OMOP Common Data Model and Standardized Vocabularies

11-October-2018

Christian Reich
Erica A. Voss
Mui van Zandt
Clair Blacketer
Rimma Belenkaya
Dmitry Dymshyts
Don Torok
Stephen Lyman
After the Tutorials, you will know...

1. History of OMOP, OHDSI
2. How the Standardized Vocabulary works
3. How to find codes and Concepts
4. How to navigate the concept hierarchy
5. The OMOP Common Data Model (CDM)
6. How to use the OMOP CDM
<table>
<thead>
<tr>
<th>Section</th>
<th>Speaker</th>
<th>Time</th>
<th>Item(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>-</td>
<td>8:00 - 9:00</td>
<td>Introductions and Ground Rules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 hour)</td>
<td>Foundational</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• History of OMOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Why and How</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Birth of OHDSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Introduction to OMOP Common Data Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OHDSI Community</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example of Remote Study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VM Overview</td>
</tr>
<tr>
<td>Introduction</td>
<td>Christian</td>
<td>9:00 - 10:00</td>
<td>Basic Relationships</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 hour)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break</td>
<td>-</td>
<td>10:30 - 10:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15 min)</td>
<td></td>
</tr>
<tr>
<td>Vocabulary – Part 1</td>
<td>Christian</td>
<td>10:00 – 10:30</td>
<td>Ancestors & Descendants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(30 min)</td>
<td>How does it work for Drugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SQL Examples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Speaker</th>
<th>Time</th>
<th>Item(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunch</td>
<td>-</td>
<td>12:00 - 1:00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 hour)</td>
<td></td>
</tr>
<tr>
<td>Vocabulary – Part 3</td>
<td>Dmitry</td>
<td>1:00 - 1:30</td>
<td>Continued</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(30 min)</td>
<td></td>
</tr>
<tr>
<td>Common Data Model</td>
<td>Erica/Clair</td>
<td>1:30 - 3:00</td>
<td>In depth discussion of model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 hour & 30 min)</td>
<td>Era discussion</td>
</tr>
<tr>
<td>Break</td>
<td>-</td>
<td>3:00 - 3:15</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15 min)</td>
<td></td>
</tr>
<tr>
<td>CDM Examples</td>
<td>Mui</td>
<td>3:15 - 4:40</td>
<td>Leveraging OHDSI Tools (GitHub/Forums/Working Group)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 hour & 25 min)</td>
<td>Exercises</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OHDSI Community</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Rimma</td>
<td>4:40 – 5:00</td>
<td>Conclusion Game</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20 minutes)</td>
<td>Concluding Thoughts</td>
</tr>
</tbody>
</table>
Instructors

<table>
<thead>
<tr>
<th>Instructors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Reich, MD, PhD</td>
<td>Mui van Zandt</td>
<td>Erica A. Voss, MPH, PMP</td>
</tr>
<tr>
<td>Dmitry Dymshyts, MD</td>
<td>Clair Blacketer, MPH, PMP</td>
<td>Rimma Belenkaya, MA, MS</td>
</tr>
</tbody>
</table>
Rovers

<table>
<thead>
<tr>
<th>Don Torok, MS</th>
<th>Stephen Lyman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ground Rules

• We are recording

• We may take some questions off-line

• Buddy up if we cannot get the remote desktop working
What is OMOP/OHDSI?
OMOP Common Data Model (CDM) – Why and How
FDA Regulatory Action over Time

Number of FDA-caused Withdrawals

- 1960ies
- 1970ies
- 1980ies
- 1990ies
- 2000ies
FDAAA calls for establishing Risk Identification and Analysis System

SEC. 905. ACTIVE POSTMARKET RISK IDENTIFICATION AND ANALYSIS.

(a) IN GENERAL.—Subsection (k) of section 505 of the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 355) is amended by adding at the end the following:

“(3) ACTIVE POSTMARKET RISK IDENTIFICATION.—

(A) DEFINITION.—In this paragraph, the term ‘data’ refers to information with respect to a drug approved under this section or under section 351 of the Public Health Service Act, including claims data, patient survey data, standardized analytic files that allow for the pooling and analysis of data from disparate data environments, and any other data deemed appropriate by the Secretary.

(B) DEVELOPMENT OF POSTMARKET RISK IDENTIFICATION AND ANALYSIS METHODS.—The Secretary shall, not later than 2 years after the date of the enactment of the Food and Drug Administration Amendments Act of 2007, in collaboration with public, academic, and private entities—

(i) develop methods to obtain access to disparate data sources including the data sources specified in subparagraph (C);

(ii) develop validated methods for the establishment of a postmarket risk identification and analysis system to link and analyze safety data from multiple sources, with the goals of including, in aggregate—

(I) at least 25,000,000 patients by July 1, 2010; and

(II) at least 100,000,000 patients by July 1, 2012; and

(iii) convene a committee of experts, including individuals who are recognized in the field of protecting data privacy and security, to make recommendations to the Secretary on the development of tools and methods for the ethical and scientific uses for, and communication of, postmarketing data specified under subparagraph (C), including recommendations on the development of effective research methods for the study of drug safety questions.

(C) ESTABLISHMENT OF THE POSTMARKET RISK IDENTIFICATION AND ANALYSIS SYSTEM.—

Risk Identification and Analysis System:

a systematic and reproducible process to efficiently generate evidence to support the characterization of the potential effects of medical products from across a network of disparate observational healthcare data sources.
OMOP Experiment 1 (2009-2010)

- 10 data sources
- Claims and EHRs
- 200M+ lives

OMOP Extended Consortium

OMOP Methods Library
- Inception cohort
- Case control
- Logistic regression

Common Data Model

Drug
- ACE Inhibitors
- Amphotericin B
- Antibiotics: erythromycins, sulfonamides, tetracyclines
- Antiepileptics: carbamazepine, phenytoin
- Benzodiazepines
- Beta blockers
- Bisphosphonates: alendronate
- Tricyclic antidepressants
- Typical antipsychotics
- Warfarin

<table>
<thead>
<tr>
<th>Outcome</th>
<th>ACE Inhibitors</th>
<th>Amphotericin B</th>
<th>Antibiotics: erythromycins, sulfonamides, tetracyclines</th>
<th>Antiepileptics: carbamazepine, phenytoin</th>
<th>Benzodiazepines</th>
<th>Beta blockers</th>
<th>Bisphosphonates: alendronate</th>
<th>Tricyclic antidepressants</th>
<th>Typical antipsychotics</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angioedema</td>
<td></td>
</tr>
<tr>
<td>Aplastic Anemia</td>
<td></td>
</tr>
<tr>
<td>Acute Liver Injury</td>
<td></td>
</tr>
<tr>
<td>Bleeding</td>
<td></td>
</tr>
<tr>
<td>Hip Fracture</td>
<td></td>
</tr>
<tr>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td></td>
</tr>
<tr>
<td>Mortality after MI</td>
<td></td>
</tr>
<tr>
<td>Renal Failure</td>
<td></td>
</tr>
<tr>
<td>GI Ulcer Hospitalization</td>
<td></td>
</tr>
</tbody>
</table>
OMOP Experiment 2 (2011-2012)

Observational Data
- 4 claims databases
- 1 ambulatory EMR

Methods
- Case-Control
- New User Cohort
- Disproportionality methods
- ICTPD
- LGPS
- Self-Controlled Cohort
- SCCS

Drug-outcome pairs

<table>
<thead>
<tr>
<th></th>
<th>Positives</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>165</td>
<td>234</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>36</td>
<td>66</td>
</tr>
<tr>
<td>Upper GI Bleed</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>Acute Liver Injury</td>
<td>81</td>
<td>37</td>
</tr>
<tr>
<td>Acute Renal Failure</td>
<td>24</td>
<td>64</td>
</tr>
</tbody>
</table>
European OMOP Experiment

Methods
- Case-Control
- New User Cohort
- Disproportionality methods
- ICTPD
- LGPS
- Self-Controlled Cohort
- SCCS

Observational Data
- ARS
- IPCI
- HS
- PHARMO

Drug-outcome pairs

<table>
<thead>
<tr>
<th></th>
<th>Positives</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>165</td>
<td>234</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>36</td>
<td>66</td>
</tr>
<tr>
<td>Upper GI Bleed</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>Acute Liver Injury</td>
<td>81</td>
<td>37</td>
</tr>
<tr>
<td>Acute Renal Failure</td>
<td>24</td>
<td>64</td>
</tr>
</tbody>
</table>
Criteria for positive controls:
- Event listed in Boxed Warning or Warnings/Precautions section of active FDA structured product label
- Drug listed as ‘causative agent’ in Tisdale et al, 2010: Drug-Induced Diseases
- Literature review identified no powered studies with refuting evidence of effect

Criteria for negative controls:
- Event not listed anywhere in any section of active FDA structured product label
- Drug not listed as ‘causative agent’ in Tisdale et al, 2010: Drug-Induced Diseases
- Literature review identified no powered studies with evidence of potential positive association

Ground Truth for OMOP Experiment

<table>
<thead>
<tr>
<th>Event</th>
<th>Positive controls</th>
<th>Negative controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Liver Injury</td>
<td>81</td>
<td>37</td>
<td>118</td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>36</td>
<td>66</td>
<td>102</td>
</tr>
<tr>
<td>Acute Renal Failure</td>
<td>24</td>
<td>64</td>
<td>88</td>
</tr>
<tr>
<td>Upper Gastrointestinal Bleeding</td>
<td>24</td>
<td>67</td>
<td>91</td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>234</td>
<td>399</td>
</tr>
</tbody>
</table>
Results
Main findings in OMOP experiment

• Heterogeneity in estimates due to choice of database
• Heterogeneity in estimates due to analysis choices
• Except little heterogeneity due to outcome definitions
• Good performance (AUC > 0.7) in distinguishing positive from negative controls for optimal methods when stratifying by outcome and restricting to powered test cases
• Self controlled methods perform best for all outcomes
Observational Health Data Sciences and Informatics (OHDSI) Plans and Ambitions
• The Observational Health Data Sciences and Informatics (OHDSI) program is a multi-stakeholder, interdisciplinary collaborative to create open-source solutions that bring out the value of observational health data through large-scale analytics.

• OHDSI has established an international network of researchers and observational health databases with a central coordinating center housed at Columbia University:
 – Public, Open
 – Not Pharma-funded
 – International

http://ohdsi.org
To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care.

A world in which observational research produces a comprehensive understanding of health and disease.

Join us on the journey

http://ohdsi.org
OHDSI: a global community

OHDSI Collaborators:
- >220 researchers in academia, industry and government
- >21 countries

OHDSI Data Network:
- >114 databases from 19 countries
- 1.9 billion patients records (duplicates)
- ~222 million non-US patients
Current pace of evidence generation in healthcare

All health outcomes of interest

Bi Ca Co	Ca Co Bi	Bi Co Ca	Co Bi Ca	Ca Bi Co	Bi Ca Co	Ca Co Bi	Bi Co Ca	Co Bi Ca	Ca Bi Co	Bi Ca Co	Ca Co Bi	Bi Co Ca	Co Bi Ca	Ca Bi Co	
Gestion	Gen Immune	System DM	Infections and Interventions	Injury, poisoning and external causes	Investigative	Metabolism	Mental Health	Nervous system disorders	Pregnancy, puerperium	Psychiatric	Renal and urinary disorders	Reproductive system and breast	Respiratory system and HIV	Skin and substance	Social and Mental Health
OTHER IN	OTHER LA	OTHER LR	OTHER LRN	OTHER LR	OTHER LRA	OTHER LRN	OTHER N								

All drugs

<table>
<thead>
<tr>
<th>All drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER INT</td>
</tr>
</tbody>
</table>

VITAMIN C, INTERMED, SECONDARY, NUCLEAR, ROTA VIRUS, OTHER AN, ANTIBIOTIC, BENZODIAZEPINES, IRON IN CO, VITAMIN K, MINERALS, RENIN-ANGIOTENSIN, OTHER AN, BETA BLOCKING, ANTIARRHYTHMIC, THYROID, SUGAR, COP, OTHER AN, ANTHROPIC, SELECTIVE, TESTOSTERONE, COUS, PROMICIC, OTHER GE, BENZODIAZEPINE, SELECTIVE, ANTIARRHYTHMIC, MONODAMINE, PROSTATE, OTHER NE, NON-SELECTIVE, ALCOHOL, CARBAMATE, MELATONI, PHENOXYETHYLAMINE, AMPHETAMINE, SYMPATHOMIMETIC, ANTIARRHYTHMIC, HYPOXIC, OXIC, ANTISTRESS, WATER.
"What's the adherence to my drug in the data assets I own?"

Current Approach: “One Study – One Script”

Analytical method: Adherence to Drug

Application to data

Current solution:
- One SAS or R script for each study

Country icons:
- North America
- Southeast Asia
- China
- Europe
- UK
- Japan
- India
- So Africa
- Switzerland
- Italy
- Israel

Issues:
- Not scalable
- Not transparent
- Expensive
- Slow
- Prohibitive to non-expert routine use
Solution: Data Standardization Enables Systematic Research

- Adherence
- Mortality
- Source of Business
- Safety Signals

OHDSI Tools

OMOP CDM

North America, Southeast Asia, China, Europe, UK, Japan, India, So Africa, Switzerland, Italy, Israel

Standardized data
Analytics can be remote
Analytics can be behind firewall
Network Studies
Networks of networks

Coordinating Center

Another Network

Network
Virtual Machine
OHDSI in a Box

Microsoft SQL Server
- cdm
- webapi
- Management Studio

Microsoft SQL Server

EC2

Atlas
WebAPI
Tomcat

Methods Library
- OHDSI R packages
- Studio

synpuf_100k
synpuf_2.3m
WhiteRabbit
RabbitInAHat
How to Sign into the Remote Desktop

• Use the shortcut on the desktop named “Remote Desktop”

 goo.gl/aXKY9e

• Pick one of the rows and put your name on the second column
How to Sign into the Remote Desktop

- Take Column A from spreadsheet and copy into the “Computer” field
How to Sign into the Remote Desktop

• Pick ‘Use Another Account’

• Copy username from Column C

• Copy password from Column D
How to Sign into the Remote Desktop

- If you get this page, select “Yes”
OHDSI in a Box
CDM Database: Open Query Tool

• Click on “SQL Server management Studio”
CDM Database: Connect to DB

Connect the DB
CDM Database: Open Query Window

1) Select DB

2) Hit “New Query” Button
OHDSI in a Box

Query Window

F5 To Run

Results Window
Vocabulary

Basic Relationship, Ancestors, & Descendants
How does it work for Drugs
SQL Examples
OMOP Common Vocabulary Model

What it is
• **Standardized structure** to house existing vocabularies used in the public domain
• **Compiled standards** from disparate public and private sources and some OMOP-grown concepts

What it’s not
• **Static dataset** – the vocabulary updates regularly to keep up with the continual evolution of the sources
• **Finished product** – vocabulary maintenance and improvement is ongoing activity that requires community participation and support
CDM Version 6 Key Domains

Standardized clinical data
- Person
 - Observation_period
 - Visit_occurrence
 - Visit_detail
 - Condition_occurrence
 - Drug_exposure
 - Procedure_occurrence
 - Device_exposure
 - Measurement
 - Note
 - Note_NLP
 - Survey_conduct
 - Observation
 - Specimen
 - Fact_relationship

Standardized derived elements
- Standardized health system data
 - Location
 - Location_history
 - Care_site
 - Provider
- Standardized derived elements
 - Condition_era
 - Drug_era
 - Dose_era

Results Schema
- Cohort
- Cohort_definition

Standardized health economics
- Cost
- Payer_plan_period

Standardized metadata
- CDM_source
- Metadata

Standardized vocabularies
- Concept
- Vocabulary
- Domain
- Concept_class
- Concept_relationship
- Relationship
- Concept_synonym
- Concept_ancestor
- Source_to_concept_map
- Drug_strength

CDM elements and relationships visualized in a diagram format.
Structure of OMOP Vocabulary

All content: concepts in `concept`

Direct relationships between concepts in `concept_relationship`

Multi-step hierarchical relationships pre-processed into `concept_ancestor`
All vocabularies stacked up in one table

Vocabulary ID
Dozens of schemes, formats, rules

LOINC_248_MULTI-AXIAL_HIERARCHY.CSV

<table>
<thead>
<tr>
<th>PATH_TO_ROOT</th>
<th>SEQUENCE</th>
<th>IMMEDIATE_PARENT</th>
<th>CODE</th>
<th>CODE_TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP31755-9</td>
<td>1</td>
<td>LP31755-9</td>
<td>LP14559-6</td>
<td>Microbiology</td>
</tr>
<tr>
<td>LP31755-9</td>
<td>1</td>
<td>LP31755-9</td>
<td>LP98185-9</td>
<td>Bacteria</td>
</tr>
<tr>
<td>LP31755-9</td>
<td>1</td>
<td>LP98185-9</td>
<td>LP98185-9</td>
<td>Bacteria</td>
</tr>
<tr>
<td>LP31755-9</td>
<td>1</td>
<td>LP14559-6</td>
<td>LP98185-9</td>
<td>Bacteria</td>
</tr>
<tr>
<td>LP31755-9</td>
<td>1</td>
<td>LP98185-9</td>
<td>LP98185-9</td>
<td>Bacteria</td>
</tr>
</tbody>
</table>

loinc.csv

<table>
<thead>
<tr>
<th>LOINC_LVL COMPONENT</th>
<th>PROPERTY</th>
<th>TIME_ASPECT</th>
<th>SYSTEM</th>
<th>SCALE_TYP</th>
<th>METHOD_TYP</th>
<th>CLASS</th>
<th>SOURCE</th>
<th>DATE_LAST_CHNG_TY_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10454-7</td>
<td>Xylose*2H post 25 g xylene PO</td>
<td>MCnc</td>
<td>Pt</td>
<td>Set/Plas</td>
<td>Qn</td>
<td>CHAL</td>
<td>SH</td>
<td>19961220 ADD</td>
</tr>
<tr>
<td>10455-4</td>
<td>Xylose*30M post 25 g xylene PO</td>
<td>MCnc</td>
<td>Pt</td>
<td>Set/Plas</td>
<td>Qn</td>
<td>CHAL</td>
<td>SH</td>
<td>19961220 ADD</td>
</tr>
<tr>
<td>10456-2</td>
<td>Xylose*post 6H CFst</td>
<td>MCnc</td>
<td>Pt</td>
<td>Set/Plas</td>
<td>Qn</td>
<td>CHAL</td>
<td>SH</td>
<td>19961220 ADD</td>
</tr>
</tbody>
</table>

CMS32_DESC_LONG_SHORT_DX.xlsx

<table>
<thead>
<tr>
<th>DIAGNOSIS CODE</th>
<th>LONG DESCRIPTION</th>
<th>SHORT DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>Cholera due to vibrio cholerae</td>
<td>Cholera d/t vib cholerae</td>
</tr>
<tr>
<td>0011</td>
<td>Cholera due to vibrio cholerae el tor</td>
<td>Cholera d/t vib el tor</td>
</tr>
<tr>
<td>0019</td>
<td>Cholera, unspecified</td>
<td>Cholera NOS</td>
</tr>
<tr>
<td>0020</td>
<td>Typhoid fever</td>
<td>Typhoid fever</td>
</tr>
<tr>
<td>0021</td>
<td>Paratyphoid fever A</td>
<td>Paratyphoid fever a</td>
</tr>
<tr>
<td>0022</td>
<td>Paratyphoid fever B</td>
<td>Paratyphoid fever b</td>
</tr>
<tr>
<td>0023</td>
<td>Paratyphoid fever C</td>
<td>Paratyphoid fever c</td>
</tr>
<tr>
<td>0029</td>
<td>Paratyphoid fever, unspecified</td>
<td>Paratyphoid fever NOS</td>
</tr>
<tr>
<td>0030</td>
<td>Salmonella gastroenteritis</td>
<td>Salmonella enteritis</td>
</tr>
<tr>
<td>0031</td>
<td>Salmonella septicemia</td>
<td>Salmonella septicemia</td>
</tr>
<tr>
<td>00320</td>
<td>Localized salmonella infection, unspecified</td>
<td>Local salmonella inf NOS</td>
</tr>
<tr>
<td>00321</td>
<td>Salmonella menigitis</td>
<td>Salmonella meningitis</td>
</tr>
<tr>
<td>00322</td>
<td>Salmonella pneumonia</td>
<td>Salmonella pneumonia</td>
</tr>
<tr>
<td>00323</td>
<td>Salmonella arthitis</td>
<td>Salmonella arthitis</td>
</tr>
<tr>
<td>00324</td>
<td>Salmonella osteomyelitis</td>
<td>Salmonella osteomyelitis</td>
</tr>
<tr>
<td>00329</td>
<td>Other localized salmonella infections</td>
<td>Local salmonella inf NEC</td>
</tr>
</tbody>
</table>
What's in a Concept

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPT_ID</td>
<td>313217</td>
</tr>
<tr>
<td>CONCEPT_NAME</td>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td>DOMAIN_ID</td>
<td>Condition</td>
</tr>
<tr>
<td>VOCABULARY_ID</td>
<td>SNOMED</td>
</tr>
<tr>
<td>CONCEPT_CLASS_ID</td>
<td>Clinical Finding</td>
</tr>
<tr>
<td>STANDARD_CONCEPT</td>
<td>S</td>
</tr>
<tr>
<td>CONCEPT_CODE</td>
<td>49436004</td>
</tr>
<tr>
<td>VALID_START_DATE</td>
<td>01-Jan-1970</td>
</tr>
<tr>
<td>VALID_END_DATE</td>
<td>31-Dec-2099</td>
</tr>
<tr>
<td>INVALID_REASON</td>
<td>Code in SNOMED</td>
</tr>
</tbody>
</table>

For use in CDM
English description
Domain
Vocabulary
Class in SNOMED
Concept in data
Code in SNOMED
Valid during time interval
MiniSentinel in use: Dabigatran and bleeding

Dabigatran and Postmarketing Reports of Bleeding
Mary Ross Southworth, Pharm.D., Marsha E. Reichman, Ph.D., and Ellis F. Unger, M.D.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Dabigatran</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Patients</td>
<td>Incidence (no. of events/100,000 days at risk)</td>
</tr>
<tr>
<td>Gastrointestinal hemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis with required diagnosis of atrial fibrillation</td>
<td>10,599</td>
<td>16</td>
</tr>
<tr>
<td>Sensitivity analysis without required diagnosis of atrial fibrillation</td>
<td>12,195</td>
<td>19</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis with required diagnosis of atrial fibrillation</td>
<td>10,587</td>
<td>8</td>
</tr>
<tr>
<td>Sensitivity analysis without required diagnosis of atrial fibrillation</td>
<td>12,182</td>
<td>10</td>
</tr>
</tbody>
</table>
All Content in CDM is Coded as Concepts

• Concepts are referred to by concept_id

• All details are in the CONCEPT table:

```
SELECT *  
FROM concept  
WHERE concept_id = 313217
```
Condition Concepts

Classification Concepts

Standard Concepts

Top-level classification

Higher-level classifications

Low-level concepts

Source concepts

Source codes

ICD10
ICD10CM
Read
SNOMED
Oxmis
Ciel
MeSH
ICD9CM

SNOMED-CT

MedDRA

System organ class

High-level group terms

High-level terms

Preferred terms

Low-level terms

Source Concepts
Finding the Right Concept #1

1. **..if I know the ID**

```sql
SELECT * FROM concept WHERE concept_id = 313217
```

<table>
<thead>
<tr>
<th>CONCEPT_ID</th>
<th>CONCEPT_NAME</th>
<th>DOMAIN_ID</th>
<th>VOCABULARY_ID</th>
<th>CONCEPT_CLASS_ID</th>
<th>STANDARD_CONCEPT</th>
<th>CONCEPT_CODE</th>
<th>VALID_START_DATE</th>
<th>VALID_END_DATE</th>
<th>INVALID_REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>313217</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>49436004</td>
<td>01-Jan-1970</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
</tbody>
</table>

2. **..if I know the code**

```sql
SELECT * FROM concept WHERE concept_code = '49436004'
```

<table>
<thead>
<tr>
<th>CONCEPT_ID</th>
<th>CONCEPT_NAME</th>
<th>DOMAIN_ID</th>
<th>VOCABULARY_ID</th>
<th>CONCEPT_CLASS_ID</th>
<th>STANDARD_CONCEPT</th>
<th>CONCEPT_CODE</th>
<th>VALID_START_DATE</th>
<th>VALID_END_DATE</th>
<th>INVALID_REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>313217</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>49436004</td>
<td>01-Jan-1970</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
</tbody>
</table>
SELECT *
FROM concept
WHERE concept_code = '1001';

<table>
<thead>
<tr>
<th>Concept_Name</th>
<th>Concept Class</th>
<th>Vocabulary_ID</th>
<th>Concept_Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipyrine</td>
<td>Ingredient</td>
<td>RxNorm</td>
<td>1001</td>
</tr>
<tr>
<td>Aceprometazine maleate</td>
<td>Ingredient</td>
<td>BDPM</td>
<td>1001</td>
</tr>
<tr>
<td>Serum</td>
<td>Specimen</td>
<td>CIEL</td>
<td></td>
</tr>
<tr>
<td>methixene hydrochloride</td>
<td>Ingredient</td>
<td>Multilex</td>
<td>1001</td>
</tr>
<tr>
<td>Brompheniramine Maleate, 10 mg/mL injectable solution</td>
<td>Ingredient</td>
<td>Multum</td>
<td>1001</td>
</tr>
<tr>
<td>ABBOTT COLD SORE BALM 4%/0.06% W/</td>
<td>Drug Product</td>
<td>LPD_Australia</td>
<td>1001</td>
</tr>
<tr>
<td>Residential Treatment - Psychiatric</td>
<td>Revenue Code</td>
<td>Revenue Code</td>
<td>1001</td>
</tr>
</tbody>
</table>
Finding the Right Concept #2

3. ..if I know the name

```
SELECT * FROM concept WHERE concept_name = 'Atrial fibrillation';
```

<table>
<thead>
<tr>
<th>CONCEPT_ID</th>
<th>CONCEPT_NAME</th>
<th>DOMAIN_ID</th>
<th>VOCABULARY_ID</th>
<th>CONCEPT_CLASS_ID</th>
<th>STANDARD_CONCEPT</th>
<th>CONCEPT_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>313217</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>49436004</td>
</tr>
<tr>
<td>44821957</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>ICD9CM</td>
<td>5-dig billing code</td>
<td></td>
<td>427.31</td>
</tr>
<tr>
<td>35204953</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10003658</td>
</tr>
<tr>
<td>45500085</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>Read</td>
<td>Read</td>
<td></td>
<td>G573000</td>
</tr>
<tr>
<td>45883018</td>
<td>Atrial fibrillation</td>
<td>Meas Value</td>
<td>LOINC</td>
<td>Answer</td>
<td>S</td>
<td>LA17084-7</td>
</tr>
</tbody>
</table>
Finding the Right Concept #3

1. if don't know any of this, but I know the code in another vocabulary

```
SELECT * FROM concept WHERE concept_code = '427.31';
```

<table>
<thead>
<tr>
<th>CONCEPT_ID</th>
<th>CONCEPT_NAME</th>
<th>DOMAIN_ID</th>
<th>VOCABULARY_ID</th>
<th>CONCEPT_CLASS_ID</th>
<th>STANDARD_CONCEPT</th>
<th>CONCEPT_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>44821957</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>ICD9CM</td>
<td>5-digit billing code</td>
<td></td>
<td>427.31</td>
</tr>
</tbody>
</table>

```
SELECT * FROM concept_relationship WHERE concept_id_1 = 44821957;
```

Mapping to different vocabularies

<table>
<thead>
<tr>
<th>_ID_1</th>
<th>CONCEPT_ID_2</th>
<th>RELATIONSHIP_ID</th>
<th>VALID_START_DATE</th>
<th>VALID_END_DATE</th>
<th>INVALID_REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>44821957</td>
<td>21001551</td>
<td>ICD9CM - FDB Ind</td>
<td>01-Oct-13</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
<tr>
<td>44821957</td>
<td>35204953</td>
<td>ICD9CM - MedDRA</td>
<td>01-Jan-70</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
<tr>
<td>44821957</td>
<td>44824248</td>
<td>Is a</td>
<td>01-Oct-14</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
<tr>
<td>44821957</td>
<td>44834731</td>
<td>Is a</td>
<td>01-Oct-14</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
<tr>
<td>44821957</td>
<td>313217</td>
<td>Maps to</td>
<td>01-Jan-70</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
</tbody>
</table>

ICD-9 is not a Standard Concept

Kind of relationship
Why are we mapping?

Official languages of the EU

<table>
<thead>
<tr>
<th>What is it?</th>
<th>The European Union has 24 official and working languages. They are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulgarian</td>
</tr>
<tr>
<td></td>
<td>Croatian</td>
</tr>
<tr>
<td></td>
<td>Czech</td>
</tr>
<tr>
<td></td>
<td>Danish</td>
</tr>
<tr>
<td></td>
<td>Dutch</td>
</tr>
<tr>
<td></td>
<td>English</td>
</tr>
<tr>
<td></td>
<td>Estonian</td>
</tr>
<tr>
<td></td>
<td>Finnish</td>
</tr>
</tbody>
</table>

What is the Commission doing?

With a permanent staff of 1,750 linguists and 600 support staff, the Commission has one of the largest translation services in the world, bolstered by a further 600 full-time and 3,000 freelance interpreters.
How many different ways do you express one meaning?

Cheers
Mapping = Translating

Step 1. Lookup the Source Concept

```
SELECT * FROM concept WHERE concept_code = '427.31';
```

<table>
<thead>
<tr>
<th>CONCEPT_ID</th>
<th>CONCEPT_NAME</th>
<th>DOMAIN_ID</th>
<th>VOCABULARY_ID</th>
<th>CONCEPT_CLASS_ID</th>
<th>STANDARD_CONCEPT</th>
<th>CONCEPT_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>44821957</td>
<td>Atrial fibrillation</td>
<td>Condition</td>
<td>ICD9CM</td>
<td>5-digit billing code</td>
<td></td>
<td>427.31</td>
</tr>
</tbody>
</table>

Step 2. Translate to Standard

```
SELECT * FROM concept_relationship WHERE concept_id_1 = 44821957 AND relationship_id = 'Maps to';
```

<table>
<thead>
<tr>
<th>CONCEPT_ID_1</th>
<th>CONCEPT_ID_2</th>
<th>RELATIONSHIP_ID</th>
<th>VALID_START_DATE</th>
<th>VALID_END_DATE</th>
<th>INVALID_REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>44821957</td>
<td>313217</td>
<td>Maps to</td>
<td>01-Jan-1970</td>
<td>31-Dec-2099</td>
<td></td>
</tr>
</tbody>
</table>

Step 3. Check out the translated Concept

```
SELECT * FROM concept WHERE concept_id = 313217;
```
Exercise: Find Standard Concept ID from Source Concept

ICD9: '427.31' : 313217
ICD10CM: 'I48.91' : 313217
ICD10: 'I48.0' : 4154290 'Paroxysmal Atrial Fibrillation'

Step 1. Lookup
SELECT * FROM concept WHERE concept_code = ...;

Step 2. Translate
SELECT * FROM concept_relationship WHERE concept_id_1 = ...
AND relationship_id = 'Maps to';

Step 3. Check out
SELECT * FROM concept WHERE concept_id = ...;
Break

Please return in 15 minutes
Reason #2: Disease Hierarchy

SNOMED Concepts

- Disease of the cardiovascular system
- Heart disease
- Cardiac arrhythmia
- Supraventricular arrhythmia
- Fibrillation
- Atrial arrhythmia
- Atrial fibrillation

Concept Relationships

- Controlled atrial fibrillation
- Persistent atrial fibrillation
- Chronic atrial fibrillation
- Paroxysmal atrial fibrillation
- Rapid atrial fibrillation
- Permanent atrial fibrillation
Exploring Relationships

```sql
SELECT * 
FROM concept_relationship 
WHERE concept_id_1 = 313217
```
Exploring Relationships

```
SELECT cr.relationship_id, c.*
FROM concept_relationship cr
JOIN concept c ON cr.concept_id_2 = c.concept_id
WHERE cr.concept_id_1 = 313217
```

<table>
<thead>
<tr>
<th>relationship_id</th>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
<th>valid_start_date</th>
<th>valid_end_date</th>
<th>invalid_reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asso finding of</td>
<td>4194288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asso finding of</td>
<td>4203375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asso finding of</td>
<td>42659635</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asso finding of</td>
<td>44807374</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept pss_eq from</td>
<td>40323929</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Context-dependent S</td>
<td>312442005</td>
<td>1/1/1970 00:00</td>
<td>12/31/2009 00:00</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Concept pss_eq from</td>
<td>40345157</td>
<td>Fibrillation - atrial</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Due to of</td>
<td>4139717</td>
<td>Transient cerebral ischemia due to atrial fibrillation</td>
<td>Procedure</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Focus of</td>
<td>42709991</td>
<td>Insertion of pacemaker for control of atrial fibrillation</td>
<td>SpecAnatomicSite</td>
<td>SNOMED</td>
<td>Body Structure</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Has finding site</td>
<td>4242112</td>
<td>Atrial structure</td>
<td>Procedure</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Is a</td>
<td>4226099</td>
<td>Fibrillation</td>
<td>Procedure</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Is a</td>
<td>4066155</td>
<td>Atrial arrhythmia</td>
<td>Procedure</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>40323929</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>HCPCS</td>
<td>S-499</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>40345157</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>HCPCS</td>
<td>S-499</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>45576876</td>
<td>Unspecified atrial fibrillation</td>
<td>Observation</td>
<td>ICD10CM</td>
<td>S-char billing code</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>45550085</td>
<td>Atrial Fibrillation</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>45611600</td>
<td>Atrial Fibrillation</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>40345157</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>40345157</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>40345157</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Mapped from</td>
<td>40345157</td>
<td>Fibrillation - atrial</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Maps to</td>
<td>313271</td>
<td>Atrial Fibrillation</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - HOI</td>
<td>500002401</td>
<td>OMOP Atrial Fibrillation 1</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - HOI</td>
<td>500001801</td>
<td>OMOP Ct Prolongation/Torsade De Pointes 1</td>
<td>Observation</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - ind/Ci</td>
<td>21005678</td>
<td>Prevention of Thromboembolism in Chronic Atrial Fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - ind/Ci</td>
<td>21003179</td>
<td>Tachyarrhythmia</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - ind/Ci</td>
<td>21002837</td>
<td>Supraventricular Tachycardia</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - ind/Ci</td>
<td>21001542</td>
<td>Disease of Cardiovascular System</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>SNOMED - MedDRA eq</td>
<td>35204953</td>
<td>Atrial Fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>4117112</td>
<td>Controlled atrial fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>4139601</td>
<td>Lone atrial fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>4232067</td>
<td>Persistent atrial fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>4141360</td>
<td>Chronic atrial fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>44782442</td>
<td>Atrial fibrillation with rapid ventricular response</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>4199501</td>
<td>Rapid atrial fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Subsumes</td>
<td>4219002</td>
<td>Non-rheumatic atrial fibrillation</td>
<td>Drug</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>NULL</td>
<td>1/1/1970 00:00</td>
<td>3/11/2016 00:00</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

Find out related concept

Ancestor concepts

Descendant concepts
Ancestry Relationships: Higher-Level Relationships

Concepts

Ancestor

Descendant

Concept Relationships

Ancestry Relationships

5 levels of separation

2 levels of separation

Disease of the cardiovascular system
Heart disease
Cardiac arrhythmia
Supraventricular arrhythmia
Fibrillation
Atrial arrhythmia
Atrial fibrillation

Controlled atrial fibrillation
Persistent atrial fibrillation
Chronic atrial fibrillation
Paroxysmal atrial fibrillation
Rapid atrial fibrillation
Permanent atrial fibrillation
Exploring Ancestors of a Concept

```sql
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON ancestor_concept_id = concept_id
WHERE descendant_concept_id = 313217 /* Atrial fibrillation */
ORDER BY max_levels_of_separation
```

<table>
<thead>
<tr>
<th>max_levels_of_separation</th>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>313217</td>
<td>Atrial fibrillation</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>35204953</td>
<td>Atrial fibrillation</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>4226399</td>
<td>Fibrillation</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>4068155</td>
<td>Atrial arrhythmia</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>35204969</td>
<td>Cardiac fibrillation</td>
<td>Co</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>4248028</td>
<td>Supraventricular arrhythmia</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>35204952</td>
<td>Arrhythmia supraventricular</td>
<td>Co</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>35202434</td>
<td>Rate and rhythm disorders NEC</td>
<td>Co</td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>44784217</td>
<td>Cardiac arrhythmia</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>35202455</td>
<td>Supraventricular arrhythmias</td>
<td>Co</td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>321588</td>
<td>Heart disease</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>35204989</td>
<td>Cardiac disorder</td>
<td>Co</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>35202050</td>
<td>Cardiac arrhythmias</td>
<td>Co</td>
<td>MedDRA</td>
<td>HLGT</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>4103183</td>
<td>Cardiac finding</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>440142</td>
<td>Disorder of mediastinum</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>134057</td>
<td>Disorder of cardiovascular system</td>
<td>SNOMED</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>35204998</td>
<td>Cardiovascular disorder</td>
<td>Co</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>37219970</td>
<td>Mediastinal disorder</td>
<td>Co</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>37622411</td>
<td>Phlebsclerosis</td>
<td>Co</td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>35202457</td>
<td>Cardiac disorders NEC</td>
<td>Co</td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>4115390</td>
<td>Mediastinal finding</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>4023995</td>
<td>Cardiovascular finding</td>
<td>Co</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
</tbody>
</table>

Hold the descendant
Exploring Descendants of a Concept

```
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON descendant_concept_id = concept_id
WHERE ancestor_concept_id = 44784217 /* cardiac arrhythmia */
ORDER BY max_levels_of_separation
```

<table>
<thead>
<tr>
<th>MAX_LEVELS_OF_SEPARATION</th>
<th>CONCEPT_ID</th>
<th>CONCEPT_NAME</th>
<th>DOMAIN_ID</th>
<th>VOCABULARY_ID</th>
<th>CONCEPT_CLASS_ID</th>
<th>STANDARD_CONCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>44784217 Cardiac arrhythmia</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>313224 Anomalous atrioventricular excitation</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>315643 Tachyarrhythm</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>316429 Premature beats</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>316999 Conduction disorder of the heart</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>321042 Cardiac arrest</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4030583 Pacemaker twiddler's syndrome</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4057008 Accelerated atrioventricular conduction</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4086313 Withdrawal arrhythmia</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4088507 Ventricular escape complex</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4088986 Atrial escape complex</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4091901 Aberrant premature complexes</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4092011 Aberrantly conducted complex</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4124704 Postoperative sinoatrial disease</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4143042 Ectopic beats</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4164083 Ectopic rhythm</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4172863 Fetal dysrhythmia</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4173170 Neonatal dysrhythmia</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4175473 Atrioventricular dissociation</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4185572 Ventricular arrhythmia</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4217221 Nodal rhythm disorder</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4226399 Fibrillation</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4228448 Bradycardia</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
</tr>
</tbody>
</table>
Let Us find Upper Gastrointestinal Bleeding

1. Find some initiation concept

```
SELECT * FROM concept WHERE concept_name = 'Upper gastrointestinal bleeding'
```

<table>
<thead>
<tr>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
</tr>
</thead>
<tbody>
<tr>
<td>42891225</td>
<td>Upper gastrointestinal</td>
<td>Condition</td>
<td>MedDRA</td>
<td>LLT</td>
<td>C</td>
<td>10071910</td>
</tr>
</tbody>
</table>

2. Find standard concepts

```
SELECT * FROM concept WHERE lower(concept_name) LIKE '%upper gastrointestinal%' AND domain_id = 'Condition' AND standard_concept = 'S'
```

<table>
<thead>
<tr>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
</tr>
</thead>
<tbody>
<tr>
<td>4308202</td>
<td>Acute upper gastrointestinal hemorrhage</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>38938002</td>
</tr>
<tr>
<td>4291649</td>
<td>Upper gastrointestinal hemorrhage</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>37372002</td>
</tr>
<tr>
<td>4115581</td>
<td>Finding of upper gastrointestinal gas</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>300370006</td>
</tr>
<tr>
<td>4103011</td>
<td>Chronic upper gastrointestinal hemorrhage</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>25349007</td>
</tr>
<tr>
<td>4012503</td>
<td>Excessive upper gastrointestinal gas</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>162076009</td>
</tr>
<tr>
<td>4000609</td>
<td>Disorder of upper gastrointestinal tract</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>119291004</td>
</tr>
<tr>
<td>4332645</td>
<td>Upper gastrointestinal hemorrhage associated with hypercoagulability state</td>
<td>Condition</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>430349003</td>
</tr>
</tbody>
</table>
Selecting the Right Concept

Going up the hierarchy:

```
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON ancestor_concept_id = concept_id
WHERE descendant_concept_id = 4332645 /* Upper gastrointestinal hemorrhage associated...*/
ORDER BY max_levels_of_separation
```

<table>
<thead>
<tr>
<th>max_levels_of_separation</th>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4332645</td>
<td>Upper gastrointestinal hemorrhage associated with hypercoag</td>
<td></td>
<td></td>
<td>Clinical Finding</td>
<td>S</td>
<td>430349003</td>
</tr>
<tr>
<td></td>
<td>35708054</td>
<td>Gastritis haemorrhagic</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10017866</td>
</tr>
<tr>
<td>1</td>
<td>4291649</td>
<td>Upper gastrointestinal hemorrhage</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10046274</td>
</tr>
<tr>
<td></td>
<td>35707871</td>
<td>Upper gastrointestinal haemorrhage</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10046274</td>
</tr>
<tr>
<td>2</td>
<td>35707864</td>
<td>Gastrointestinal haemorrhage</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10017955</td>
</tr>
<tr>
<td></td>
<td>4000609</td>
<td>Disorder of upper gastrointestinal tract</td>
<td></td>
<td>SNOMED</td>
<td>PT</td>
<td>C</td>
<td>119291004</td>
</tr>
<tr>
<td>2</td>
<td>35707858</td>
<td>Intestinal haemorrhage</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10059175</td>
</tr>
<tr>
<td></td>
<td>35702752</td>
<td>Gastritis (excl infective)</td>
<td></td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
<td>10017854</td>
</tr>
<tr>
<td>2</td>
<td>192671</td>
<td>Gastrointestinal hemorrhage</td>
<td></td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>74474003</td>
</tr>
<tr>
<td>3</td>
<td>37604042</td>
<td>Gastrointestinal haemorrhages</td>
<td></td>
<td>MedDRA</td>
<td>Clinical Finding</td>
<td>S</td>
<td>10052742</td>
</tr>
<tr>
<td></td>
<td>37622518</td>
<td>Haemorrhage</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10055798</td>
</tr>
<tr>
<td>3</td>
<td>437312</td>
<td>Bleeding</td>
<td></td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>131148009</td>
</tr>
<tr>
<td></td>
<td>4198525</td>
<td>Disorder of upper digestive tract</td>
<td></td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>50410009</td>
</tr>
<tr>
<td>3</td>
<td>37622515</td>
<td>Extravasation blood</td>
<td></td>
<td>MedDRA</td>
<td>PT</td>
<td>C</td>
<td>10015867</td>
</tr>
<tr>
<td></td>
<td>4000610</td>
<td>Disorder of gastrointestinal tract</td>
<td></td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>119292006</td>
</tr>
<tr>
<td>3</td>
<td>35702116</td>
<td>Gastrointestinal inflammatory conditions</td>
<td></td>
<td>MedDRA</td>
<td>HLGT</td>
<td>C</td>
<td>10017969</td>
</tr>
<tr>
<td></td>
<td>35702743</td>
<td>Intestinal haemorrhages</td>
<td></td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
<td>10022653</td>
</tr>
<tr>
<td>3</td>
<td>35702744</td>
<td>Non-site specific gastrointestinal haemorrhages</td>
<td></td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
<td>10017958</td>
</tr>
<tr>
<td>4</td>
<td>35702114</td>
<td>Gastrointestinal haemorrhages NEC</td>
<td></td>
<td>MedDRA</td>
<td>HLGT</td>
<td>C</td>
<td>10017959</td>
</tr>
<tr>
<td></td>
<td>4304916</td>
<td>Gastrointestinal tract finding</td>
<td></td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>386618008</td>
</tr>
<tr>
<td>4</td>
<td>35702767</td>
<td>Nausea and vomiting symptoms</td>
<td></td>
<td>MedDRA</td>
<td>HLT</td>
<td>C</td>
<td>10028817</td>
</tr>
</tbody>
</table>
Going down the hierarchy: Checking the right content

```sql
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON descendant_concept_id = concept_id
WHERE ancestor_concept_id = 4291649 /* Upper gastrointestinal hemorrhage */
ORDER BY max_levels_of_separation
```

<table>
<thead>
<tr>
<th>max_levels_of_separation</th>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4291649</td>
<td>Upper gastrointestinal hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>37372002</td>
</tr>
<tr>
<td>1</td>
<td>4318535</td>
<td>Duodenal hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>64121000</td>
</tr>
<tr>
<td>1</td>
<td>23245</td>
<td>Esophageal bleeding</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>25349007</td>
</tr>
<tr>
<td>1</td>
<td>4308202</td>
<td>Acute upper gastrointestinal hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>8765009</td>
</tr>
<tr>
<td>1</td>
<td>4271696</td>
<td>Peptic ulcer with hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>430349003</td>
</tr>
<tr>
<td>1</td>
<td>4103011</td>
<td>Chronic upper gastrointestinal hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>61401005</td>
</tr>
<tr>
<td>1</td>
<td>26727</td>
<td>Hematemesis</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>413218001</td>
</tr>
<tr>
<td>1</td>
<td>4332645</td>
<td>Upper gastrointestinal hemorrhage associated with hypercoagulopathy</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>27281001</td>
</tr>
<tr>
<td>1</td>
<td>193250</td>
<td>Gastric hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>413200001</td>
</tr>
<tr>
<td>2</td>
<td>4131525</td>
<td>Hemorrhagic gastropathy</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>308904008</td>
</tr>
<tr>
<td>2</td>
<td>4204041</td>
<td>Hematemesis - cause unknown</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>413212000</td>
</tr>
<tr>
<td>2</td>
<td>4134808</td>
<td>Hemorrhagic duodenopathy</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>409506009</td>
</tr>
<tr>
<td>2</td>
<td>4260059</td>
<td>Hemorrhagic gastroenteritis</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>272810041</td>
</tr>
<tr>
<td>2</td>
<td>4099014</td>
<td>Duodenal ulcer with hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>15072E+14</td>
</tr>
<tr>
<td>2</td>
<td>46270145</td>
<td>Gastric hemorrhage due to atrophic gastritis</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>262843005</td>
</tr>
<tr>
<td>2</td>
<td>4096032</td>
<td>Duodenal hematoma</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>49232000</td>
</tr>
<tr>
<td>2</td>
<td>4174044</td>
<td>Chronic peptic ulcer with hemorrhage</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>262790002</td>
</tr>
<tr>
<td>2</td>
<td>4095555</td>
<td>Esophageal hematoma</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>10866E+15</td>
</tr>
<tr>
<td>2</td>
<td>46269904</td>
<td>Hemorrhage of duodenum co-occurrent and due to diverticulitis</td>
<td>S</td>
<td>SNOMED</td>
<td>Clinical Finding</td>
<td>S</td>
<td>7.071E+12</td>
</tr>
</tbody>
</table>

Concept 4291649 and all its descendants comprise Upper GI Bleeding
Exercise: Find Standard Concept ID for Conditions

- Asthma 317009
- Plague 434271
- Ingrown toenail 4065236 4290993
- Your favorite condition here
Does it Work that Way with Drugs?

• Codes
 – NDC, GPI, Multilex, HCPCS, etc.

• Concepts
 – Drug products (Generic and Brand)
 – Drug ingredients
 – Drug Classes

• Relationships

• Ancestry
Drug Hierarchy

Classifications

- VA Class
- CVX
- NDFRT
- NDFRT Ind
- ATC
- FDB Ind
- ETC
- SPL
- SNOMED

Ingredients

Drug Forms and Components

- Standard Concepts

Drugs

Drug products

Source codes

- CIEL
- NDC
- GPI
- VA-Product
- Gemscript
- EU Product
- DPD
- HCPCS
- MeSH
- Multum
- Oxmis
- Read
- Genseqno
- dm+d
- AMIS
- BDPM
- CPT4

Source Codes

Procedure Drugs
Lunch

Please return in 1 hour
Let us find Warfarin

1. Find active compound Warfarin by keyword

```sql
SELECT * FROM concept WHERE lower(concept_name) = 'warfarin'
```
Let us find Clopidogrel

1. Find drug product containing Clopidogrel by NDC code:
 Bristol Meyer Squibb’s Plavix 75mg capsules: NDC 67544050474

```
SELECT * FROM concept WHERE concept_code = '67544050474'
```

```
<table>
<thead>
<tr>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
<th>valid_start_date</th>
<th>valid_end_date</th>
<th>invalid_reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>45867731</td>
<td>clopidogrel 75 MG Oral Tablet [Plavix]</td>
<td>Drug</td>
<td>NDC</td>
<td>11-digit NDC</td>
<td>NULL</td>
<td>67544050474</td>
<td>2014-07-01</td>
<td>2099-12-31</td>
<td>NULL</td>
</tr>
</tbody>
</table>
```

```
SELECT * FROM concept_relationship WHERE concept_id_1 = 45867731
AND relationship_id = 'Maps to'
```

```
<table>
<thead>
<tr>
<th>concept_id_1</th>
<th>concept_id_2</th>
<th>relationship_id</th>
<th>valid_start_date</th>
<th>valid_end_date</th>
<th>invalid_reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>45867731</td>
<td>1322185</td>
<td>Maps to</td>
<td>2015-01-29</td>
<td>2099-12-31</td>
<td>NULL</td>
</tr>
</tbody>
</table>
```

```
SELECT * FROM concept WHERE concept_id = 1322185
```

```
<table>
<thead>
<tr>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
<th>standard_concept</th>
<th>concept_code</th>
<th>valid_start_date</th>
<th>valid_end_date</th>
<th>invalid_reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1322185</td>
<td>clopidogrel 75 MG Oral Tablet [Plavix]</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Branded Drug</td>
<td>S</td>
<td>213169</td>
<td>1970-01-01</td>
<td>2099-12-31</td>
<td>NULL</td>
</tr>
</tbody>
</table>
Let us find Clopidogrel ingredient

2. Find ingredient Clopidogrel as Ancestor of drug product

```sql
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON ancestor_concept_id = concept_id
WHERE descendant_concept_id = 1322185 /* clopidogrel 75 MG Oral Tablet [Plavix]*/
ORDER BY max_levels_of_separation
```
Check out Ingredients

3. Check Descendants (other drug products containing Warfarin and Dabigatran)

```sql
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON descendant_concept_id = concept_id
WHERE ancestor_concept_id = 1310149 /* Warfarin or 1322185 Clopidogrel*/
ORDER BY max_levels_of_separation
```

<table>
<thead>
<tr>
<th>concept_id</th>
<th>concept_name</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1310149</td>
<td>Warfarin</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>36221229</td>
<td>Jantoven Pill</td>
<td>RxNorm</td>
<td>Branded Dose Group</td>
</tr>
<tr>
<td>40163559</td>
<td>Warfarin Sodium 6 MG</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>40163544</td>
<td>Warfarin Sodium 3 MG [Jantoven]</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21134746</td>
<td>Warfarin 0.2 MG/ML</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21105414</td>
<td>Warfarin 5 MG/ML</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>36221228</td>
<td>Jantoven Oral Product</td>
<td>RxNorm</td>
<td>Branded Dose Group</td>
</tr>
<tr>
<td>40163555</td>
<td>Warfarin Sodium 7.5 MG</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21115236</td>
<td>Warfarin 0.3 MG/ML</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>40163509</td>
<td>Warfarin Sodium 1 MG</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21156284</td>
<td>1 ML Warfarin 0.02 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Quant Clinical Drug</td>
</tr>
<tr>
<td>21095537</td>
<td>Warfarin 0.3 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21105427</td>
<td>Warfarin 0.4 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21046557</td>
<td>Warfarin 1 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>40093133</td>
<td>Warfarin Oral Tablet [Coumadin]</td>
<td>RxNorm</td>
<td>Branded Drug Form</td>
</tr>
<tr>
<td>40093134</td>
<td>Warfarin Oral Tablet [Jantoven]</td>
<td>RxNorm</td>
<td>Branded Drug Form</td>
</tr>
<tr>
<td>21077698</td>
<td>1 ML Warfarin 1 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Quant Clinical Drug</td>
</tr>
<tr>
<td>40163534</td>
<td>Warfarin Sodium 2.5 MG Oral Tablet</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>40163530</td>
<td>Warfarin Sodium 2 MG/ML Injectable Solution</td>
<td>RxNorm</td>
<td>Clinical Drug</td>
</tr>
<tr>
<td>21066136</td>
<td>Warfarin 5 MG Oral Tablet [Marevan]</td>
<td>RxNorm Extension</td>
<td>Branded Drug</td>
</tr>
<tr>
<td>40163542</td>
<td>Warfarin Sodium 3 MG Oral Tablet [Jantoven]</td>
<td>RxNorm</td>
<td>Branded Drug</td>
</tr>
<tr>
<td>21116822</td>
<td>1 ML Warfarin 0.6 MG/ML Oral Suspension</td>
<td>RxNorm Extension</td>
<td>Quant Clinical Drug</td>
</tr>
<tr>
<td>21175784</td>
<td>1 ML Warfarin 0.1 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Quant Clinical Drug</td>
</tr>
<tr>
<td>21175783</td>
<td>1 ML Warfarin 0.832 MG/ML Oral Solution</td>
<td>RxNorm Extension</td>
<td>Quant Clinical Drug</td>
</tr>
<tr>
<td>1322184</td>
<td>clopidogrel</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
</tbody>
</table>
Find members of Drug Classes

4. Check Ingredient Descendants of Drug Class Anticoagulants

```sql
SELECT max_levels_of_separation, concept.*
FROM concept_ancestor
JOIN concept ON descendant_concept_id = concept_id
WHERE ancestor_concept_id = 21600961 /* ATC Antithromboic Agent */
 AND concept_class_id = 'Ingredient'
ORDER BY max_levels_of_separation
```

<table>
<thead>
<tr>
<th>concept_id</th>
<th>concept_name</th>
<th>domain_id</th>
<th>vocabulary_id</th>
<th>concept_class_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>46275677</td>
<td>cangrelor</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>45892847</td>
<td>edoxaban</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td><strong>1322184</strong></td>
<td><strong>clopidogrel</strong></td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>44818499</td>
<td>vorapaxar</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>43013024</td>
<td>apixaban</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>42898933</td>
<td>defibrotide</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>42801108</td>
<td>Protein C</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>40241331</td>
<td>rivaroxaban</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>1310149</td>
<td>Warfarin</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>40241186</td>
<td>Ticagrelor</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>40228152</td>
<td>dabigatran etexilate</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>40163718</td>
<td>prasugrel</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>35604848</td>
<td>selexipag</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>19136187</td>
<td>Streptokinase</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
<tr>
<td>19136304</td>
<td>Vere ganze</td>
<td>Drug</td>
<td>RxNorm</td>
<td>Ingredient</td>
</tr>
</tbody>
</table>
Exercise:
Find Standard Concept ID

Metformin  1503297
Tolazamide  1502809
Telmisartan  1317640

Your favorite ingredient here
Exercise:
Find Standard Concept ID

A10AE06  35602717
686450400  19080217
A10BD14  ???

Your favorite drug here
Common Data Model

In depth discussion of model & era discussion
CDM Version 6 Key Domains

Standardized clinical data
- Person
  - Observation_period
  - Visit_occurrence
    - Visit_detail
    - Condition_occurrence
    - Drug_exposure
    - Procedure_occurrence
    - Device_exposure
    - Measurement
    - Note
      - Note_NLP
    - Survey_conduct
    - Observation
    - Specimen
    - Fact_relationship

Standardized health system data
- Location
  - Location_history
  - Care_site
  - Provider

Standardized derived elements
- Condition_era
- Drug_era
- Dose_era

Results Schema
- Cohort
  - Cohort_definition

Standardized health economics
- Cost
  - Payer_plan_period

Standardized vocabularies
- Concept
- Vocabulary
- Domain
- Concept_class
- Concept_relationship
- Relationship
- Concept_synonym
- Concept_ancestor
- Source_to_concept_map
- Drug_strength

Standardized metadata
- CDM_source
- Metadata

CDM Version 6 Key Domains

- Person
  - Observation_period
  - Visit_occurrence
    - Visit_detail
    - Condition_occurrence
    - Drug_exposure
    - Procedure_occurrence
    - Device_exposure
    - Measurement
    - Note
      - Note_NLP
    - Survey_conduct
    - Observation
    - Specimen
    - Fact_relationship

- Location
  - Location_history
  - Care_site
  - Provider

- Condition_era
- Drug_era
- Dose_era

- Cohort
  - Cohort_definition

- Cost
  - Payer_plan_period

- Concept
- Vocabulary
- Domain
- Concept_class
- Concept_relationship
- Relationship
- Concept_synonym
- Concept_ancestor
- Source_to_concept_map
- Drug_strength

- CDM_source
- Metadata
OMOP CDM Principles

- Patient centric
- Vocabulary and Data Model are blended
- Domain-oriented concepts
- Accommodates data from various sources
- Preserves data provenance
- Extendable & Evolving
- Database Platform Independent
## OMOP CDM Standard Domain Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description &amp; Purpose</th>
<th>Field Name Convention</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient centric</td>
<td>Every domain table has <strong>patient identifier</strong>. Patient data can be retrieved independently from other domains.</td>
<td><strong>person_id</strong></td>
<td>person_id 123</td>
</tr>
<tr>
<td>Unique domain identifiers</td>
<td>Every domain table has a unique primary key to identify domain entities.</td>
<td><strong>&lt;entity&gt;_id</strong></td>
<td>condition_occurrence_id 470985</td>
</tr>
<tr>
<td>Standard concept from a respective vocabulary domain</td>
<td>Integration with the Vocabulary. Foreign key into the Standard Vocabulary for <strong>Standard Concept</strong>.</td>
<td><strong>&lt;entity&gt;_concept_id</strong></td>
<td>condition_concept_id 313217 (SNOMED “Atrial Fibrillation”)</td>
</tr>
<tr>
<td>Source value</td>
<td>Provenance. Verbatim information from the source data, <strong>not to be used</strong> by any standard analytics.</td>
<td><strong>&lt;entity&gt;_source_value</strong></td>
<td>condition_source_value 427.31 (ICD9CM “Atrial Fibrillation”)</td>
</tr>
<tr>
<td>Source concept from a respective vocabulary domain</td>
<td>Provenance. Foreign key into Standard Vocabulary for <strong>Source Concept</strong>.</td>
<td><strong>&lt;entity&gt;_source_concept_id</strong></td>
<td>condition_source_concept_id 44821957 (ICD9CM “Atrial Fibrillation”)</td>
</tr>
<tr>
<td>Source type</td>
<td>Provenance. Foreign key into Vocabulary for the <strong>origin of the data.</strong></td>
<td><strong>&lt;entity&gt;_type_concept_id</strong></td>
<td>condition_type_concept_id 38000199 (“Inpatient header – primary”)</td>
</tr>
</tbody>
</table>
A Patient’s Story: Lauren

Lauren’s story

“Every step of this painful journey I’ve had to convince everyone how much pain I was in.”

“My first surgery taught me that I had to be very patient with my recovery and very patient with myself in general.”

https://www.endometriosis-uk.org/laurens-story
What data do we have?

• Guided Exercise:

  – Where and how do we think Lauren’s data is generated?

  – Where do we think Lauren’s data could go into the CDM?
What data do we have?

- Dysmenorrhea
- Abdominal pain
- Missed work
- Acetaminophen
- GP visit
- Pelvic exam
- Ultrasound
- Cyst of ovary

Lauren’s Timeline

-3 Years -2 Years -1 Years / / -2 Weeks / / -3 Days Day 0

Endometriosis

Hospital Visit

- Severe pain
- Temp 103°F
- Ultrasound
- Ambulance
- Bloated abdomen
- Ascites
- Surgery
- Endometrioma
Examples of how Researchers get Lauren’s data?

• Health Insurance Claim Form (HCFA-1500)

• Universal Billing form (UB-92)
Examples of how Researchers get Lauren’s data?

• Health Insurance Claim Form (HCFA-1500)

• Universal Billing form (UB-92)

• Prescriptions
Examples of how Researchers get Lauren’s data?

• Health Insurance Claim Form (HCFA-1500)

• Universal Billing form (UB-92)

• Prescriptions

• Doctors notes

Patient: Lauren

Date of Procedure: 12-March

Surgeon: Dr. Patrick Ryan

Assistant: Dr. Erica Voss

Procedure: Endometrial biopsy

Operative Summary: Endometrial biopsy performed with sterile technique. Adequate sample.

Presence of endometrial tissues outside the uterus.
PERSON

• Need to create one unique record per person

• No history of location/demographics: need to select latest available

• Year of birth required...day/month optional

• Foreign key to the LOCATION, PROVIDER, and CARE_SITE table that contains one record
Lauren’s Timeline

-3 Years
-2 Years
-1 Years

-2 Weeks
-3 Days
Day 0

What data do we have?

- dysmenorrhea
- abdominal pain
- missed work
- acetaminophen
- acetaminophen
- acetaminophen
- GP visit
- pelvic exam
- ultrasound
- cyst of ovary

Hospital Visit
- severe pain
- temp 103°F
- ultrasound
- ambulance
- Bloated abdomen
- ascites
- surgery
- endometrioma

Endometriosis
## PERSON

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>gender_concept_id</td>
<td>8532 Female</td>
</tr>
<tr>
<td>year_of_birth</td>
<td>1982</td>
</tr>
<tr>
<td>month_of_birth</td>
<td>NULL</td>
</tr>
<tr>
<td>day_of_birth</td>
<td>NULL</td>
</tr>
<tr>
<td>race_concept_id</td>
<td>8527 White</td>
</tr>
<tr>
<td>person_source_value</td>
<td>123456</td>
</tr>
<tr>
<td>gender_source_value</td>
<td>F</td>
</tr>
<tr>
<td>race_source_value</td>
<td>W</td>
</tr>
</tbody>
</table>

**Sample of table’s columns**
OBSERVATION_PERIOD

• Spans of time where data source has capture of data

• One person may have multiple periods if there is interruption in data capture

• Required to run analytical methods

• Challenge: determine observation periods based on the source data
What data do we have?

Lauren's Timeline

-3 Years  -2 Years  -1 Years  -2 Weeks  -3 Days  Day 0

- Dysmenorrhea
- Abdominal pain
- Missed work
- Acetaminophen
- GP visit
- Pelvic exam
- Ultrasound
- Cyst of ovary
- Hospital visit
- Severe pain
- Temperature 103°F
- Ultrasound
- Ambulance
- Ascites
- Surgery
- Endometrioma
## OBSERVATION_PERIOD

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>observation_period_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2000-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>2</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2012-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>3</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2014-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>4</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2016-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>5</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2018-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>6</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2020-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>7</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2022-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>8</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2024-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>9</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2026-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>10</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2028-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>11</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2030-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>12</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2032-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>13</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2034-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>14</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2036-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>15</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2038-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>observation_period_id</td>
<td>16</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>observation_periods_start_date</td>
<td>2040-01-01</td>
</tr>
</tbody>
</table>

*sample of table’s columns*
VISIT_OCCURRENCE

• Visits are ‘Encounters’
• Contains spans of time where a person receives medical services

• Visit Types
  – Emergency room
  – Inpatient
  – Inpatient/Emergency
  – Outpatient
  – Long-term care
Lauren's Timeline

-3 Years -2 Years -1 Years // // -2 Weeks // // -3 Days // Day 0

- dysmenorrhea
- abdominal pain
- missed work
- acetaminophen
- acetaminophen
- acetaminophen
- GP visit
- ultrasound
- pelvic exam
- cyst of ovary
- Hospital Visit
- severe pain
- temp 103°F
- ultrasound
- ambulance
- Bloated abdomen
- ascites
- surgery
- endometrioma

What data do we have?

Endometriosis
### VISIT_OCCURRENCE

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>visit_occurrence_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>visit_start_date</td>
<td>2008-04-07</td>
</tr>
<tr>
<td>visit_end_date</td>
<td>2008-04-07</td>
</tr>
<tr>
<td>visit_concept_id</td>
<td>9202 Outpatient Visit</td>
</tr>
<tr>
<td>visit_source_value</td>
<td>OP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>visit_occurrence_id</td>
<td>2</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>visit_start_date</td>
<td>2008-04-21</td>
</tr>
<tr>
<td>visit_end_date</td>
<td>2008-04-26</td>
</tr>
<tr>
<td>visit_concept_id</td>
<td>9201 Inpatient Visit</td>
</tr>
<tr>
<td>visit_source_value</td>
<td>IP</td>
</tr>
</tbody>
</table>
CONDITION_OCCURRENCE

• Records suggesting the presence of a disease or medical condition stated as a diagnosis, a sign or a symptom

• Examples:
  – Billing diagnosis
  – Problem list
What data do we have? 

- dysmenorrhea
- abdominal pain
- missed work
- acetaminophen
- acetaminophen
- acetaminophen
- GP visit
- pelvic exam
- ultrasound
- cyst of ovary
- ultrasound
- severe pain
- temp 103°F
- ultrasound
- ambulance
- ascites
- surgery
- endometrioma

Lauren’s Timeline

-3 Years
-2 Years
-1 Years

-2 Weeks

-3 Days

Day 0
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition_occurrence_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456 Lauren’s ID</td>
</tr>
<tr>
<td>condition_concept_id</td>
<td>433527 Endometriosis</td>
</tr>
<tr>
<td>condition_start_date</td>
<td>2008-04-24 Inpatient detail - primary</td>
</tr>
<tr>
<td>condition_type_concept_id</td>
<td>38000183 ICD9, missing decimal</td>
</tr>
<tr>
<td>visit_occurrence_id</td>
<td>2</td>
</tr>
<tr>
<td>condition_source_value</td>
<td>6171 Endometriosis of ovary</td>
</tr>
<tr>
<td>condition_source_concept_id</td>
<td>44832501</td>
</tr>
</tbody>
</table>
DRUG_EXPOSURE

- Records about the utilization of a drug when ingested or otherwise introduced into the body

- Data sources:
  - Pharmacy dispensing
  - Prescriptions written
  - Medication history

- If drug is represented as a procedure, the OMOP Vocabulary realigns as drug
What data do we have?

Lauren’s Timeline

-3 Years -2 Years -1 Years / / -2 Weeks / / -3 Days Day 0

- dysmenorrhea
- abdominal pain
- missed work
- acetaminophen
- acetaminophen
- acetaminophen
- GP visit
- pelvic exam
- ultrasound
- cyst of ovary
- Hospital Visit
- severe pain
- temp 103°F
- ultrasound
- ambulance
- Bloated abdomen
- ascites
- surgery
- endometrioma

Endometriosis
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug_exposure_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>drug_concept_id</td>
<td>40162494</td>
</tr>
<tr>
<td>drug_exposure_start_date</td>
<td>2007-02-01</td>
</tr>
<tr>
<td>drug_exposure_end_date</td>
<td>2007-02-08</td>
</tr>
<tr>
<td>verbatim_end_date</td>
<td>NULL</td>
</tr>
<tr>
<td>drug_type_concept_id</td>
<td>38000183</td>
</tr>
<tr>
<td>refills</td>
<td>0</td>
</tr>
<tr>
<td>quantity</td>
<td>14</td>
</tr>
<tr>
<td>days_supply</td>
<td>7</td>
</tr>
<tr>
<td>drug_source_value</td>
<td>54348001301</td>
</tr>
<tr>
<td>drug_source_concept_id</td>
<td>45904353</td>
</tr>
</tbody>
</table>

**Example:**

- **Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Oral Tablet**

**Prescription dispensed in pharmacy**

**NDC 11-digit code**

Lauren’s ID

**Drug_exposure_start_date + days_supply**
PROCEDURE_OCCURRENCE

- Contains records of activities or processes ordered by, or carried out by, a healthcare provider on the patient to have a diagnostic or therapeutic purpose

- Vocabularies include CPT-4, HCPCS, ICD-9 Procedures, ICD-10 Procedures, LOINC, SNOMED

- Procedures have the least standardized vocabularies that causes some redundancy
What data do we have?

- **Lauren’s Timeline**
  - -3 Years
  - -2 Years
  - -1 Years
  - -2 Weeks
  - -3 Days
  - Day 0

- **Symptoms**
  - dysmenorrhea
  - abdominal pain
  - missed work
  - acetaminophen

- **Diagnoses**
  - endometriosis
  - ultrasound
dystmenorrhea
dysmenorrhea

- **Signs**
  - ultrasound
  - pelvic exam
  - cyst of ovary
  - hospital visit
  - abdominal pain
  - temp 103°F
  - bloated abdomen
  - ascites
  - surgery
  - endometrioma

- **Events**
  - GP visit
  - ultrasound
  - hospital visit
  - ultrasound
## PROCEDURE_OCCURRENCE

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure_occurrence_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>procedure_concept_id</td>
<td>2211740</td>
</tr>
<tr>
<td>procedure_date</td>
<td>2008-04-08</td>
</tr>
<tr>
<td>procedure_type_concept_id</td>
<td>38000267</td>
</tr>
<tr>
<td>visit_occurrence_id</td>
<td>1</td>
</tr>
<tr>
<td>procedure_source_value</td>
<td>76700</td>
</tr>
<tr>
<td>procedure_source_concept_id</td>
<td>2211740</td>
</tr>
</tbody>
</table>

*sample of table’s columns*

Lauren’s ID

Ultrasound, abdominal, real time with image documentation; complete

Outpatient detail - 1st position

Ultrasound, abdominal, real time with image documentation; complete

CPT4
MEASUREMENT

- Contains records of Measurement, i.e. structured values (numerical or categorical) obtained through systematic and standardized examination or testing of a Person or Person's sample.

- Data sources: structured, quantitative measures, such as laboratory tests.

- Measures have associated units.
What data do we have?

Lauren's Timeline

-3 Years  -2 Years  -1 Years  //  -2 Weeks  //  -3 Days  //  Day 0

- dysmenorrhea
- abdominal pain
- missed work
- acetaminophen
- acetaminophen
- acetaminophen
- GP visit
- ultrasound
- pelvic exam
- cyst of ovary

Hospital Visit
- temp 103°F
- ultrasound
- ambulance
- Bloated abdomen
- ascites
- surgery
- endometrioma

Endometriosis

-3 Years
-2 Years
-1 Years
-2 Weeks
-3 Days
Day 0
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>measurement_concept_id</td>
<td>3020891</td>
</tr>
<tr>
<td>measurement_date</td>
<td>2008-04-21</td>
</tr>
<tr>
<td>measurement_type_concept_id</td>
<td>44818701</td>
</tr>
<tr>
<td>value_as_number</td>
<td>103</td>
</tr>
<tr>
<td>unit_concept_id</td>
<td>9289</td>
</tr>
<tr>
<td>measurement_source_value</td>
<td>8310-5</td>
</tr>
<tr>
<td>measurement_source_concept_id</td>
<td>3020891</td>
</tr>
</tbody>
</table>

**Sample of table’s columns**

- Lauren’s ID
- Body temperature
- From physical examination
- Degree Fahrenheit
- LOINC
- Body temperature
OBSERVATION

• Captures clinical facts about a Person obtained in the context of examination, questioning or a procedure

• Any data that cannot be represented by any other domains, such as social and lifestyle facts, medical history, family history, etc. are recorded here

• Instrument for CDM extension, playpen
Lauren’s Timeline

-3 Years  -2 Years  -1 Years  //  -2 Weeks  //  -3 Days  //  Day 0

-3 Years
-2 Years
-1 Years

-3 Days

Endometriosis

What data do we have?

- Dysmenorrhea
- Abdominal pain
- Missed work
- Acetaminophen (3 times)
- Pelvic exam
- Ultrasound
- Cyst of ovary
- GP visit
- Hospital visit:
  - Severe pain
  - Temp 103°F
  - Ultrasound
  - Endometrioma
  - Ambulance
  - Surgery
  - Ascites

- Missed work
- Missed work
- Abdominal pain
- Bloated abdomen
- Ultrasound

109
### COLUMN EXAMPLE

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>observation_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>observation_concept_id</td>
<td>0</td>
</tr>
<tr>
<td>observation_date</td>
<td>2006-01-20</td>
</tr>
<tr>
<td>observation_type_concept_id</td>
<td>44814721</td>
</tr>
<tr>
<td>value_as_number</td>
<td>8</td>
</tr>
<tr>
<td>value_as_string</td>
<td>Work Hours Missed</td>
</tr>
<tr>
<td>observation_source_value</td>
<td>Work Hours Missed</td>
</tr>
<tr>
<td>observation_source_concept_id</td>
<td>0</td>
</tr>
</tbody>
</table>

*Lauren’s ID*

*No matching concept*

*Patient reported*
CDM Version 6 Key Domains

Standardized clinical data:
- Person
  - Observation_period
  - Visit_occurrence
  - Visit_detail
  - Condition_occurrence
  - Drug_exposure
  - Procedure_occurrence
  - Device_exposure
  - Measurement
  - Note
  - Note_NLP
  - Survey_conduct
  - Observation
  - Specimen
  - Fact_relationship

Standardized health system data:
- Location
- Location_history
- Care_site
- Provider

Standardized derived elements:
- Condition_era
- Drug_era
- Dose_era

Results Schema:
- Cohort
- Cohort_definition

Standardized health economics:
- Cost
- Payer_plan_period

Standardized metadata:
- CDM_source
- Metadata

Standardized vocabularies:
- Concept
- Vocabulary
- Domain
- Concept_class
- Concept_relationship
- Relationship
- Concept_synonym
- Concept_ancestor
- Source_to_concept_map
- Drug_strength
DRUG_ERA

- Standardized inference of length of exposure to product for all active ingredients

- Derived from records in DRUG_EXPOSURE under certain rules to produce continuous Drug Eras
### DRUG_EXPOSURE

Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Oral Tablet

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug_exposure_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>drug_concept_id</td>
<td>40162494</td>
</tr>
<tr>
<td>drug_exposure_start_date</td>
<td>2007-02-01</td>
</tr>
<tr>
<td>drug_exposure_end_date</td>
<td>2007-02-08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug_exposure_id</td>
<td>2</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>drug_concept_id</td>
<td>40162494</td>
</tr>
<tr>
<td>drug_exposure_start_date</td>
<td>2007-02-10</td>
</tr>
<tr>
<td>drug_exposure_end_date</td>
<td>2007-02-17</td>
</tr>
</tbody>
</table>

### DRUG_ERA

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug_era_id</td>
<td>1</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>drug_concept_id</td>
<td>1125315</td>
</tr>
<tr>
<td>drug_era_start_date</td>
<td>2007-02-01</td>
</tr>
<tr>
<td>drug_era_end_date</td>
<td>2007-02-17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug_era_id</td>
<td>2</td>
</tr>
<tr>
<td>person_id</td>
<td>123456</td>
</tr>
<tr>
<td>drug_concept_id</td>
<td>1174888</td>
</tr>
<tr>
<td>drug_era_start_date</td>
<td>2007-02-01</td>
</tr>
<tr>
<td>drug_era_end_date</td>
<td>2007-02-17</td>
</tr>
</tbody>
</table>
Illustrating inferences needed within longitudinal pharmacy claims data for one patient

Person Timeline

How do we handle reversals?

How do we handle NDC change?

How do we handle overlap?

How do we handle change in dose?

How do we handle gaps?

How do we handle combination products?

How do we infer discontinuation?

NDC: 00179198801
Lisinopril 5 MG Oral Tablet

NDC: 00310013010
ZESTRIL 5 MG TABLET

NDC: 00038013134
Lisinopril 10 MG Oral Tablet [Zestril]

NDC: 00038013210
Lisinopril 20 MG Oral Tablet [Zestril]

NDC: 58016078020
Hydrochlorothiazide 12.5 MG / Lisinopril 20 MG Oral Tablet [Zestoretic]

Prescription dispensing
(Fill date + days supply)
CDM Tables Not Covered in Detail

• VISIT_DETAIL
• SPECIMEN
• DEATH
• DEVICE_EXPOSURE
• NOTE
• NOTE_NLP
• FACT_RELATIONSHIP
• LOCATION
• CARE_SITE

• PROVIDER
• PAYER_PLAN_PERIOD
• COST
• COHORT
• COHORT_ATTRIBUTES
• CONDITION_ERA
• DOSE_ERA
• CDM_SOURCE
Standards

• Patients without transaction

• Cleaning dirty data
  – Patient IDs reused
  – Bogus code records (e.g. ‘000’)

• How to handle tobacco information

https://github.com/OHDSI/CommonDataModel/wiki
CDM Version Control

• Working group meets once a month to discuss proposed changes to the CDM

• All CDM documentation, versions, and proposals located on GitHub
  – [https://github.com/OHDSI/CommonDataModel](https://github.com/OHDSI/CommonDataModel)
  – Proposals tracked and discussed as GitHub issues

• Meeting information can be found on the working group wiki page

• Please contact Clair Blacketer (mblacke@its.jnj.com) for more information
Break

Please return in 15 minutes
CDM Examples

Leveraging OHDSI Tools (GitHub /Forums/ Working Group)
Exercises
ETL: Real world scenario

**PharMetrics Plus**

**CLAIMS**

<table>
<thead>
<tr>
<th>pat_id</th>
<th>claimno</th>
<th>from_dt</th>
<th>to_dt</th>
<th>diagprc_ind</th>
<th>Diag_admit</th>
<th>diag1</th>
</tr>
</thead>
<tbody>
<tr>
<td>05917921689</td>
<td>IPA333393946</td>
<td>1/5/2006</td>
<td>1/5/2006</td>
<td>1</td>
<td>41071</td>
<td>41071</td>
</tr>
</tbody>
</table>

**LRx/Dx**

**MEDICAL_CLAIMS**

<table>
<thead>
<tr>
<th>md_clm_id</th>
<th>ims_pat_nbr</th>
<th>dt_of_service</th>
<th>rxer_id</th>
<th>diag_cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>95963982102</td>
<td>80445908</td>
<td>8/1/2012 0:00</td>
<td>680488</td>
<td>41071</td>
</tr>
</tbody>
</table>

**German DA**

**Problem Events**

<table>
<thead>
<tr>
<th>db_country</th>
<th>international_practice_num</th>
<th>international_doctor_num</th>
<th>international_patient_num</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>GE6326</td>
<td>GE8784</td>
<td>GE46478747</td>
<td></td>
</tr>
</tbody>
</table>

**Diagnosis**

<table>
<thead>
<tr>
<th>db_country</th>
<th>international_diagnosis_num</th>
<th>diagnosis_num</th>
<th>icd10_4_code</th>
<th>icd10_3_text</th>
<th>diagnosis_confi</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>GE2397573</td>
<td>2397573</td>
<td>l21.4</td>
<td>Non-ST elevation (NSTEMI) myocardial infarction</td>
<td>Confirmed</td>
</tr>
</tbody>
</table>

4 real observational databases, all containing an inpatient admission for a patient with a diagnosis of ‘acute subendocardial infarction’

- Not a single table name the same...
- Not a single variable name the same....
- Different table structures (rows vs. columns)
- Different conventions (with and without decimal points)
- Different coding schemes (ICD9 vs. ICD10)
What does it mean to ETL to OMOP CDM?
Standardize **structure and content**

<table>
<thead>
<tr>
<th>pat_id</th>
<th>claimno</th>
<th>from_dt</th>
<th>to_dt</th>
<th>diagprc_ind</th>
<th>Diag_admit</th>
</tr>
</thead>
<tbody>
<tr>
<td>05917921689</td>
<td>IPA333393946</td>
<td>1/5/2006</td>
<td>1/5/2006</td>
<td>1</td>
<td>41071</td>
</tr>
</tbody>
</table>

Structure optimized for large-scale analysis for clinical characterization, population-level estimation, and patient-level prediction.

Content using international vocabulary standards that can be applied to any data source.

<table>
<thead>
<tr>
<th>PERSON_ID</th>
<th>CONDITION_START_DATE</th>
<th>CONDITION_SOURCE_VALUE</th>
<th>CONDITION_TYPE_CONCEPT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>05917921689</td>
<td>1/5/2006</td>
<td>41071</td>
<td>Inpatient claims - primary position</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERSON_ID</th>
<th>CONDITION_START_DATE</th>
<th>CONDITION_SOURCE_VALUE</th>
<th>CONDITION_TYPE_CONCEPT_ID</th>
<th>CONDITION_SOURCE_CONCEPT_ID</th>
<th>CONDITION_CONCEPT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>05917921689</td>
<td>1/5/2006</td>
<td>41071</td>
<td>44825429</td>
<td>444406</td>
<td></td>
</tr>
</tbody>
</table>
OMOP CDM = Standardized structure: same tables, same fields, same datatypes, same conventions across disparate sources

- Consistent structure optimized for large-scale analysis
- Structure preserves all source content and provenance
OMOP CDM = Standardized content:
common vocabularies across disparate sources

PharMetrics Plus: CONDITION_OCCURRENCE

<table>
<thead>
<tr>
<th>PERSON_ID</th>
<th>CONDITION_START_DATE</th>
<th>CONDITION_SOURCE_VALUE</th>
<th>CONDITION_TYPE_CONCEPT_ID</th>
<th>CONDITION_SOURCE_CONCEPT_ID</th>
<th>CONDITION_CONCEPT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>05917921689</td>
<td>1/5/2006</td>
<td>41071</td>
<td>Inpatient claims - primary position</td>
<td>4482542</td>
<td>444406</td>
</tr>
</tbody>
</table>

LRx/Dx: CONDITION_OCCURRENCE

<table>
<thead>
<tr>
<th>PERSON_ID</th>
<th>CONDITION_START_DATE</th>
<th>CONDITION_SOURCE_VALUE</th>
<th>CONDITION_TYPE_CONCEPT_ID</th>
<th>CONDITION_SOURCE_CONCEPT_ID</th>
<th>CONDITION_CONCEPT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>80445908</td>
<td>8/1/2012</td>
<td>41071</td>
<td>Primary Condition</td>
<td>4482542</td>
<td>444406</td>
</tr>
</tbody>
</table>

German DA : CONDITION_OCCURRENCE

<table>
<thead>
<tr>
<th>PERSON_ID</th>
<th>CONDITION_START_DATE</th>
<th>CONDITION_SOURCE_VALUE</th>
<th>CONDITION_TYPE_CONCEPT_ID</th>
<th>CONDITION_SOURCE_CONCEPT_ID</th>
<th>CONDITION_CONCEPT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>6478747</td>
<td>11/19/2014</td>
<td>I21.4</td>
<td>EHR problem list entry</td>
<td>4557208</td>
<td>444406</td>
</tr>
</tbody>
</table>

Ambulatory EMR : CONDITION_OCCURRENCE

<table>
<thead>
<tr>
<th>PERSON_ID</th>
<th>CONDITION_START_DATE</th>
<th>CONDITION_SOURCE_VALUE</th>
<th>CONDITION_TYPE_CONCEPT_ID</th>
<th>CONDITION_SOURCE_CONCEPT_ID</th>
<th>CONDITION_CONCEPT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>271138</td>
<td>4/11/2013</td>
<td>I214</td>
<td>Primary Condition</td>
<td>4557208</td>
<td>444406</td>
</tr>
</tbody>
</table>

- Standardize across vocabularies to a common referent standard (ICD9/10→SNOMED)
- Source codes mapped into each domain standard so that now you can talk across different languages
- Standardize source codes to be uniquely defined across all vocabularies
- No more worries about formatting or code overlap
Data Used for Demonstration

• Medicare Claims Synthetic Public Use Files (SynPUFs)
  – synthetic US Medicare insurance claims database
  – Medicare is a government based insurance program for primarily 65 and older but also individuals with disabilities
  – SynPUF not for research but rather demonstration/development purposes
  – Has been converted to the Common Data Model

Data Used for Demonstration

• Five types of data:

<table>
<thead>
<tr>
<th>DE-SynPUF</th>
<th>Unit of record</th>
<th>Number of Records 2008</th>
<th>Number of Records 2009</th>
<th>Number of Records 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Beneficiary Summary</strong></td>
<td>Beneficiary</td>
<td>2,326,856</td>
<td>2,291,320</td>
<td>2,255,098</td>
</tr>
<tr>
<td><strong>Inpatient Claims</strong></td>
<td>claim</td>
<td>547,800</td>
<td>504,941</td>
<td>280,081</td>
</tr>
<tr>
<td><strong>Outpatient Claims</strong></td>
<td>claim</td>
<td>5,673,808</td>
<td>6,519,340</td>
<td>3,633,839</td>
</tr>
<tr>
<td><strong>Carrier Claims</strong></td>
<td>claim</td>
<td>34,276,324</td>
<td>37,304,993</td>
<td>23,282,135</td>
</tr>
<tr>
<td><strong>Prescription Drug Events (PDE)</strong></td>
<td>event</td>
<td>39,927,827</td>
<td>43,379,293</td>
<td>27,778,849</td>
</tr>
</tbody>
</table>

SynPUF High Level Diagram

- Beneficiary Summary
  - Inpatient Claims
  - Outpatient Claims
  - Carrier Claims
  - Prescription Drug Events (PDE)
Mapping SynPUF to CDM

SynPUF

- Beneficiary Summary
- Inpatient Claims
- Outpatient Claims
- Carrier Claims
- Prescription Drug Events (PDE)

CDM

- Person
  - Observation_period
  - Visit_occurrence
  - Visit_detail
  - Condition_occurrence
  - Drug_exposure
  - Procedure_occurrence
  - Device_exposure
  - Measurement
  - Note
    - Note_NLP
  - Survey_conduct
  - Observation
  - Specimen
  - Fact_relationship

Standardized health system data
- Location
  - Location_history
- Care_site
- Provider

Standardized derived elements
- Condition_era
- Drug_era
- Dose_era

Results Schema
- Cohort
- Cohort_definition

Standardized health economics
- Cost
- Payer_plan_period
OHDSI in a Box
CDM Database: Open Query Tool

- Click on “SQL Server management Studio”
CDM Database: Connect to DB

Connect the DB
1) Select DB

2) Hit “New Query” Button
OHDSI in a Box

Query Window

F5 To Run

Results Window
Open Up SQL File
Open Up SQL File

Navigate to your desktop and open the file – OMOP CDM Vocabulary Training.sql
Open Up SQL File

```sql
/* Standard Vocabulary Introduction */

/* select from concept table */
SELECT * FROM concept WHERE concept_id = 313217

/* or... */
SELECT * FROM concept WHERE concept_code = '49436004';

/* select from vocabulary table */
SELECT * FROM vocabulary
 order BY vocabulary_id;

SELECT * FROM concept
 WHERE concept_name = 'Atrial fibrillation'
 AND vocabulary_id = 'SNOMED';

/* Concept ID vs Concept Code */
SELECT * FROM concept WHERE concept_code = '1001';

/* Concept by name */
SELECT * FROM concept WHERE concept_name = 'Atrial fibrillation';

/* Find relationship for Atrial fibrillation */
SELECT * FROM concept_relationship WHERE concept_id_1 = 44821957
 ORDER BY relationship_id;
```
Some Example Questions

Finding Warfarin

New Users of Warfarin

New Users of Warfarin who are >=65?

New Users of Warfarin with prior Atrial Fibrillation?
Warfarin Exposure

• Warfarin is a blood thinner that is used to treat/prevent blood clots.

– Where do you find drug data in the CDM?

– What codes do I use to define drugs?
Where are Drug Exposures in the CDM?

captures records about the utilization of a drug when ingested or otherwise introduced into the body.
How do I define Warfarin?

• When raw data is transformed into the CDM raw source codes are transformed into standard OMOP Vocabulary concepts

• In the CDM, we no longer care what source codes existed in the raw data, we just need to use concept identifiers

• We can use the OMOP Vocabulary to identify all concepts that contain the ingredient warfarin
How do I define Warfarin?

- Writing SQL Statement
- OHDSI Tool ATLAS
Finding Warfarin

/* (Exercise 1) Finding Warfarin */

SELECT COUNT(DISTINCT de.PEOPLE_ID)
FROM DRUG_EXPOSURE de
WHERE DRUG_CONCEPT_ID = 1310149 /*warfarin*/;

/*Looking for drugs associated with the ingredient*/
SELECT COUNT(DISTINCT de.PEOPLE_ID)
FROM DRUG_EXPOSURE de
WHERE de.DRUG_CONCEPT_ID IN (
    SELECT DESCENDANT_CONCEPT_ID
    FROM CONCEPT_ANCESTOR
    WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
);

/*looking for anticoagulants, a class of drugs warfarin belongs*/
SELECT COUNT(DISTINCT de.PEOPLE_ID)
FROM DRUG_EXPOSURE de
WHERE de.DRUG_CONCEPT_ID IN (
    SELECT DESCENDANT_CONCEPT_ID
    FROM CONCEPT_ANCESTOR
    WHERE ANCESTOR_CONCEPT_ID = 4283987 /*ANTICOAGULANTS (VA Class)*/
);
Finding Warfarin

* (Exercise 1) Finding Warfarin
*******************************************************************************/

/*Just looking for the ingredient concept*/
SELECT COUNT(DISTINCT de.PERSON_ID)
FROM DRUG_EXPOSURE de
WHERE DRUG_CONCEPT_ID = 1310149 /*warfarin*/;

/*Looking for drugs associated with the ingredient*/
SELECT COUNT(DISTINCT de.PERSON_ID)
FROM DRUG_EXPOSURE de
WHERE de.DRUG_CONCEPT_ID IN (    
    SELECT DESCENDANT_CONCEPT_ID
    FROM CONCEPT_ANCESTOR
    WHERE ANCESTER_CONCEPT_ID = 1310149 /*warfarin*/
)

/*looking for anticoagulants, a class of drugs warfarin belongs*/
SELECT COUNT(DISTINCT de.PERSON_ID)
FROM DRUG_EXPOSURE de
WHERE de.DRUG_CONCEPT_ID IN (    
    SELECT DESCENDANT_CONCEPT_ID
    FROM CONCEPT_ANCESTOR
    WHERE ANCESTER_CONCEPT_ID = 4283987 /*ANTICOAGULANTS (VA Class)*/
)
Finding Warfarin

/* (Exercise 1) Finding Warfarin */

/* Just looking for the ingredient concept */
SELECT COUNT(DISTINCT de.PERSON_ID)
FROM DRUG_EXPOSURE de
WHERE DRUG_CONCEPT_ID = 1310149 /* warfarin */;

/* Looking for drugs associated with the ingredient */
SELECT COUNT(DISTINCT de.PERSON_ID)
FROM DRUG_EXPOSURE de
deff de.DRUG_CONCEPT_ID IN ( 
    SELECT DESCENDANT_CONCEPT_ID 
    FROM CONCEPT_ANCESTOR 
    WHERE ANCESTOR_CONCEPT_ID = 1310149 /* warfarin */
);

/* Looking for anticoagulants, a class of drugs warfarin belongs */
SELECT COUNT(DISTINCT de.PERSON_ID)
FROM DRUG_EXPOSURE de
deff de.DRUG_CONCEPT_ID IN ( 
    SELECT DESCENDANT_CONCEPT_ID 
    FROM CONCEPT_ANCESTOR 
    WHERE ANCESTOR_CONCEPT_ID = 4283987 /* ANTICOAGULANTS (VA Class) */
);
Some Example Questions

Ex 1
Finding Warfarin

Ex 2
New Users of Warfarin

Ex 3
New Users of Warfarin who are >=65?

Ex 4
New Users of Warfarin with prior Atrial Fibrillation?
How do I define new users of a drug?

Someone who has recently started taking the drug, typically with a 6 or 12 month wash out
How do I define new users of a drug?

Someone who has recently started taking the drug, typically with a 6 or 12 month washout period.
What is Needed in the CDM?

• OMOP Vocabulary
to find the concepts

• CDM Table DRUG_EXPOSURE
to find individuals with exposure

• CDM Table OBSERVATION_PERIOD
to know people’s time within the database
New Users of Warfarin

WITH CTE_DRUG_INDEX AS (
    SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
    FROM DRUG_EXPOSURE de
    WHERE de.DRUG_CONCEPT_ID IN (/*warfarin*/
        SELECT DESCENDANT_CONCEPT_ID
        FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149
    )
    GROUP BY de.PERSON_ID
)

SELECT i.PERSON_ID, iINDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
       DATEDIFF (DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX
FROM CTE_DRUG_INDEX i
    INNER JOIN OBSERVATION_PERIOD op
        ON op.PERSON_ID = i.PERSON_ID
        AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
ORDER BY i.PERSON_ID
Step 1: Get the codes you need

WITH CTE_DRUG_INDEX AS (  
    SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE  
    FROM DRUG_EXPOSURE de  
    WHERE de.DRUG_CONCEPT_ID IN (  
        SELECT DESCENDANT_CONCEPT_ID  
        FROM CONCEPT>Ancestor WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/  
    )  
)  
GROUP BY de.PERSON_ID  

SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,  
    DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX  
FROM CTE_DRUG_INDEX i  
INNER JOIN OBSERVATION_PERIOD op  
    ON op.PERSON_ID = i.PERSON_ID  
    AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE  
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180  
ORDER BY i.PERSON_ID
Step 2: Find Drug Exposures

```sql
WITH CTE_DRUG_INDEX AS (
 SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
 FROM DRUG_EXPOSURE de
 WHERE de.DRUG_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID
 FROM CONCEPT>Ancestor WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
)
 GROUP BY de.PERSON_ID
)

SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
 DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX
FROM CTE_DRUG_INDEX i
 INNER JOIN OBSERVATION_PERIOD op
 ON op.PERSON_ID = i.PERSON_ID
 AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
ORDER BY i.PERSON_ID
```
Step 3: Find New Users

/*
   (Exercise 2) Warfarin New Users
   *******************************************/

WITH CTE_DRUG_INDEX AS (
    SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
    FROM DRUG_EXPOSURE de
    WHERE de.DRUG_CONCEPT_ID IN (*/warfarin*/
        SELECT DESCENDANT_CONCEPT_ID
        FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149
    )
    GROUP BY de.PERSON_ID
)

SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
       DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX
FROM CTE_DRUG_INDEX i
    INNER JOIN OBSERVATION_PERIOD op
        ON op.PERSON_ID = i.PERSON_ID
    AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
ORDER BY i.PERSON_ID
New Users of Warfarin

/* Exercise 2: Warfarin New Users */

WITH CTE_DRUG_INDEX AS (
    SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
    FROM DRUG_EXPOSURE de
    WHERE de.DRUG_CONCEPT_ID IN (
        SELECT DESCENDANT_CONCEPT_ID
        FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
    )
    GROUP BY de.PERSON_ID
)

SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
    DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX
FROM CTE_DRUG_INDEX i
INNER JOIN OBSERVATION_PERIOD op
    ON op.PERSON_ID = i.PERSON_ID
    AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
ORDER BY i.PERSON_ID
New Users of Warfarin

Try running this on your own!

How many people do you get?

361,007 individuals
Some Example Questions

Ex 1
Finding Warfarin

Ex 2
New Users of Warfarin

Ex 3
New Users of Warfarin who are >=65?

Ex 4
New Users of Warfarin with prior Atrial Fibrillation?
How do I define new users of warfarin who are >=65?

Someone who has recently started taking the drug, typically with a 6 or 12 month wash out
What is Needed in the CDM?

- **OMOP Vocabulary**
  to find the concepts

- **DRUG_EXPOSURE**
  to find individuals with exposure

- **OBSERVATION_PERIOD**
  to know people’s time within the database

- **PERSON**
  to know year of birth
Step 1: Start with the previous query

```sql
/* (Exercise 3) Warfarin New Users 65 or Older at Index */
WITH CTE_DRUG_INDEX AS (
 SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
 FROM DRUG_EXPOSURE de
 WHERE de.DRUG_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
)
 GROUP BY de.PERSON_ID
)
SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
 DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX,
 (YEAR(i.INDEX_DATE) - p.YEAR_OF_BIRTH) AS AGE_AT_INDEX
FROM CTE_DRUG_INDEX i
JOIN OBSERVATION_PERIOD op
 ON op.PERSON_ID = i.PERSON_ID
 AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
JOIN PERSON p
 ON p.PERSON_ID = i.PERSON_ID
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
 AND (YEAR(i.INDEX_DATE) - p.YEAR_OF_BIRTH) >= 65
ORDER BY i.PERSON_ID
```
Step 2: Add the Person Table to calculate age

```sql
WITH CTE_DRUG_INDEX AS (
 SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
 FROM DRUG_EXPOSURE de
 WHERE de.DRUG_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
)
 GROUP BY de.PERSON_ID
)

SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
 DATEDIFF(DAY,op.OBSERVATION_PERIOD_START_DATE,i.INDEX_DATE) AS DAYS_BEFORE_INDEX,
 (YEAR(i.INDEX_DATE)-p.YEAR_OF_BIRTH) AS AGE_AT_INDEX
FROM CTE_DRUG_INDEX i
JOIN OBSERVATION_PERIOD op
 ON op.PERSON_ID = i.PERSON_ID
 AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
JOIN PERSON p
 ON p.PERSON_ID = i.PERSON_ID
WHERE DATEDIFF(DAY,op.OBSERVATION_PERIOD_START_DATE,i.INDEX_DATE) >= 180
 AND (YEAR(i.INDEX_DATE)-p.YEAR_OF_BIRTH) >= 65
ORDER BY i.PERSON_ID
```
New Users of Warfarin
>= 65 years of age

How many people do you get?
Some Example Questions

- Finding Warfarin
- New Users of Warfarin who are >=65?
- New Users of Warfarin with prior Atrial Fibrillation?
How do I define new users of Warfarin with prior Atrial Fibrillation?
What is Needed in the CDM?

- **OMOP Vocabulary**
  to find the concepts

- **DRUG_EXPOSURE**
  to find individuals with exposure

- **OBSERVATION_PERIOD**
  to know people’s time within the database

- **PERSON**
  to know year of birth

- **CONDITION_OCCURRENCE**
  to find presence of a disease
Step 1: Start with the Ex 1 query

```sql
WITH CTE_DRUG_INDEX AS (
 SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
 FROM DRUG_EXPOSURE de
 WHERE de.DRUG_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
)
 GROUP BY de.PERSON_ID
),
CTE_DRUG_NEW_USERS AS (
 SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
 DATEDIFF(DAY,op.OBSERVATION_PERIOD_START_DATE,i.INDEX_DATE) AS DAYS_BEFORE_INDEX
 FROM CTE_DRUG_INDEX i
 JOIN OBSERVATION_PERIOD op
 ON op.PERSON_ID = i.PERSON_ID
 AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
 WHERE DATEDIFF(DAY,op.OBSERVATION_PERIOD_START_DATE,i.INDEX_DATE) >= 180
)
SELECT nu.*, MAX(DATEDIFF(DAY,co.CONDITION_START_DATE,nu.INDEX_DATE)) AS DAYS_OF_CLOSEST_AFIB_PRIOR_TO_INDEX
FROM CTE_DRUG_NEW_USERS nu
 JOIN CONDITION_OCCURRENCE co
 ON co.PERSON_ID = nu.PERSON_ID
 AND co.CONDITION_START_DATE BETWEEN nu.OBSERVATION_PERIOD_START_DATE AND nu.OBSERVATION_PERIOD_END_DATE
WHERE co.CONDITION_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 313217 /*Atrial fibrillation*/
)
 AND co.CONDITION_START_DATE < nu.INDEX_DATE
GROUP BY nu.PERSON_ID, nu.INDEX_DATE, nu.OBSERVATION_PERIOD_START_DATE, nu.OBSERVATION_PERIOD_END_DATE, nu.DAYS_BEFORE_INDEX
ORDER BY nu.PERSON_ID
```
Step 2: Define Atrial Fibrillation

/* (Exercise 4) Warfarin New Users With Prior AFIB */

WITH CTE_DRUG_INDEX AS (  
  SELECT de.PATIENT_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE  
  FROM DRUG_EXPOSURE de  
  WHERE de.DRUG_CONCEPT_ID IN (  
    SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/  
  )  
  GROUP BY de.PATIENT_ID  
),  
CTE_DRUG_NEW_USERS AS (  
  SELECT i.PATIENT_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,  
  DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX  
  FROM CTE_DRUG_INDEX i  
  JOIN OBSERVATION_PERIOD op  
  ON op.PATIENT_ID = i.PATIENT_ID  
  AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_END_DATE AND op.OBSERVATION_PERIOD_START_DATE  
  WHERE DATEDIFF(DAY, co.OBSERVATION_END_DATE, i.INDEX_DATE) >= 180  
)  
SELECT nu.*, MAX(DATEDIFF(DAY, co.CONDITION_START_DATE, nu.INDEX_DATE)) AS DAYS_OF_CLOSEST_AFIB_PRIOR_TO_INDEX  
FROM CTE_DRUG_NEW_USERS nu  
JOIN CONDITION_OCCURRENCE co  
ON co.PATIENT_ID = nu.PATIENT_ID  
AND co.CONDITION_START_DATE BETWEEN nu.OBSERVATION_PERIOD_START_DATE AND nu.OBSERVATION_PERIOD_END_DATE  
WHERE co.CONDITION_CONCEPT_ID IN (  
  SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 313217 /*Atrial fibrillation*/  
)  
AND co.CONDITION_START_DATE < nu.INDEX_DATE  
GROUP BY nu.PATIENT_ID, nu.INDEX_DATE, nu.OBSERVATION_PERIOD_START_DATE, nu.OBSERVATION_PERIOD_END_DATE, nu.DAYS_BEFORE_INDEX  
ORDER BY nu.PATIENT_ID
Step 3: Prior Atrial Fibrillation

Keeps condition within the same observable time, exclude if you want all time prior

```sql
WITH CTE_DRUG_INDEX AS (
SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
FROM DRUG_EXPOSURE de
WHERE de.DRUG_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 1310149 /*warfarin*/
)
GROUP BY de.PERSON_ID
)

CTE_DRUG_NEW_USERS AS (
SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_END_DATE,
DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX
FROM CTE_DRUG_INDEX i
JOIN OBSERVATION_PERIOD op
ON op.PERSON_ID = i.PERSON_ID
AND i.INDEX_DATE BETWEEN op.OBSERVATION_PERIOD_START_DATE AND op.OBSERVATION_PERIOD_END_DATE
WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
)

SELECT *, MAX(DATEDIFF(DAY, co.CONDITION_START_DATE, nu.INDEX_DATE)) AS DAYS_OF_CLOSEST_AFIB_PRIOR_TO_INDEX
FROM CTE_DRUG_NEW_USERS nu
JOIN CONDITION_OCCURRENCE co
ON co.PERSON_ID = nu.PERSON_ID
AND co.CONDITION_START_DATE BETWEEN nu.OBSERVATION_PERIOD_START_DATE AND nu.OBSERVATION_PERIOD_END_DATE
WHERE co.CONDITION_CONCEPT_ID IN (
 SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCESTOR_CONCEPT_ID = 313217 /*Atrial fibrillation*/
)
AND co.CONDITION_START_DATE < nu.INDEX_DATE
GROUP BY nu.PERSON_ID, nu.INDEX_DATE, nu.OBSERVATION_PERIOD_START_DATE, nu.OBSERVATION_PERIOD_END_DATE, nu.DAYS_BEFORE_INDEX
ORDER BY nu.PERSON_ID
```
How do I define new users of Warfarin with prior Atrial Fibrillation?
New Users of Warfarin with prior Atrial Fibrillation

Try running this on your own!

```sql
/*
 (Exercise 4) Warfarin New Users With Prior AFIB
 */

WITH CTE_DRUG_INDEX AS (
 SELECT de.PERSON_ID, MIN(de.DRUG_EXPOSURE_START_DATE) AS INDEX_DATE
 FROM DRUG_EXPOSURE de
 WHERE de.DRUG_CONCEPT_ID IN (SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCECTOR_CONCEPT_ID = 1310149 /*warfarin*/)
 GROUP BY de.PERSON_ID
),
CTE_DRUG_NEW_USERS AS (SELECT i.PERSON_ID, i.INDEX_DATE, op.OBSERVATION_PERIOD_START_DATE, op.OBSERVATION_PERIOD_End_DATE,
 DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) AS DAYS_BEFORE_INDEX
 FROM CTE_DRUG_INDEX i
 JOIN OBSERVATION_PERIOD op
 ON op.PERSON_ID = i.PERSON_ID
 WHERE DATEDIFF(DAY, op.OBSERVATION_PERIOD_START_DATE, i.INDEX_DATE) >= 180
)
SELECT nu.*, MAX(DATEDIFF(DAY, co.CONDITION_START_DATE, nu.INDEX_DATE)) AS DAYS_OF_CLOSEST_AFIB_PRIOR_TO_INDEX
FROM CTE_DRUG_NEW_USERS nu
 JOIN CONDITION_OCCURRENCE co
 ON co.PERSON_ID = nu.PERSON_ID
 AND co.CONDITION_START_DATE BETWEEN nu.OBSERVATION_PERIOD_START_DATE AND nu.OBSERVATION_PERIOD_END_DATE
WHERE co.CONDITION_CONCEPT_ID IN (SELECT DESCENDANT_CONCEPT_ID FROM CONCEPT_ANCESTOR WHERE ANCECTOR_CONCEPT_ID = 313217 /*Atrial fibrillation*/)
 AND co.CONDITION_START_DATE < nu.INDEX_DATE
GROUP BY nu.PERSON_ID, nu.INDEX_DATE, nu.OBSERVATION_PERIOD_START_DATE, nu.OBSERVATION_PERIOD_END_DATE, nu.DAYS_BEFORE_INDEX
ORDER BY nu.PERSON_ID
```
Try on your own!

- Warfarin New Users 65 or Older at Index with Prior Atrial Fibrillation

  163,271 individuals

- Bonus: Clopidogrel New Users 65 or Older at Index with Prior Atrial Fibrillation

  63,462 individuals
Queries Can Be Automated

- Open up Google Chrome
- Open up ATLAS
- Example cohort under “Cohort Definitions”: “Warfarin New Users 65 or Older at Index with Prior Atrial Fibrillation”
Cohort definition: A cohort is defined as the set of persons satisfying one or more inclusion criteria for a duration of time. Cohort entry criteria involve selecting one or more initial events, which determine the start date record to determine the end date when the person's episode no longer qualifies for the cohort.
Conclusions
Conclusion

OMOP CDM standardizes the structure.
OMOP Vocabulary standardizes the terminology.
Concept IDs link CDM and Vocabulary.
Source data still preserved in the OMOP CDM.
Concept domains decide what table each piece of data lands on.
OMOP CDM can be used for many types of data (e.g. claims, EHR, survey, labs, etc.).
OMOP CDM development is Open Source, Community driven.
OMOP CDM is patient centric.
OMOP Vocabulary

• Is used to **standardize terminology**

• **Compiles standards** from disparate public and private sources and some OMOP-grown concepts

• Has **one uniform structure** to house multiple vocabularies used in the public domain

• Is designed to **facilitate efficient queries**

• Is **regularly updated, maintained, and improved**
OMOP CDM

- Is used to standardize structure and queries
- Integrated with Controlled Vocabulary
- Consolidates data from heterogeneous data sources: EMR, claims, registries
- Patient centric
- Domain (subject area) based: concepts decide what table each piece of data lands on
- Preserves data provenance
- Database platform independent
What Makes OMOP CDM Unique

• **Supports collaborative research** across data sources both within and outside of US

• Developed **based on analytic use cases** by community of collaborators

• **Specialized**: reflective of clinical domain, granular, well structured

• **Integrated with Vocabulary** that is uniformly structured and well curated

• **Extendable**: new concepts and attributes can be added

• **Supported by Community** of interdisciplinary developers and researches