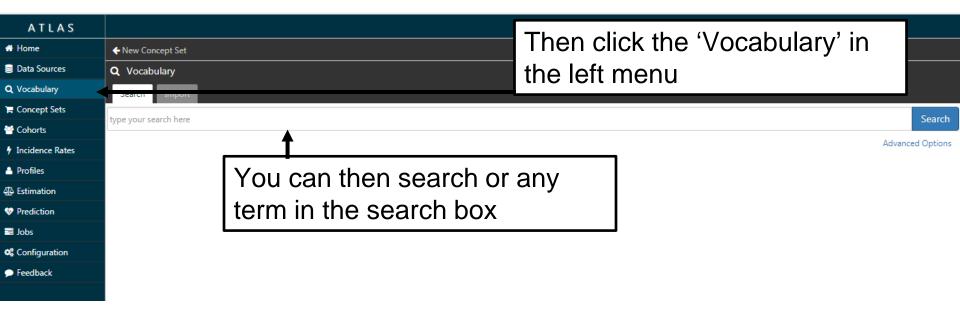


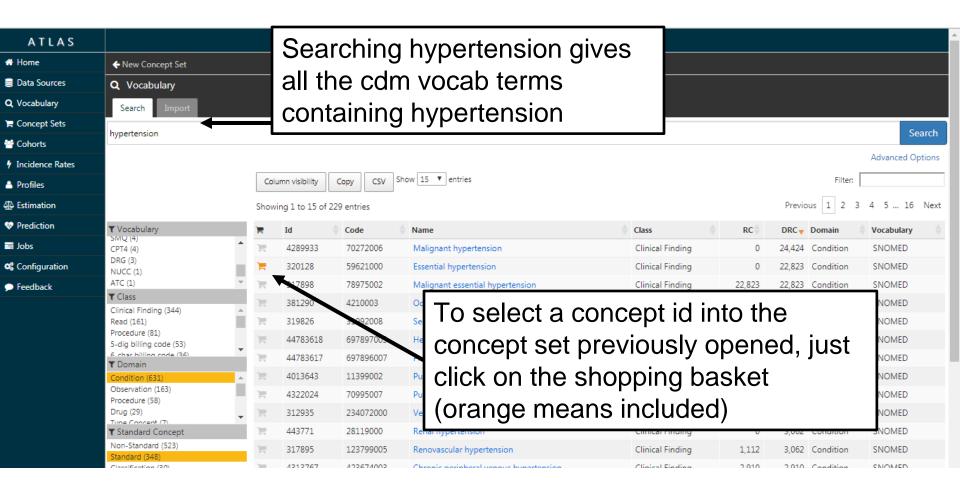




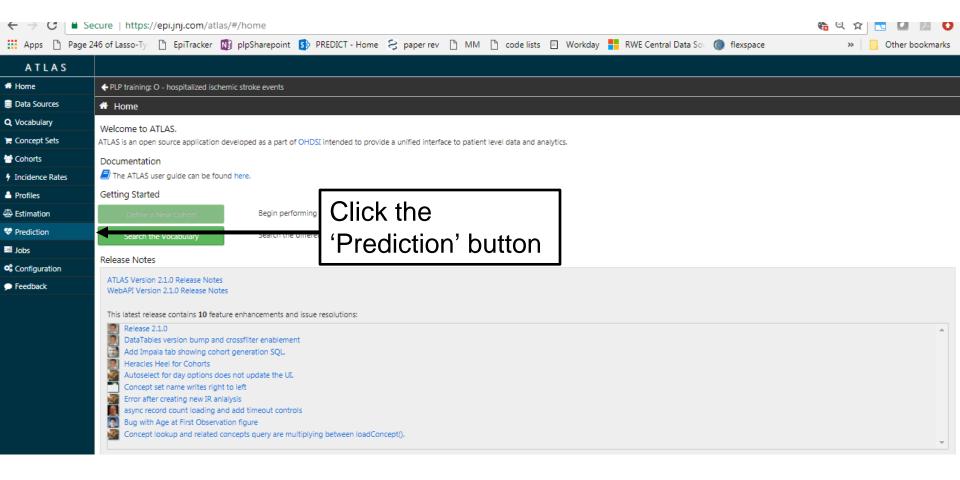


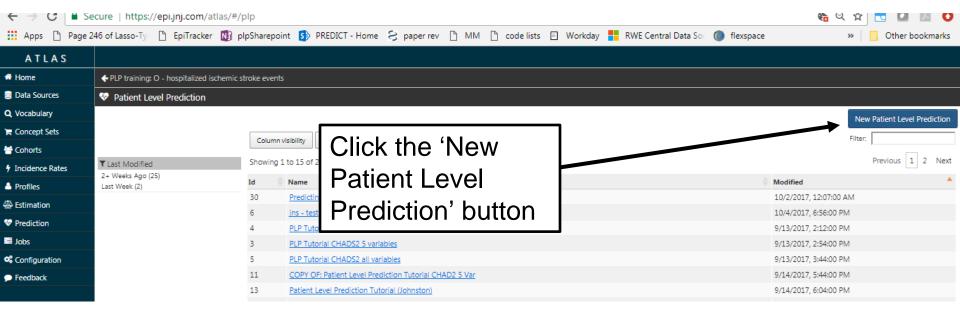




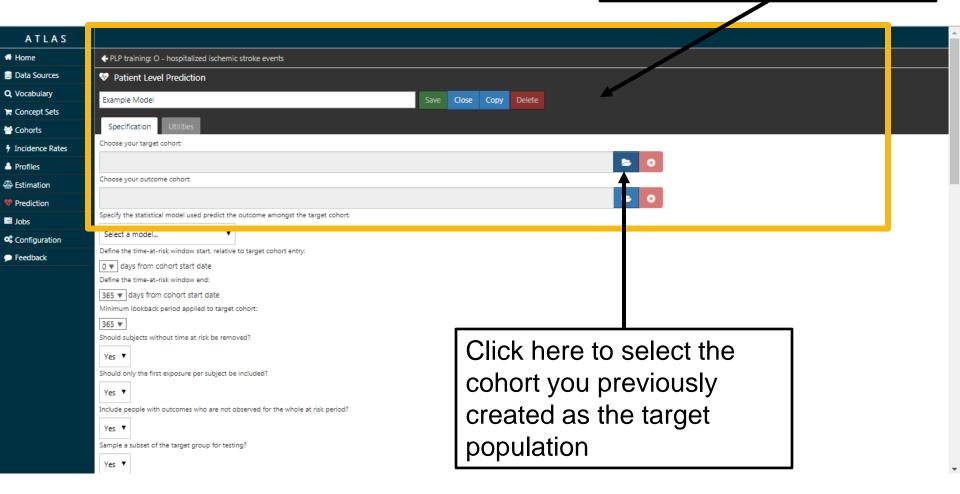


Atlas - prediction

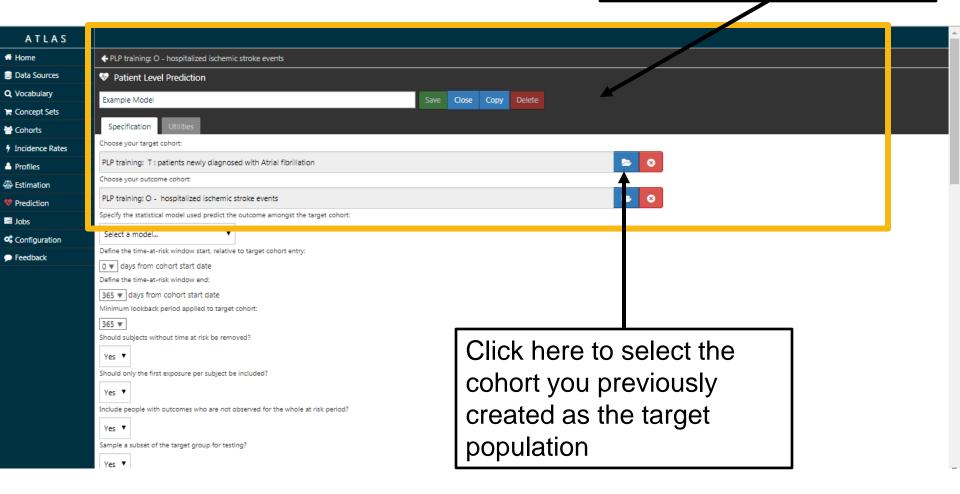


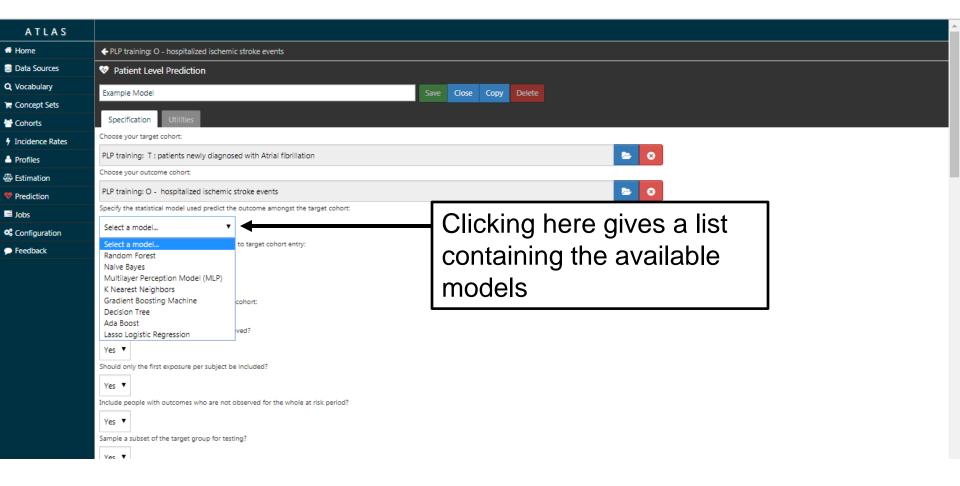


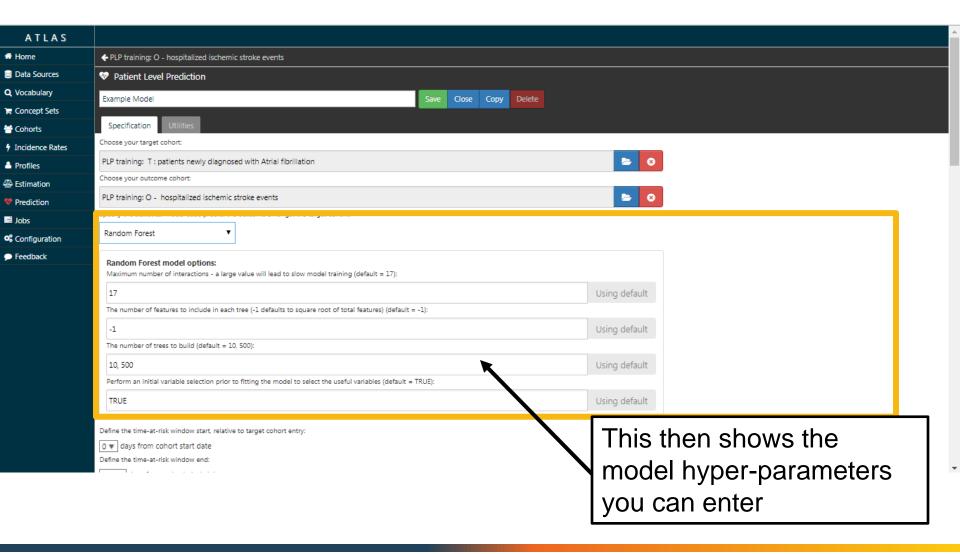
Atlas - predi Name the prediction and select the target population/outcome

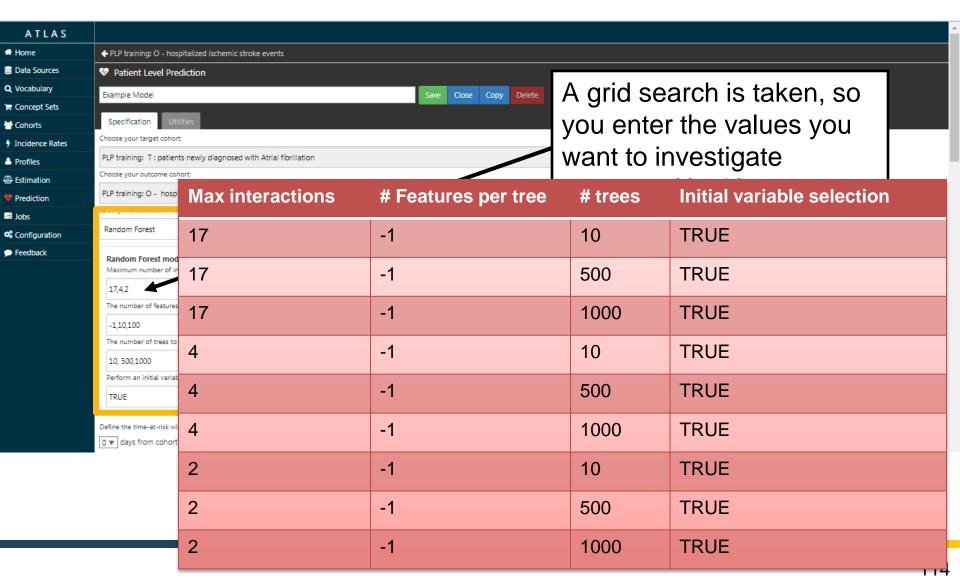


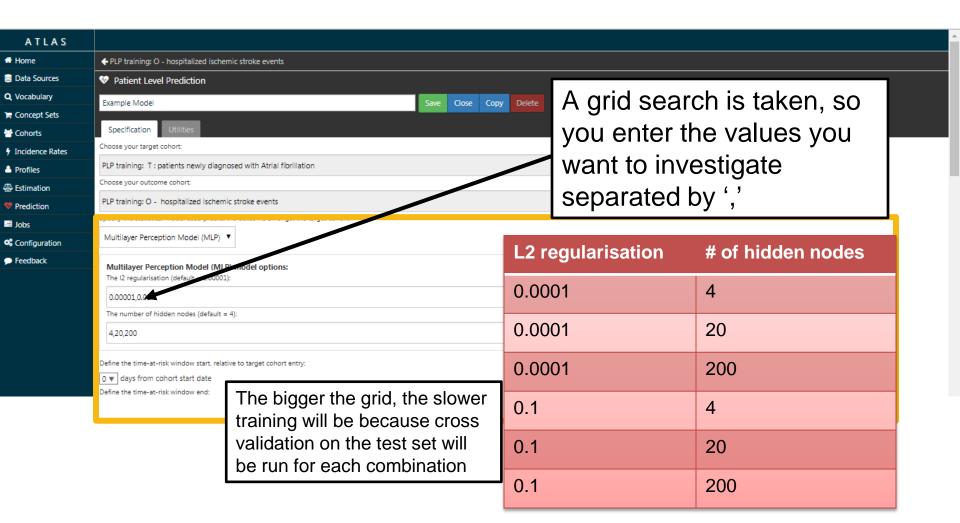
Atlas - predi Name the prediction and select the target population/outcome

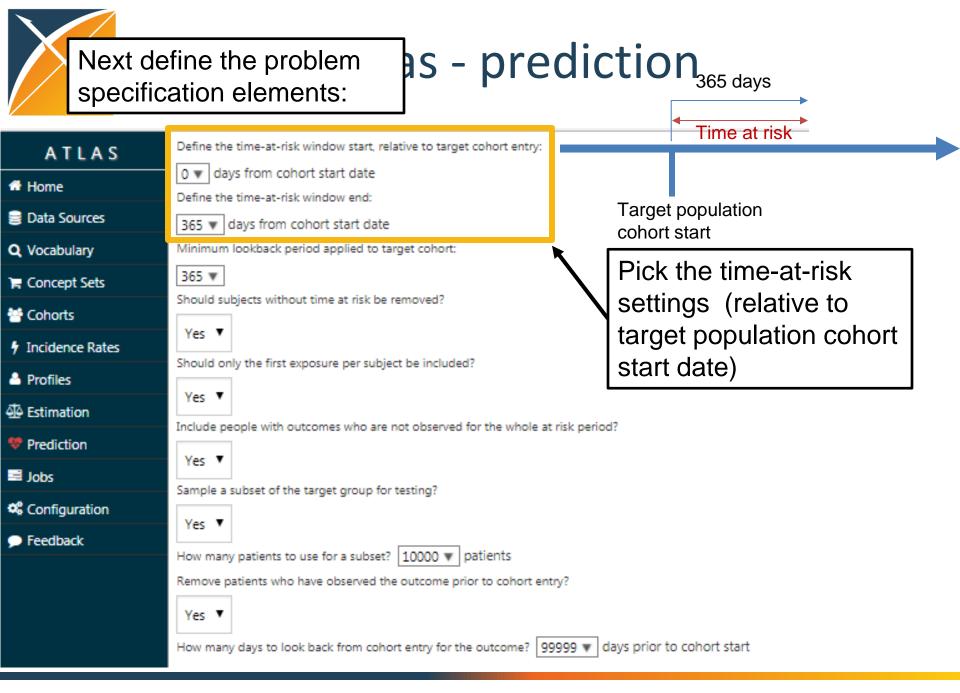


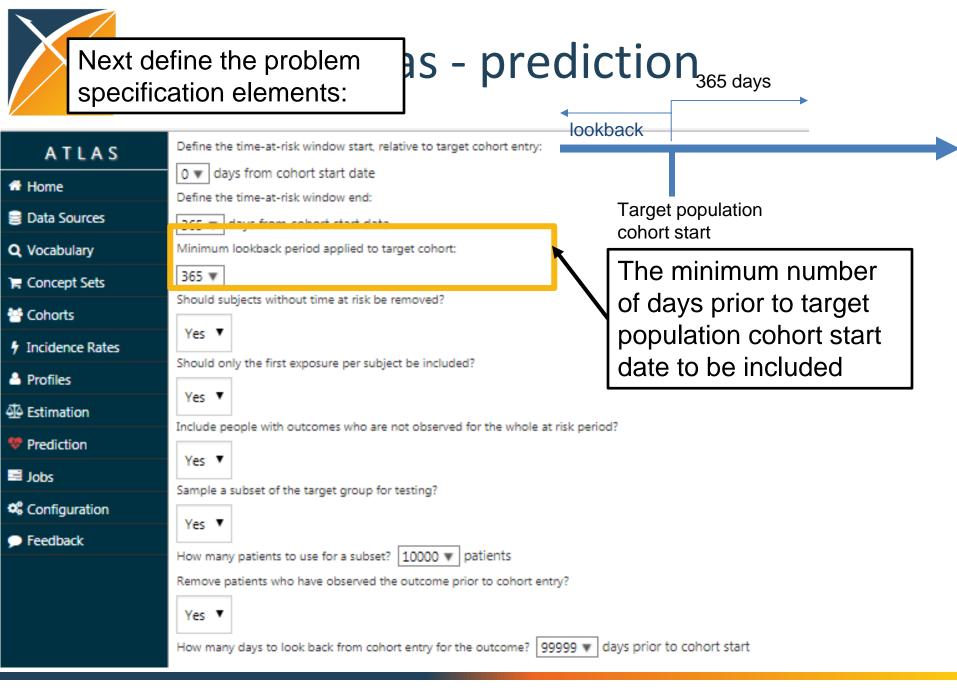


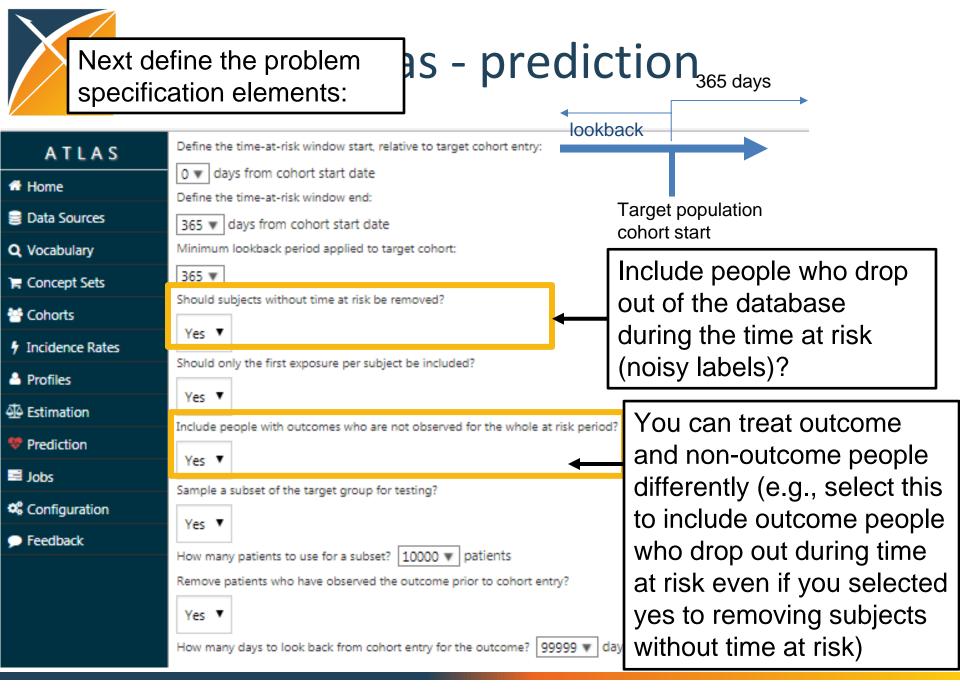




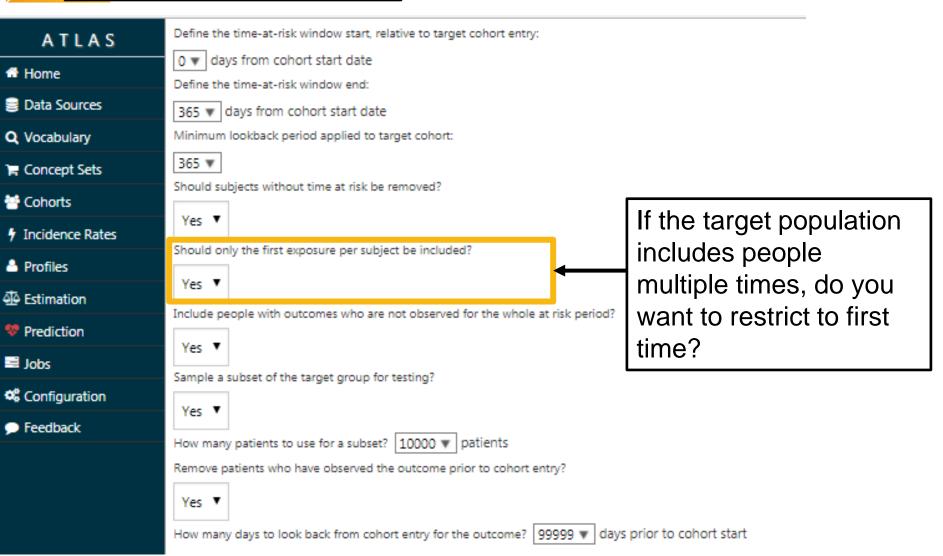






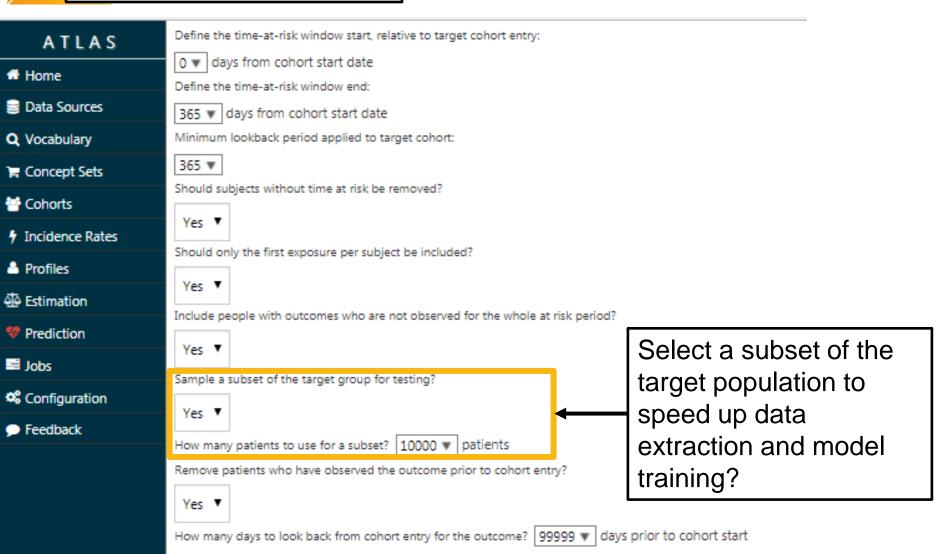


Next define the problem specification elements:

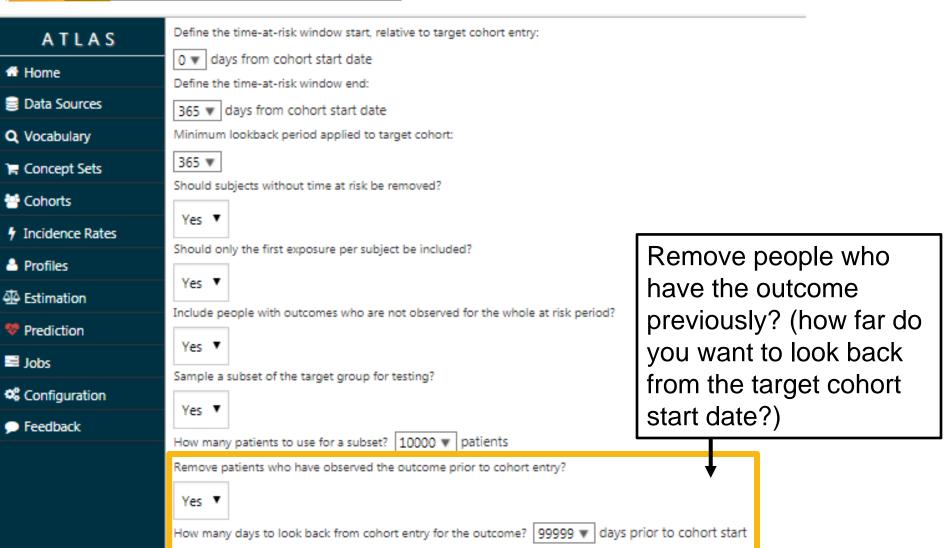


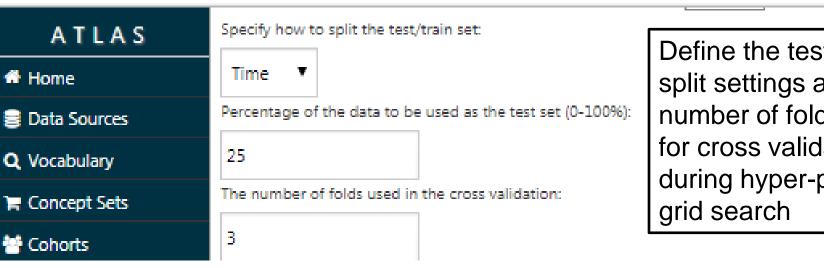
Next of specific

Next define the problem specification elements:



Next define the problem specification elements:





Define the test/train split settings and number of folds used for cross validation during hyper-parameter

Which types of baseline covariates do you want to include in the prediction model? ATLAS Demographics ♣ Home Gender Age group (5-year bands) Data Sources Index year **Q** Vocabulary Index month Race Concept Sets Ethnicity Mark Cohorts Conditions In prior 30d Incidence Rates In prior 365d Profiles o In prior 180d within inpatient setting All time prior Estimation o Overlapping index date **Prediction** · Condition aggregation ■ Jobs SNOMED MedDRA Configuration Drugs Feedback In prior 30d In prior 365d All time prior Overlapping index date Drug aggregation Clinical Drug Ingredient ATC Class Procedures In prior 30d In prior 365d Measurement Existence in prior 30d Existence in prior 365d Count in prior 365d o Has latest prior numeric value below normal range Has latest prior numeric value above normal range Risk scores o Charlson □ CHADS2 CHADS2VASc

Concept counts (count of distinct conditions/procedures/visits in history)

Select model variables using checklist.

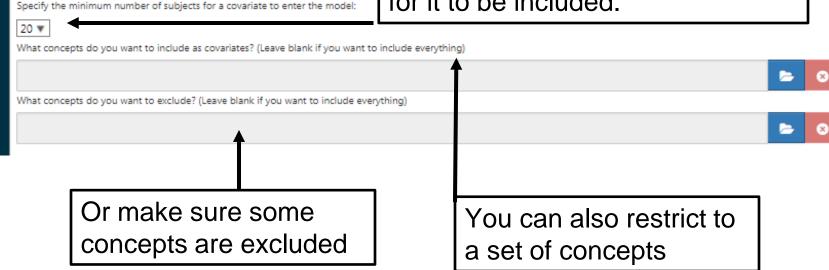
It is possible to do custom covariates but not in atlas.

Which types of baseline covariates do you want to include in the prediction model? ATLAS Demographics ♣ Home Age group (5-year bands) Data Sources ✓ Index year ✓Index month **Q** Vocabulary ✓ Race Concept Sets Cohorts Conditions In prior 30d Incidence Rates In prior 365d Profiles In prior 180d within inpatient setting All time prior Estimation Overlapping index date Prediction Condition aggregation Jobs J SNOMED MedDRA Configuration Feedback In prior 30d In prior 365d o All time prior o Overlapping index date Drug aggregation Clinical Drug Ingredient ATC Class Procedures In prior 30d In prior 365d Existence in prior 30d Existence in prior 365d Count in prior 365d • Has latest prior numeric value below normal range • Has latest prior numeric value above normal range Risk scores ✓ DCSI

Concept counts (count of distinct conditions/procedures/visits in history)

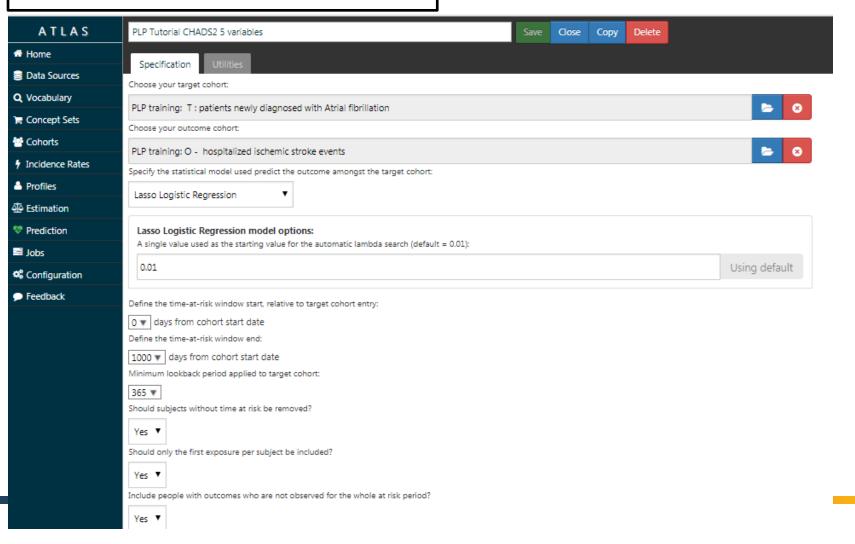
If you want all demographics, risk scores and drugs/conditions in prior 365 days

This sets the minimum number of people in the target population who needs to have the covariate for it to be included.



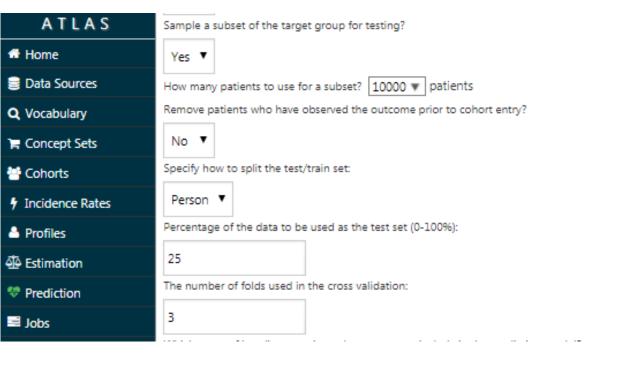
CHADS2 Settings

The settings for the CHADS2 5 variable:



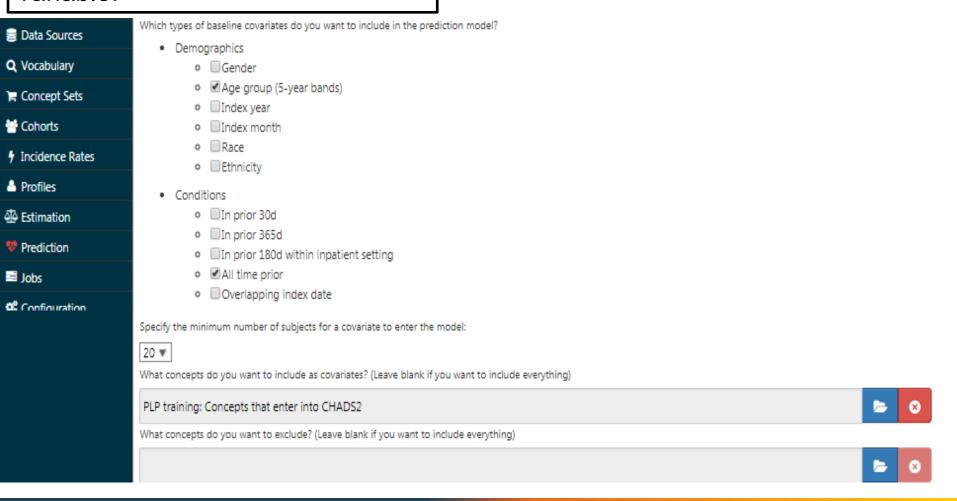
CHADS2 Settings

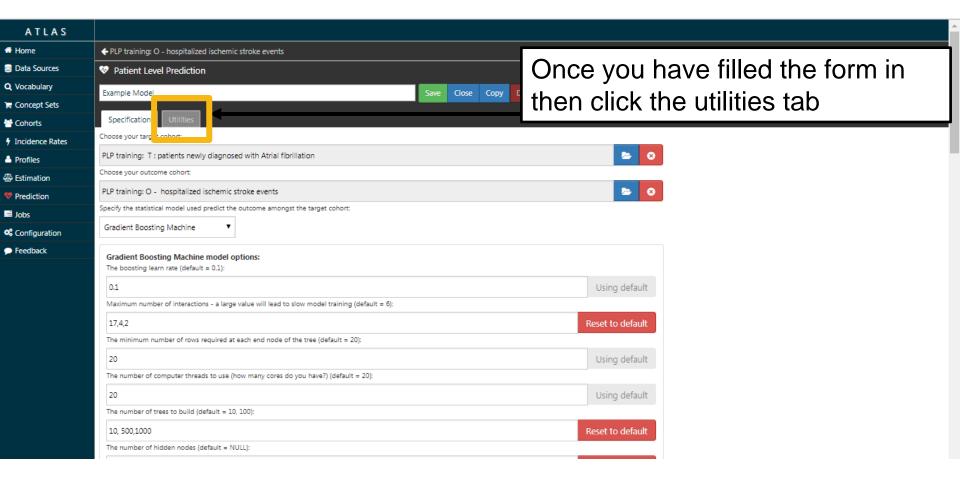
The settings for the CHADS2 5 variable:

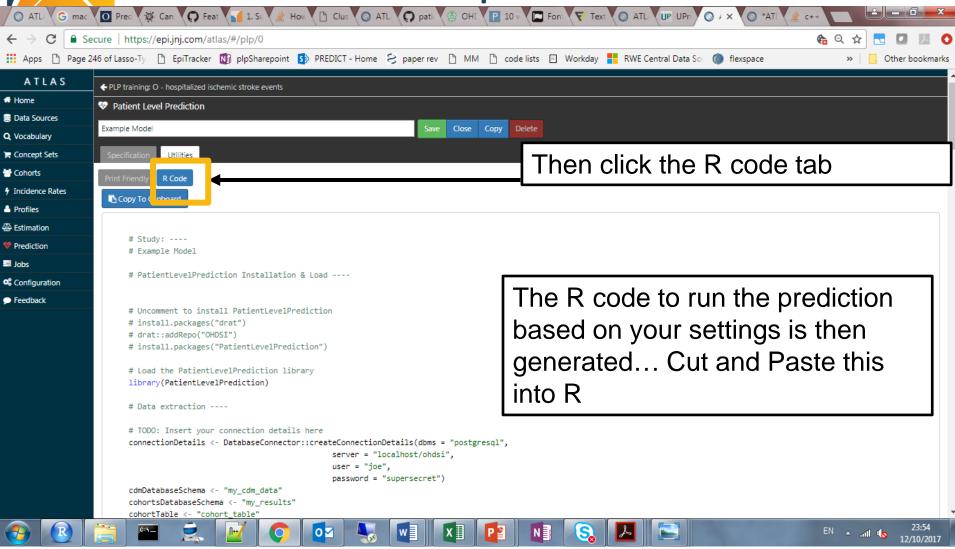


CHADS2 Settings

The settings for the CHADS2 5 variable:







Profiles

■ Jobs
Configuration

Estimation

Prediction

Feedback

Study: ---# Home # Example Model Data Sources # PatientLevelPrediction Installation & Load --- Vocabulary Concept Sets # Uncomment to install PatientLevelPrediction Cohorts # install.packages("drat") # drat::addRepo("OHDSI") # install.packages("PatientLevelPrediction")

The password for the database connection

```
outputFolder <- "<insert your directory here>"
plpDataSaveName <- 'your_plp_project_name'
setwd(outputFolder)

targetCohortId <- 4659 # PLP training: T : patients newly diagnosed with Atrial fit
outcomeCohortId <- 4660 # PLP training: O - hospitalized ischemic stroke events
outcomeList <- c(outcomeCohortId)

# PLEASE NOTE ----
```

Some manual inputs

At the top of the Atlas generated R code you will see some required manual inputs

```
reateConnectionDetails(dbms = "postgresql",
server = "localhost/ohdsi",
user = "joe",
password = "supersecret")
```


ATLAS

- Home
- 🛢 Data Sources
- Q Vocabulary
- Concept Sets
- Mark Cohorts

Jobs J

Configuration

Feedback

- .
- Profiles
- # Load the PatientLevelPrediction library

Study: ----

Example Model

- library(PatientLevelPrediction)

 Prediction
 - # Data extraction ----

install.packages("drat")
drat::addRepo("OHDSI")

TODO: Insert your connection details here

PatientLevelPrediction Installation & Load ----

Uncomment to install PatientLevelPrediction

connectionDetails <- DatabaseConnector::createConnectionDetails(dbms = "postgresql"</pre>

server = "localhost/ohdsi", user = "joe",

naceword - "cupercecret"

cdmDatabaseSchema <- "my_cdm_data"
cohortsDatabaseSchema <- "my results"</pre>

cohortTable <- "cohort table"

outcomeTable <- "outcome_table"</pre>

cdmVersion <- "5"

outputFolder <- "<insert your directory here>"

pippacasavename <- your_pip_project_name
setwd(outputFolder)</pre>

targetCohortId <- 4659 # PLP training: T : patients newly diagnosed with Atrial fit
outcomeCohortId <- 4660 # PLP training: O - hospitalized ischemic stroke events
outcomeList <- c(outcomeCohortId)</pre>

PLEASE NOTE ----

Some manual inputs

At the top of the Atlas generated R code you will see some required manual inputs

cdmDatabaseSchema <- "my_cdm_data"
cohortsDatabaseSchema <- "my_results"
cohortTable <- "cohort_table"
outcomeTable <- "outcome_table"
cdmVersion <- "5"
outputFolder <- "<insert your directory here>"
plpDataSaveName <- 'your_plp_project_name'

R Functions

1	Create Cohort	
2	Database Connections	
3	Select Predictor Variables	
4	Extract Data	
5	Create Study Population	
6	Select Model	
7	Develop Model + Internal Validation	
8	External Validation	

R Functions

1		Create Cohort		1 Atlas			
2		Database Connections		2		createConnectionDetails()	
3		Select Predictor Variables		3		createCovariateSettings()	
4		Extract Data		4	/!4 l-	getPloData()	
5		For examples of using the R code (it has extra flexibilities) see: https://github.com/OHDSI/PatientLevelPrediction/blob/master/inst/doc/BuildingPredictiveModels.pdf Or type ?PatientLevelPrediction::getPlpData to get the help					
6							
7							
8		for getPlpData()					

Models and Parameters

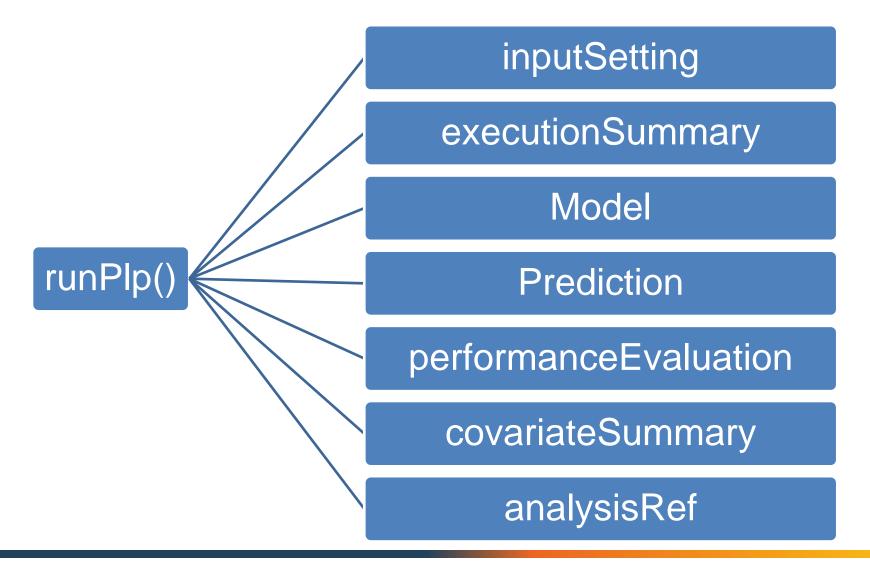
Model	setModel F	unctions	Hyper-parameters			
Lasso Logist Regression	ic setLassoLogi	sticRegression()	Variance (regularisation)			
Gradient Boosting Machine	setGradientBo	oostingMachine()	Ntrees (# trees), max_depth (max interactions), min_rows (regularisation), learn_rate (shinkage - influence decrease per iteration)			
Random For	est setRandomFo	orest()	mtries (predictors per tree) ,ntrees (# trees) ,max_depth (max interactions) ,varImp (feature selection)			
Adaboost	setAdaBoost()	n_estimators (interations), learning_rate (shrinkage)			
Decision Tre	e setDecisionTr	ree()	max_depth (max interactions), min_samples_split (regularisation), min_samples_leaf (regularisation), min_impurity_split ,class_weight			
Neural Netwo	ork setMLP()		Alpha (regularisation), size (nodes in network)			
K-nearest ne	igh setKNN()		K (number of neighbours)			
Naïve Bayes	setNaiveBaye	es()				

Question Break

Any questions about the implementation, atlas form or R code?

Learning Goals

- Our 5-step Framework
- What goes into PatientLevelPrediction
- 3. Implement various machine learning techniques
- What comes out of PatientLevelPrediction
- Interpretation of model performance metrics and plots



runPlp(

Output of runPlp()

inputSetting

this contains information about the settings you selected during model training (e.g., predictor variables, time-at-risk details, minimum prior observation)

analysisker

inputSetting

executionSummary

runPlp()

this contains information about the computer used to run the analysis, the R version, the PLP package version, the analysis date and the execution time.

executionSummary

Model

runPlp()

this is the trained model – you can use this to make predictions...

CovariateSummary

analysisRef

This is a table that contains the predicted risk of the outcome during the time at risk for each person in the target population ...

runPlp()

Prediction

performanceEvaluation

covariateSummary

analysisRef

Explaining performanceEvaluation

This contains the internal evaluation of the model – more details in later slides...

Prediction

performanceEvaluation

covariateSummary

analysisRef

runPlp()

runPlp(

Output of runPlp()

inputSetting

This is a table that contains the covariate summary (how common was the covariate in the people with and without the outcome)

portormanoo L varaation

covariateSummary

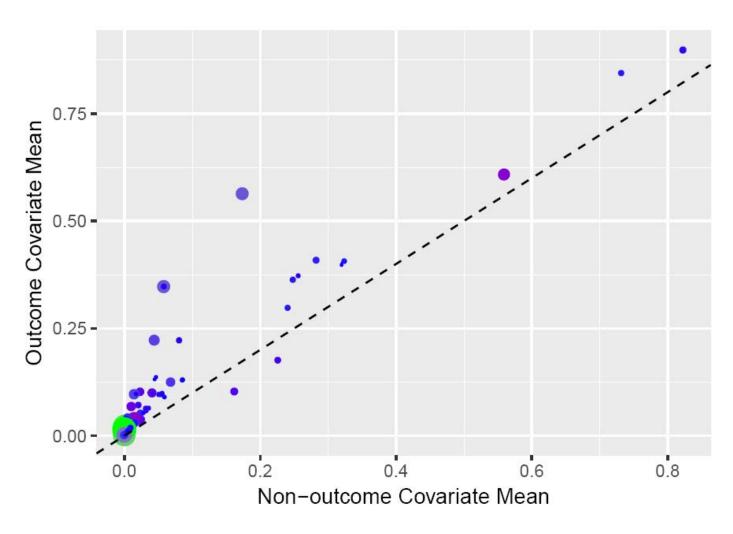
analysisRef

Covariate Summary

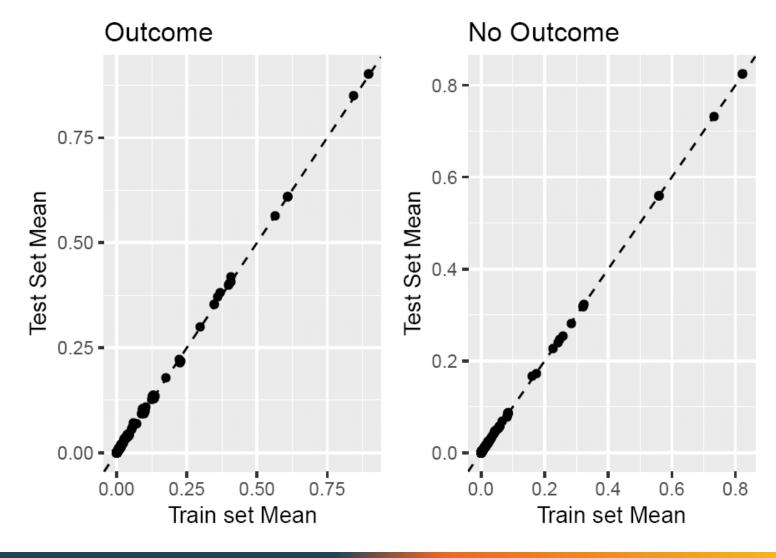
The data characterisation – how often the variable occurred in the people with and without the outcome...

covariatelå	covariateName	analysistå	conceptid	covariateValuê	CovariateCount	$Covariate Count With Outcom\hat{e}$
23	Age group: 65-69	5	0	-3.278466e-01	28223	3509
24	Age group: 70-74	5	0	-1.884020e-01	40549	5939
25	Age group: 75-79	5	0	0.000000e+00	NA	NA
26	Age group: 80-84	5	0	1.604763e-01	46874	10018
27	Age group: 85-89	5	0	5.456322e-01	14581	4216
28	Age group: 90-94	5	0	3.332457e+00	23	23
135601201	Condition era record observed during anytime on or	201	135601	0.000000e+00	1	0

This can be used to plot variable scatterplot



This can be used to plot variable generalisation plot



Output of runPlp()

executionSummary

Model

This contains the analysis details such as analysis id or name

covariateSummary

analysisRef

runPlp()

Contents of performanceEvaluation

calibrationSummary

thresholdsummary

demographicSummary

predictionDistribution

evaluationStatistics

performanceEvaluation

Contents of performanceEvaluation

performanceEvaluation

calibrationSummary

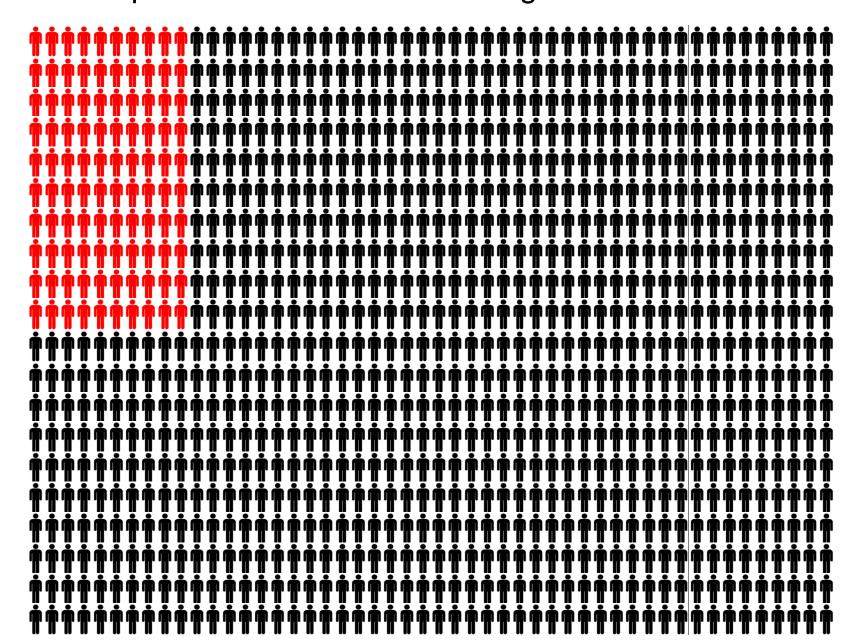
thresholdSummary

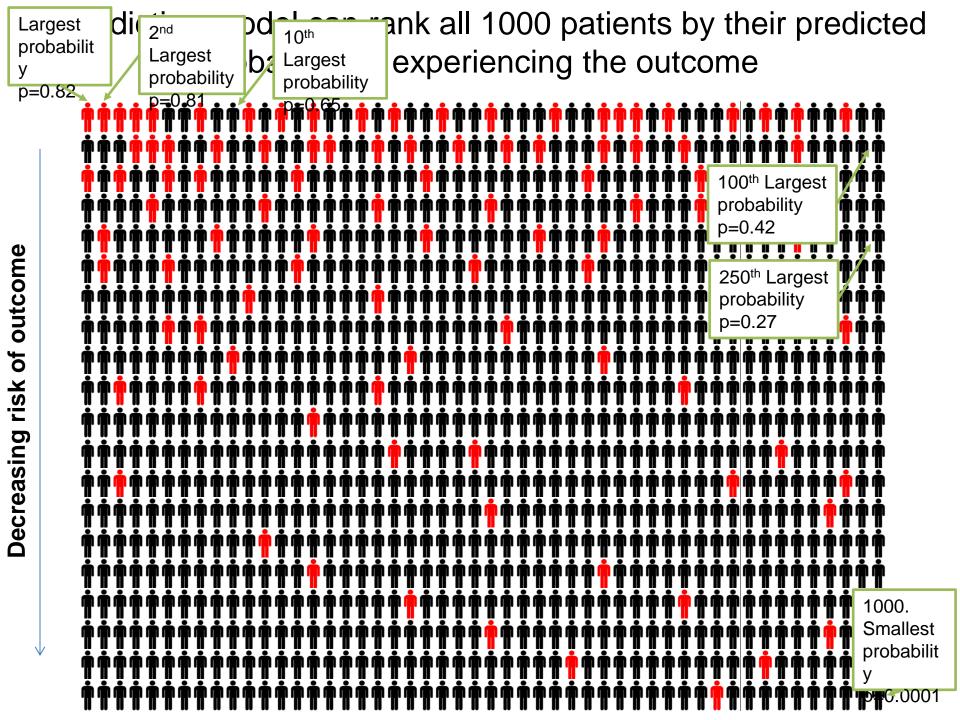
demographicSummary

predictionDistribution

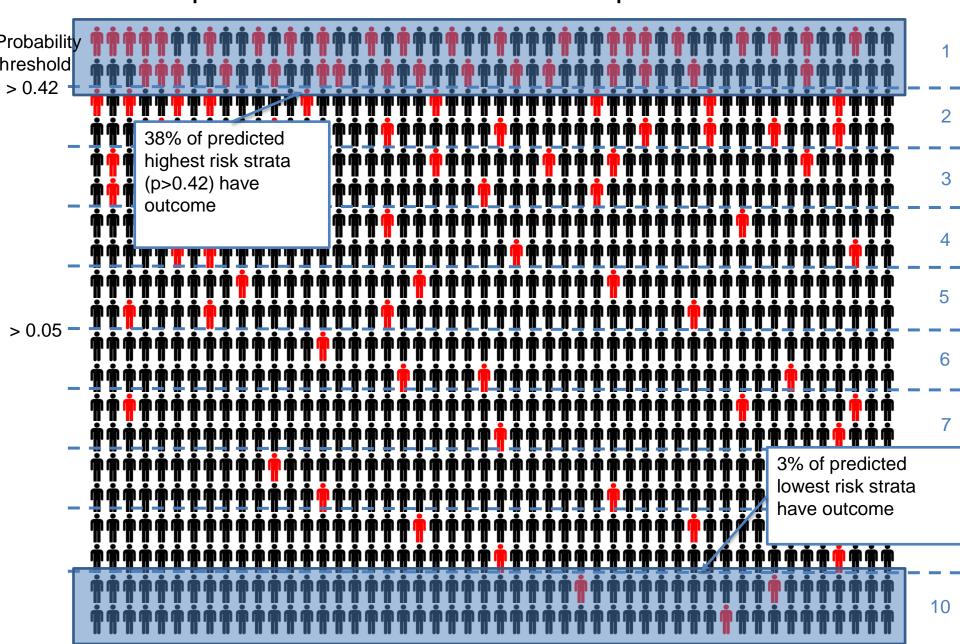
evaluationStatistics

Amongst a target population of 1000 patients, 10% of the patients experience the outcome during the time-at-risk





Calibration summary: partition target population into 10 strata and compare observed incidence with predicted incidence



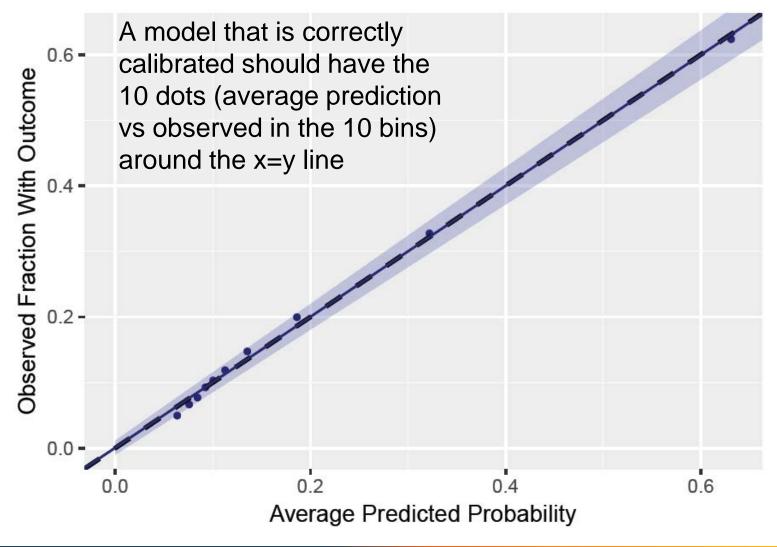
calibrationSummary

For each probability threshold bin we calculate the predicted vs observed outcome occurrence (this is done for the train and the test set)

predictionThreshold	PersonCountAtRisk	<u>PersonCountWithOutcomê</u>	<u>averagePredictedProbability</u>	StDevPredictedProbability
0.00000000	5049	255	0.06273506	0.004876098
0.07021915	4746	<u> </u>	0.07478538	0.001622543
0.07680500	5518	426	0.08406877	0.003091515
0.08746617	3392	299	0.09239939	0.002789445
0.09651138	4854	499	0.10153173	0.002668102

5049 people had a predicted risk between 0 and 0.07 and 255 had the outcome (observed occurrence of 0.05) the average predicted risk in this group was 0.06

This can be used to plot calibration



Contents of performanceEvaluation

calibrationSummary

thresholdSummary

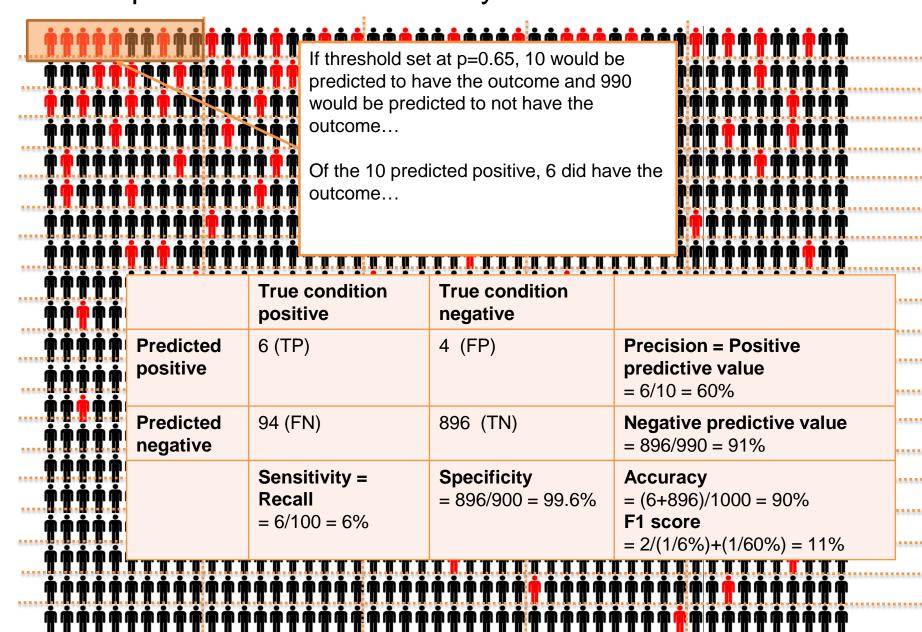
demographicSummary

predictionDistribution

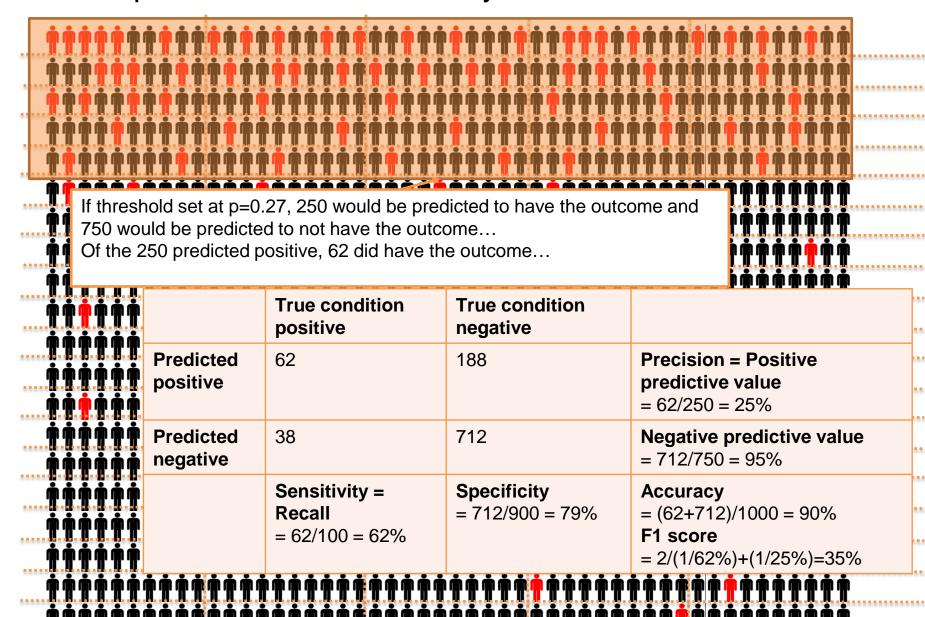
evaluationStatistics

performanceEvaluation

Threshold summary: create 100 cumulative thresholds and evaluate performance of the binary classifier at each threshold



Threshold summary: create 100 cumulative thresholds and evaluate performance of the binary classifier at each threshold



Confusion matrix cheatsheet

	True co	ondition		A 00111	(ACC) =
Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\sum \text{True positive} + \sum \text{True negati}}{\sum \text{Total population}}$	
Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive	Σ Fa	overy rate (FDR) = lse positive condition positive
Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
prev. ACC	True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False\ positive}{\sum Condition\ negative}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	F ₁ score =
F+ PPV FDR T- FOR NPV FPR+ LR+ DOR TNR+ LR- F1	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	$= \frac{LR+}{LR-}$	recall + 1 precision

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

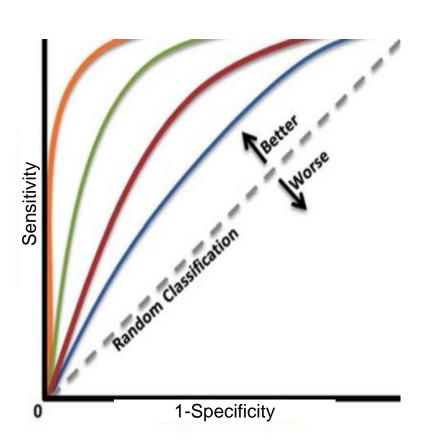
thresholdSummary

Contains general performance metrics such as TP, TN, FP, FN, sensitivity, specificity at the 100 prediction threshold points (more columns than shown...)

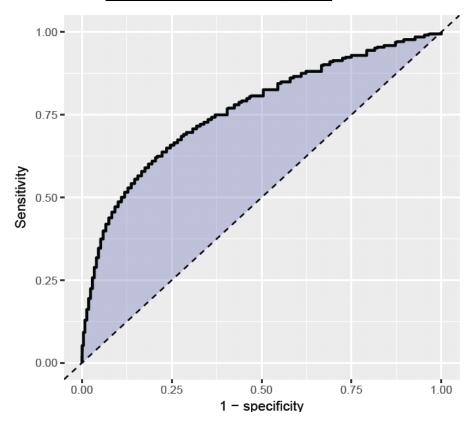
predictionThreshold	preferenceThreshold	positiveCount	negativeCount	trueCount	falseCount	truePositiveCouπτ
0.05655004	0.2147278	45429	1275	8397	38307	8343
0.05655004	0.2147278	45429	1275	8397	38307	8343
0.06047499	0.2269899	45302	1402	8397	38307	8334
0.06151848	0.2302026	44749	1955	8397	38307	8308
0.06446641	0.2391738	43509	3195	8397	38307	8246
0.06446641	0.2391738	43509	3195	8397	38307	8246
0.06459638	0.2395658	42604	4100	8397	38307	8208
0.06459638	0.2395658	42604	4100	8397	38307	8208
0.06686759	0.2463686	42454	4250	8397	38307	8194
0.07021915	0.2562465	41656	5048	8397	38307	8142
0.07312945	0.2646721	41560	5144	8397	38307	8134
0.07330997	0.2651902	40914	5790	8397	38307	8083
0.07355134	0.2658821	39640	7064	8397	38307	8006
0.07355134	0.2658821	39640	7064	8397	38307	8006
0.07355134	0.2658821	39640	7064	8397	38307	8006
0.07368857	0.2662750	3891 <i>7</i>	7787	8397	38307	7965

This can be used to plot ROC

General Performance Chart



Our output for the CHAD2 5 variable model using PLP



Contents of performanceEvaluation

calibrationSummary

thresholdsummary

demographicSummary

predictionDistribution

evaluationStatistics

performanceEvaluation

Demographic summary: Stratify the population by age and gender, and compare observed incidence with predicted incidence Age= 60-70 Age= 70-80 Age= 80-90 Gender Ma Gender = Female

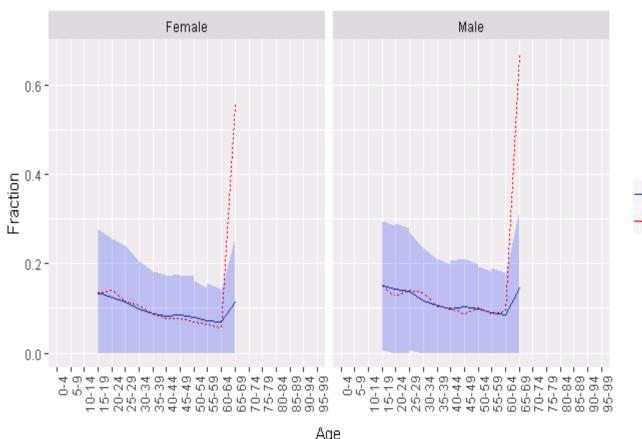
demographicSummary

Predicted vs Observed outcome occurrence for each age group and gender

- 4										
	analysisId ‡	Evai	demographiclå	ageld	ageGroup [‡]	genlå	genGroup	PersonCountAtRis k	PersonCountWithOutcomê	averagePredictedProbabilitŷ
1	20170907211714	train	1	10	Age group: 0-4	8507	Male	NA	NA	NA
2	20170907211714	train	2	11	Age group: 5-9	8507	Male	NA	NA	NA
3	20170907211714	train	3	12	Age group: 10-14	8507	Male	NA	NA	NA
4	20170907211714	train	4	13	Age group: 15-19	8507	Male	5197	792	0.15179358
5	20170907211714	train	5	14	Age group: 20-24	8597	Male	9702	1415	0.14341424
6	20170907211714	train	б	15	Age group: 25-29	8507	Male	5495	742	0.13816323
7	20170907211714	train	7	16	Age group: 30-34	85D7	Male	7625	879	0.11606545

In the train set, there was 5179 males ages 15-18 and 792 had the outcome (0.15), the average predicted risk was 0.15 – so the model is well calibrated for this age/gender group!

This can be used to plot demographic plot



If the model is calibrate well for each age/gender split then the blue and red lines should be near to each other...

Expected

Observed

Age

Contents of performanceEvaluation

calibrationSummary

thresholdSummary

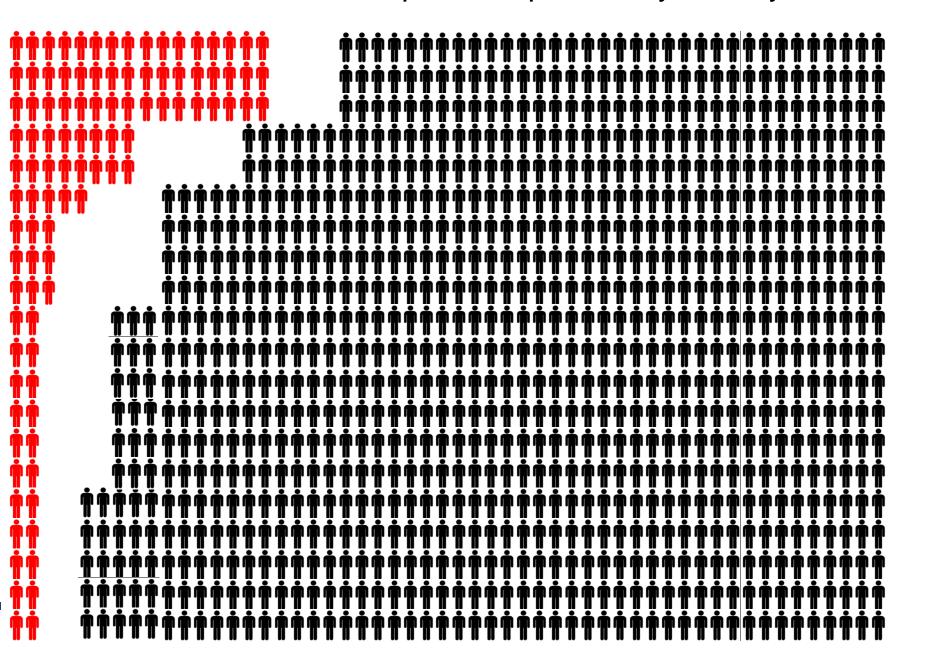
demographicSummary

predictionDistribution

evaluationStatistics

performanceEvaluation

Prediction distribution: Stratify the population by those with and without outcome, and compare the probability density functions



predictionDistribution

Prediction quantiles for people with and without the outcome (too long to show it all...)

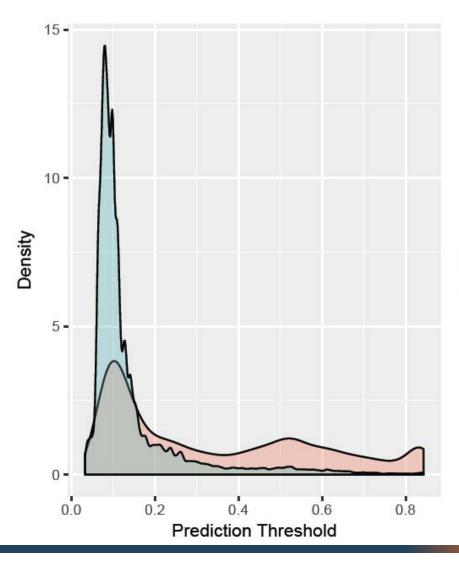
_						
Evat	clasŝ	PersonCount	averagePredictedProbabilitŷ	$StDevPredictedProbabilit\hat{\pmb{y}}$	$Min Predicted Probabilit \hat{\pmb{y}}$	PO5PredictedProbabili
train	0	114920	0.1428148	0.1216245	0.02532292	0.0615184
train	1	25193	0.3485414	0.2607799	0.04756503	0.0736885
test	0	38307	0.1445422	0.1235551	0.03473112	0.0644664
test	1	8397	0.3498708	0.2612192	0,05392288	0.0736885

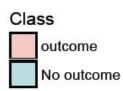
1 = people with outcome

0 = people without outcome

Columns containing: mean, median, 5th percentile, 25th percentile and 95th percentile

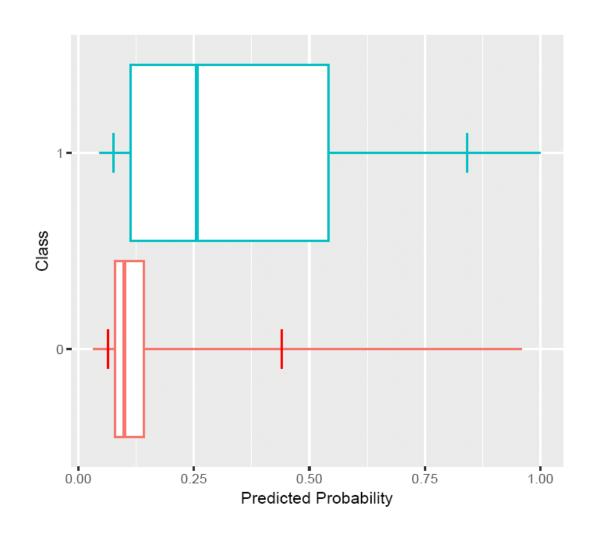
This can be used to plot preference PDF plot





Plot the prediction PDF for the people with the outcome (red) and the people without the outcome (blue)

This can be used to plot prediction distribution plot



This is a summary of the previous plot

Contents of performanceEvaluation

calibrationSummary

thresholdSummary

demographicSummary

predictionDistribution

evaluationStatistics

performanceEvaluation

evaluationStatistics

	analysisId	÷	Eval ‡	Metric ‡	Value ÷
	201709140804	27	train	populationSize	140113
	201709140804	27	train	outcomeCount	25193
	201709140804	27	train	AUC	0.770716568785114
	201709140804	27	train	BrierScore	0.11739764180722
AUC, blief Score		27	train	BrierScaled	0.203951252736394
		27	train	CalibrationIntercept.Intercept	0.000604616294166257
and calibra	auon	27	train	CalibrationSlope.Gradient	0.998695289991136
summarise	ed for	27	test	populationSize	46704
the train a	nd test	27	test	outcomeCount	8397
		27	test	AUC.auc	0.767876247926489
sets		27	test	AUC.auc_lb95ci	0.761865818555656
	201709140804	27	test	AUC.auc_lb95ci.1	0.773886677297322
201709140804 201709140804 201709140804 201709140804		27	test	BrierScore	0.117916015349156
		27	test	BrierScaled	0.206120563897829
		27	test	CalibrationIntercept.Intercept	0.00311558912730724
		170914080427		CalibrationSlope.Gradient	0.974553887657516

Question Break

Any questions about the outputs or visualizations?

Lunch Time

Be back in 45 minutes!

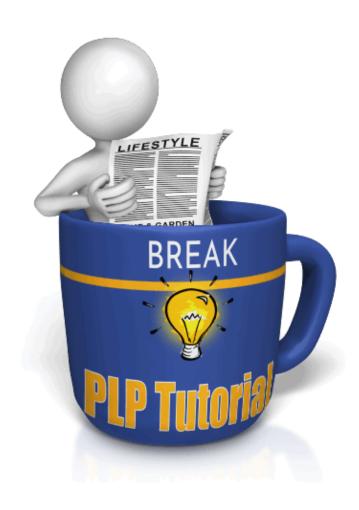
Today's Agenda

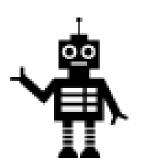
Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

Exercise:

Guided tour through implementing patient-level prediction

Let's take a 15 min break





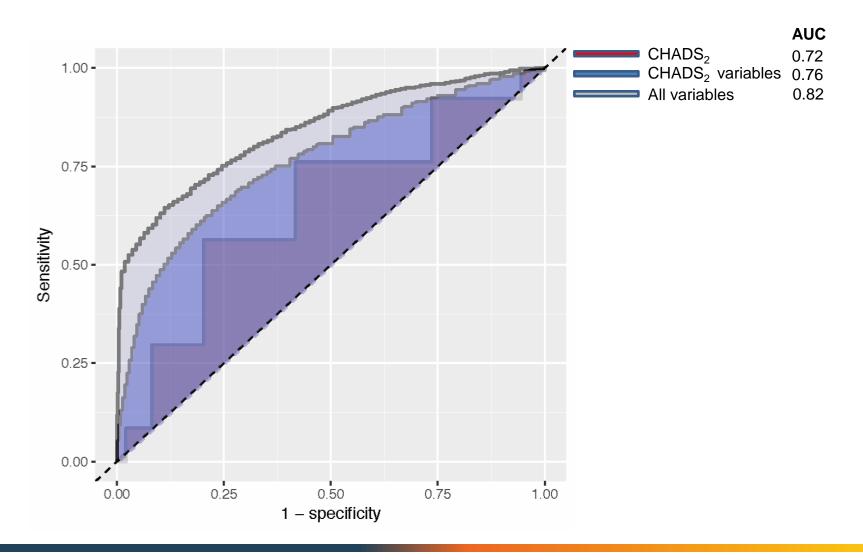
Task (Modified CHADS2 model)

In target population (PLP training: T: patients newly diagnosed with Atrial fibrillation) predict who will develop outcome (PLP training: O - hospitalized ischemic stroke events) during the period from 0 days from cohort start date to 1000 days.

Example

- •We implemented three models in OPTUM for the prediction problem:
- 1. CHAD2 model
- 2. PLP model using 5 CHAD2 variables (and descendants)
- 3. PLP model using all variables

Predicting Stroke in Patients with Atrial Fibrillation: OPTUM results



Today's Agenda

Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

Exercise:

Design and implement your own patient-level prediction

Exercise

- 1. Fill in the form to describe your study (15 min)
- 2. Discuss your study in a group of 4 people (30 min)
- 3. Select a study to work on with your team
- 4. Report your progress to the group

Today's Agenda

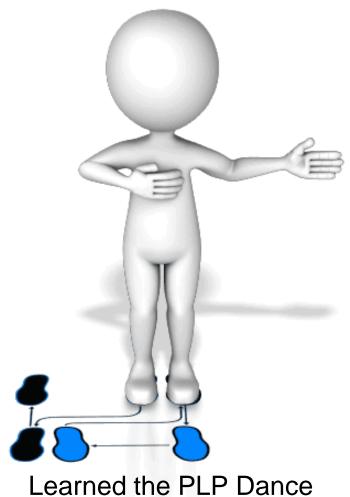
Time	Topic
8:45 - 9:00	Welcome, get settled, get laptops ready
9:00 - 10:30	Presentation: What is Patient-Level Prediction?
10:30 – 10:45	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 1 Theory
10:45 – 11:45	Presentation: Overview of the TRIPOD Statement Exercise: Applying TRIPOD to CHADS2
11:45 – 12:30	Presentation: Learning the OHDSI Patient-Level Prediction Framework - Part 2 Implementation
12:30 – 13:15	Lunch
13:15 – 14:30	Exercise: Guided tour through implementing patient-level prediction
14:30 – 14:45	Break
14:45 – 16:30	Exercise: Design and implement your own patient-level prediction
16:30 – 17:00	Lessons learned and feedback

Lessons learned and feedback

Peter Rijnbeek¹ Jenna Reps² Joel Swerdel²

- 1. Department of Medical Informatics, Erasmus MC
- 2. Janssen Research & Development, LLC

Lessons Learned



Educated Fortune Teller

What's next

When you write your JAMA publication;

- 1. Follow the TRIPOD Statement.
- 2. Cite our work:

To cite Cyclops in publications use:

Suchard MA, Simpson SE, Zorych I, Ryan P and Madigan D (2013). "Massive parallelization of serial inference algorithms for complex generalized linear models:' *ACM Transactions on Modeling and Computer Simulation, 23,* pp. 10. link

To cite PatientLevelPrediction in publications use:

Jenna Reps, Martijn J. Schuemie MJ, Marc A. Suchard, Patrick

B. Ryan P, Peter R. Rijnbeek (2017).

"PatientLevelPrediction: Package for Patient-Level Prediction using data in the OMOP Common Data Model. R package version 1.2.2

Join the PLP Community

Bi-weekly meetings of PLP WG

 Researchers Forum (tag patientprediction)

 Become an active developer: add your own algorithms and other features

Continuation of the PLP Journey

Scale up

- Increase the number of database
- Increase the number of cohorts at risk
- Increase the number of outcomes

Method Research

- Performance
- Speed
- Transportability
- Temporal information
- Textual information
- ..

Clinical impact for the patient

How to assess?

Tutorial improvement

We like to hear your feedback on this course:

- What went well?
- What did not?
- What do you like to see added?
- You can give your feedback on the evaluation form.

Questions? Drop us an email

