4th OHDSI Symposium
4th OHDSI Symposium

George Hripcsak, MD, MS
OHDSI Coordinating Center
Columbia University, New York, USA
NewYork-Presbyterian Hospital, New York, USA
Welcome!
Thank you to our sponsors!

We would also like to thank FDA-CBER for their support of the 2018 OHDSI Symposium through their conference grant (#1 R13 FD006470-01)
OHDSI is
an open science community
OHDSI’s mission

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care
OHDSI’s values

- **Innovation**: Observational research is a field which will benefit greatly from disruptive thinking. We actively seek and encourage fresh methodological approaches in our work.
- **Reproducibility**: Accurate, reproducible, and well-calibrated evidence is necessary for health improvement.
- **Community**: Everyone is welcome to actively participate in OHDSI, whether you are a patient, a health professional, a researcher, or someone who simply believes in our cause.
- **Collaboration**: We work collectively to prioritize and address the real world needs of our community’s participants.
- **Openness**: We strive to make all our community’s proceeds open and publicly accessible, including the methods, tools and the evidence that we generate.
- **Beneficence**: We seek to protect the rights of individuals and organizations within our community at all times.
OHDSI community

We’re all in this journey together...

Check out the map in the back
Symposia around the world

2017: OHDSI’s 4th F2F, Georgia Tech, GA, USA

2017: OHDSI Korea Symposium, Ajou University, Suwon, South Korea

2017: OHDSI’s 3rd F2F, National Library of Medicine, MD, USA

2017: OHDSI Hadoop hack-a-thon, QuintilesIMS, PA, USA

2018: 1st OHDSI Europe Symposium, Rotterdam, NL

2015: 1st Annual OHDSI Symposium, Washington DC, USA

2015: 1st OHDSI China, Zhejiang University, Hangzhou, China

2015: OHDSI’s 1st F2F meeting, Columbia University, NY, USA

2016: 2nd Annual OHDSI Symposium, Bethesda, MD, USA

2018: OHDSI China, Guangzhou, China

2018: 4th Annual OHDSI Symposium, Bethesda, MD, USA

2014: OHDSI’s 1st F2F meeting, Columbia University, NY, USA

2015: OHDSI’s 2nd F2F, Stanford University, CA, USA

2017: OHDSI’s 4th F2F, Georgia Tech, GA, USA

2017: 3rd Annual OHDSI Symposium, Bethesda, MD, USA

2018: OHDSI’s 5th F2F, Columbia University, NY, USA

2017: OHDSI China, Zhejiang University, Hangzhou, China
OHDSI’s community engagement

• Weekly community web conferences for all collaborators to share their research ideas and progress

• 15 workgroups for solving shared problems of interest
 – Common Data Model, Population-level Estimation, Patient-level Prediction, Architecture, Phenotype, NLP, GIS, Oncology, ...

• Active community online discussion: forums.ohdsi.org

• 2,010 users have made 13,625 posts on 2,369 topics:
 – Implementers, Developers, Researchers, CDM Builders, Vocabulary users, OHDSI in Korea, OHDSI in China, OHDSI in Europe
Open Science

- Database summary
- Cohort definition
- Cohort summary
- Compare cohorts
- Exposure-outcome summary
- Effect estimation & calibration
- Compare databases

Open science

Data + Analytics + Domain expertise

Enable users to do something

Generate evidence

Standardized, transparent workflows
How OHDSI works

Source data warehouse, with identifiable patient-level data

Standardized, de-identified patient-level database (OMOP CDM v5)

Standardized large-scale analytics

Analysis results

Summary statistics results repository

OHDSI Coordinating Center

- Data network support
- Analytics development and testing
- Research and education

OHDSI.org

OHDSI Data Partners
Data across the OHDSI community

• 97 different databases
• Patient-level data from various perspectives:
 – Electronic health records, administrative claims, hospital systems, clinical registries, health surveys, biobanks
• Collectively, billions of patient records
• Data in 19 different countries, with 220 million patient records from outside US

All using one open community data standard: OMOP Common Data Model
Standardized Structure (OMOP CDM6)
Standardized Content (OMOP Vocab)
Standardized Conventions (THEMIS)
Standardized Analytics (OHDSI Tools)
15
8
12
12
10
12
10
9
14
5
3
5
17
1
1

Standardized Structure (OMOP CDM6)
Standardized Content (OMOP Vocab)
Standardized Conventions (THEMIS)
Standardized Analytics (OHDSI Tools)

Standardized health system data
- Location
- Location_history
- Care_site
- Provider

Standardized derived elements
- Condition_era
- Drug_era
- Dose_era

Results Schema
- Cohort
- Cohort_definition

Standardized health economics
- Cost
- Payer_plan_period

Shared Conventions developed by the THEMIS Workgroup

203

CDM_source
Metadata

1 3 1

Person
Observation_period
Visit_occurrence
Visit_detail
Condition_occurrence
Drug_exposure
Procedure_occurrence
Device_exposure
Measurement
Note
Note_NLP
Survey_conduct
Observation
Specimen
Fact_relationship

Standardized clinical data

Shared Conventions developed by the THEMIS Workgroup
Standardized Structure (OMOP CDM6)
Standardized Content (OMOP Vocab)
Standardized Conventions (THEMIS)
Standardized Analytics (OHDSI Tools)

Amazon Web Services tutorial environment
Complementary evidence to inform the patient journey

- **Clinical characterization:** What happened to them?
- **Patient-level prediction:** What will happen to me?
- **Population-level effect estimation:** What are the causal effects?

Inference and causal inference are connected by observation.
OHDSI community in action
Data
MIRACUM: Medical Informatics in Research and Care in University Medicine

A Large Data Sharing Network to Enhance Translational Research and Medical Care

Hans-Ulrich Prokosch¹; Till Acker²; Johannes Bernarding³; Harald Binder⁴,⁵; Martin Boeker⁵; Melanie Boerries⁶; Philipp Daumke⁷; Thomas Ganslandt¹,⁸; Jürgen Hesser⁹; Gunther Hönig¹⁰; Michael Neumaier¹¹; Kurt Marquardt¹²; Harald Renz¹³; Hermann-Josef Rothkötter¹⁴; Carmen Schade-Brittinger¹⁵; Paul Schmücker¹⁶; Jürgen Schüttler¹⁷; Martin Sedlmayr¹,¹⁸; Hubert Serve¹⁹; Keywan Sohrabi²⁰; Holger Storf²¹

Exploiting the OMOP data model as part of a German data network
A Clinical Data Warehouse Based on OMOP and i2b2 for Austrian Health Claims Data

Christoph RINNERa,1, Deniz GEZGINa, Christopher WENDLa and Walter GALLa

aCenter for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria

Austrian OMOP-based clinical data warehouse using i2b2 tools via multi-fact table addition
Expanding transplant outcomes research opportunities through the use of a common data model

Sylvia Cho | Sumit Mohan | Syed Ali Husain | Karthik Natarajan

Using OMOP to expand a traditional transplant registry with complementary data sources
Research and Applications

Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data

Jenna M Reps,¹ Martijn J Schuemie,¹ Marc A Suchard,² Patrick B Ryan,¹ and Peter R Rijnbeek³

Framework for scaling up the development of prediction models emphasizing reproducibility
Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data

Martijn J. Schuemiea,b,1, George Hripcsaka,c,d, Patrick B. Ryana,b,c, David Madigana,e, and Marc A. Sucharda,f,g,h

aObservational Health Data Sciences and Informatics, New York, NY 10032; bEpidemiology Analytics, Janssen Research & Development, Titusville, NJ 08560; cDepartment of Biomedical Informatics, Columbia University, New York, NY 10032; dMedical Informatics Services, New York–Presbyterian Hospital, New York, NY 10032; eDepartment of Statistics, Columbia University, New York, NY 10027; fDepartment of Biostatistics, University of California, Los Angeles, CA 90095; gDepartment of Biostatistics, University of California, Los Angeles, CA 90095; and hDepartment of Human Genetics, University of California, Los Angeles, CA 90095

Detailed description and evaluation of the OHDSI confidence interval calibration method
Evaluating large-scale propensity score performance through real-world and synthetic data experiments

Yuxi Tian,¹* Martijn J Schuemie² and Marc A Suchard¹,³,⁴

Detailed description of the OHDSI propensity score method, and comparison to an existing standard
Improving reproducibility by using high-throughput observational studies with empirical calibration

Martijn J. Schuemie1,2, Patrick B. Ryan1,2,3, George Hripcsak1,3,4, David Madigan1,5 and Marc A. Suchard1,6,7,8

1Observational Health Data Sciences and Informatics (OHDSI), New York, NY 10032, USA
Title: Effect of Vocabulary Mapping for Conditions on Phenotype Cohorts

Authors: George Hripcsak1,2,3, Matthew Levine1,2, Ning Shang1,2, Patrick B. Ryan1,2,4

It is possible to achieve just a trivial error rate due to OHDSI SNOMED conversion
Clinical
Comprehensive comparison of monotherapies for psychiatric hospitalization risk in bipolar disorders

Anastasiya Nestsiarovich¹ | Aurélien J Mazurie² | Nathaniel G Hurwitz³ | Berit Kerner⁴,⁵ | Stuart J Nelson⁶,⁷ | Annette S Crisanti⁸ | Mauricio Tohen⁸ | Ronald L Krall⁹ | Douglas J Perkins¹ | Christophe G Lambert¹,⁷

Bipolar disorder treatments efficacy does vary by as much as 2x, and patients end monotherapy after two months.
Database Studies of Treatment-Resistant Depression Should Take Account of Adequate Dosing

Daniel Fife, MDa,\ast; Clair Blacketer, MPHa; Jenna Marie Reps, PhDa; and Patrick Ryan, PhDa

<table>
<thead>
<tr>
<th>No. of Dispensings in the Eraa</th>
<th>CCAE (no. of eras)</th>
<th>CCAE (% of eras with a dispensing ≥ minimum effective dose)</th>
<th>MDCD (no. of eras)</th>
<th>MDCD (% of eras with a dispensing ≥ minimum effective dose)</th>
<th>MDCR (no. of eras)</th>
<th>MDCR (% of eras with a dispensing ≥ minimum effective dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168,095</td>
<td>58.2</td>
<td>29,561</td>
<td>54.3</td>
<td>12,217</td>
<td>54.5</td>
</tr>
<tr>
<td>2</td>
<td>67,805</td>
<td>65.4</td>
<td>10,861</td>
<td>59.5</td>
<td>4,407</td>
<td>60.5</td>
</tr>
<tr>
<td>3</td>
<td>36,905</td>
<td>70.8</td>
<td>4,981</td>
<td>64.7</td>
<td>2,060</td>
<td>65.2</td>
</tr>
<tr>
<td>4</td>
<td>25,484</td>
<td>72.1</td>
<td>3,287</td>
<td>65.5</td>
<td>1,512</td>
<td>67.0</td>
</tr>
<tr>
<td>5</td>
<td>17,492</td>
<td>74.8</td>
<td>1,980</td>
<td>68.1</td>
<td>972</td>
<td>68.7</td>
</tr>
<tr>
<td>6</td>
<td>13,698</td>
<td>74.8</td>
<td>1,473</td>
<td>67.5</td>
<td>754</td>
<td>69.6</td>
</tr>
<tr>
<td>7</td>
<td>10,015</td>
<td>76.7</td>
<td>1,094</td>
<td>71.0</td>
<td>586</td>
<td>71.3</td>
</tr>
<tr>
<td>8</td>
<td>7,862</td>
<td>75.8</td>
<td>878</td>
<td>70.3</td>
<td>461</td>
<td>71.1</td>
</tr>
<tr>
<td>9</td>
<td>6,175</td>
<td>78.5</td>
<td>631</td>
<td>72.3</td>
<td>396</td>
<td>67.9</td>
</tr>
<tr>
<td>10</td>
<td>5,020</td>
<td>77.2</td>
<td>547</td>
<td>72.6</td>
<td>285</td>
<td>72.6</td>
</tr>
<tr>
<td>11</td>
<td>4,037</td>
<td>79.6</td>
<td>448</td>
<td>72.3</td>
<td>242</td>
<td>70.7</td>
</tr>
<tr>
<td>12</td>
<td>3,727</td>
<td>79.5</td>
<td>377</td>
<td>69.2</td>
<td>193</td>
<td>64.2</td>
</tr>
<tr>
<td>≥ 13</td>
<td>22,724</td>
<td>80.7</td>
<td>2,657</td>
<td>74.6</td>
<td>1190</td>
<td>66.8</td>
</tr>
<tr>
<td>All</td>
<td>389,039</td>
<td>66.0</td>
<td>58,775</td>
<td>59.6</td>
<td>25,275</td>
<td>60.1</td>
</tr>
</tbody>
</table>

aEra is defined as a sequence of dispensings of an antidepressant medication during an episode of pharmacologically treated depression with no more than 30 days between each dispensing of the medication and the end of the days’ supply of the previous dispensing.

Abbreviations: CCAE = Truven MarketScan Commercial Claims and Encounters, MDCD = Truven MarketScan Multi-State Medicaid, MDCR = Truven MarketScan Medicare Supplemental Beneficiaries.

A substantial proportion of patients on depression therapy never reach the minimum therapeutic dose.
Original Investigation | Diabetes and Endocrinology

August 24, 2018

Association of Hemoglobin A1c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin

Analysis From the Observational Health Data Sciences and Informatics Initiative

Rohit Vashisht, PhD1,2; Kenneth Jung, PhD1,2; Alejandro Schuler, MS1,2; Juan M. Banda, PhD1,2; Rae Woong Park, MD, PhD1,3,4; Sanghyung Jin, MS1,4; Li Li, MS, MD5; Joel T. Dudley, PhD5; Kipp W. Johnson, MD, PhD5; Mark M. Shervey, PhD5; Hua Xu, PhD1,6; Yonghui Wu, PhD1,7; Karthik Natrajan, PhD1,8,9; George Hripcsak, MD, MS1,9; Peng Jin, MS1,9; Mui Van Zandt, BS1,10; Anthony Reckard, BS1,10; Christian G. Reich, MD1,10; James Weaver, MPH, MS1,11; Martijn J. Schuemie, PhD11; Patrick B. Ryan, PhD1,9,11; Alison Callahan, PhD1,2; Nigam H. Shah, MBBS, PhD1,2

Study efficacy and safety for second line treatment for type 2 diabetes mellitus, found only small differences
Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D)

Patrick B. Ryan PhD1 | John B. Buse MD2 | Martijn J. Schuemie PhD1 | Frank DeFalco BA3 | Zhong Yuan MD, PhD1 | Paul E. Stang PhD1 | Jesse A. Berlin ScD4 | Norman Rosenthal MD3

Sodium glucose co-transporter 2 inhibitors showed reduced hosp for heart failure but no increased knee amputation versus non-SGLT2, and no differences among SGLT2 inh.; POSTED ON OHDSI
• Incidence of side effects
 • Develop condition for first time after get drug
 • Within time at risk
• Any drug on the world market
• Any condition
• Absolute risk
 • Not causal (Characterization)
• On the Internet
Impact on the research community: publications on OHDSI or the OMOP CDM in 2018 via Google Scholar
Clinical studies 2018 (29)

- Baranova, EV; Mahmoudpour, SH; Souverein, PC; Asselbergs, FW; de Boer, A; Maitland- van der Zee, AH. Determinants of angiotensin-converting enzyme inhibitor intolerance and angioedema in the UK Clinical Practice Research Datalink. Precision medicine 2018;8:26;1647h1659

- Cepeda, M Soledad; Reps, Jenna; Fife, Daniel; Blacketer, Clair; Stang, Paul; Ryan, Patrick. Finding treatment-related depression in real-world data: How a data-driven approach compares with expert-based heuristics. Depression and anxiety 2018;35:3;220v228

- Cepeda, M Soledad; Reps, Jenna; Ryan, Patrick. Finding factors that predict treatment-related depression: Results of a cohort study. Depression and anxiety 2018;35:3;220v228

- Clark, LA; Patel, RP; Noone, JM; Blanchette, CM; Howden, R. Relative Risk and Crude Mortality Among Cohorts of US Medicare Beneficiaries with Autosomal Dominant Polycystic Kidney Disease. Value in Health 2018;21;3;S249

- Czaja, Angela S; Ross, Michelle E; Liu, Wewei; Fiks, Alexander G; Localio, Russell; Wasserman, Richard C; Grundmeier, Robert W; Adams, William G. Comparative Effectiveness Research through Collaborative Electronic Reporting (CER) Consortium: Electronic health record (EHR) based postmarketing surveillance of adverse events associated with pediatric off-label medication use: A case study of short-acting beta2 agonists and arrhythmias. Pharmacoeconomics and drug safety 2018;35:3;220v228

- Fife, Daniel; Cepeda, M Soledad; Baseman, Alan; Richards, Henry; Hu, Peter; Star, H Lynn; Sena, Anthony G. Medication changes after switching from CONCERTA® brand methylphenidate HCl to a generic long-acting formulation: A retrospective database study. PloS one 2018;13:2;e0193453

- Gulmez, Sinem Eghi; Unal, Ulku Sur; Lassalle, RÅ©gis; Chartier, Anaïs S; Grolloe, Adeline; Moore, Nicholas. Risk of hospital admission for liver injury in users of NSAIDs and nonsteroidal paracetamol: Preliminary results from the EPHAMS study. Pharmacoeconomics and drug safety 2018;35:3;220v228

- Hu, EY; Bhattacharya, K; Nunna, S; Ramachandran, S. Modifiable Risk Factors and Population Attributable Risk of Obesity Among High School Students in the US. Value in Health 2018;21;3;S249

- Hu, Qingwei; Shi, Lu; Chen, Liwei; Zhang, Lu; Truong, Khoa; Ewing, Alex; Wu, Jiande; Scott, John. Seasonality in the adverse outcomes in weight loss surgeries. Surgery for Obesity and Related Diseases 2018;14:3;289v296

- Izrailryan, Igor; Giiu, Jieying; Overdyk, Frank J; Erison, Mary; Gan, Tong J. Risk factors for cardiopulmonary and respiratory arrest in medical and surgical hospital patients on opioid analgesics and sedatives. PloS one 2018;13:3;e0194553

- Jiang, Alex; Jegga, Anil G. Characterizing drug-related adverse events by joint analysis of biomedical and genomic data: A case study of drug-induced pulmonary fibrosis. AMIA Summits on Translational Science Proceedings 2018;2017:v1

- Jones, W Schuyler; Krucoff, Mitchell W; Morales, Pablo; Wilgus, Rebecca W; Heath, Anne H; Williams, Mary F; Tcheng, James E; Marinac-Dabic, J Danica; Malone, Misti L; Reed, Terrie L. Registry Assessment of Peripheral Interventional Devices (RAPID): registry assessment of peripheral interventional devices core data elements. Journal of vascular surgery 2018;67:2;637-644.e30

- Jones, W Schuyler; Patel, Manesh R. Antithrombotic Therapy in Peripheral Artery Disease: Generating and Translating Evidence Into Practice. Journal of the American College of Cardiology 2018;71:3;352v362

- Kashmoola, Muhammad Ali; Mustafa, Nazih Shaaban; Mohamed, Robiah; Talmizi, Sit Nabilah Mohamed; Mustafa, Basma Ezzat. A Prospective Study on Response to Treatment of Patients with Temporomandibular Dysfunction: A Clinical Study. Journal of International Dental & Medical Research 2018;11:2

- Krishnamurthi, Niranpura; Francis, Joseph; Fihn, Stephan D; Meyer, Craig S; Whooley, Mary A. Leading causes of cardiovascular hospitalization in a 4.8 million US veterans. PloS one 2018;13:3;e0193996

- Mahmoudpour, Seyed Hamidreza; Asselbergs, Folkert W; Souverain, Patrick C; de Boer, Anthonius; Maitland-van der Zee, Anke H. Prescription patterns of angiotensin-converting enzyme inhibitors for various indications: A UK population-based study. British Journal of Clinical Pharmacology 2018;82;6;1647-1659

- Memtsoudis, Stavros G; Poeran, Javad; Zulizarreta, Nicole; Olson, Ashley; Coxozic, Crispiana; MårFwald, Eva E; Mariano, Edward R; Mazumdar, Madhu. Do Hospitals Performing Frequent Neuropall. Anesthesia for Hip and Knee Replacements Have Better Outcomes? Anesthesiology: The Journal of the American Society of Anesthesiologists 2018;35:3;220v228

- Menon, J; Willis, CW; Unni, S; Au, T; Ndife, B; Joseph, G; Brixner, D; Stein, EM; Tantavahi, S; Shami, P. FLT3 Mutated and Wildtype Acute Myeloid Leukemia Treatment Patterns and Outcomes at a Comprehensive Cancer Center. Value in Health 2018;21;3;S249

- Mohamed, Robiah; Talmizi, Sit Nabilah Mohamed; Mustafa, Basma Ezzat. A Prospective Study on Response to Treatment of Patients with Temporomandibular Dysfunction: A Clinical Study. 2018;35:3;220v228

- Mohamed, Robiah; Talmizi, Sit Nabilah Mohamed; Mustafa, Basma Ezzat. A Prospective Study on Response to Treatment of Patients with Temporomandibular Dysfunction: A Clinical Study. 2018;35:3;220v228

- Nestsariovich, Anastasiya; Mazurie, Aurélie J; Hurwitz, Nathaniel G; Kerner, Berit; Nelson, Stuart J; Crisanti, Annette S; Tohen, Mauricio; Krall, Ronald L; Perkins, Douglas J; Lambert, Christophe G. Comprehensive comparison of monotherapies for psychiatric hospitalization risk in bipolar disorders. Bipolar Disorders 2018;35:3;220v228

- Parkin, Lianne; Barson, David; Zeng, Jiexu; Horsburgh, Simon; Sharples, Katrina; Dummer, Jack. Patterns of use of long-acting bronchodilators in patients with COPD: A nationwide follow-up study of new users in New Zealand. Respiratory 2018;23:6;583v592

- Pfohl, Stephen; Marafino, Ben; Coulot, Adrienne; Rodriguez, Fatima; Paliannapattan, Latha; Shah, Nigam H. Creating Fair Models of Atherosclerotic Cardiovascular Disease Risk. arXiv preprint arXiv:1809.04663 2018;35:3;220v228

- Polubriaginof, Fernanda CG; Vanguri, Rami; Quinlins, Kayla; Belbin, William G; Dali, Hetam. Comparative effectiveness of canagliflozin, GLT2 inhibitors and nonGLT2 inhibitors on the risk of the hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: a real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes, Obesity and Metabolism 2018;35:3;220v228

- Ryan, Patrick B; Buse, John B; Schuemie, Martijn J; DeFalco, Frank; Yuan, Zhong; Stang, Paul E; Berlin, Jesse A; Rosenthal, Norman. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of the hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab. 2018;21;3;S249-S250

- Ryan, Patrick B; Rosenthal, Norm. Comment on Ryan, et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of the hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab. 2018;21;3;S249-S250

- Vashisth, Rohit; Jung, Kenneth; Schuler, Alejandro; Banda, Juan M; Park, Rae Woong; Jin, Sanghyung; Li, Li; Dudley, Joel T; Johnson, Kipp W; Shervey, Mark M. Association of Hemoglobin A1c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin: Analysis From the Observational Health Data Sciences and Informatics Initiative. JAMA Network Open 2018;1:4;E1817555;E1817555

- Wasserman, Isaac; Poeran, Javad; Zulizarreta, Nicole; Bobby, Jason; Serban, Stelian; Goldberg, Andrew T; Greenstein, Alexander J; Memtsoudis, Stavros G; Mazumdar, Madhu; Libowitz, Andrew B. Impact of Intravenous Acetaminophen on Perioperative Opioid Utilization and Outcomes in Open Colectomies: A Claims Database Analysis. Anesthesiology: The Journal of the American Society of Anesthesiologists 2018;35:3;220v228
• Albers, David J; Elhadad, NoÂ©emie; Claassen, Jan; Perotte, R; Goldstein, A; Hirpsck, George. Estimating summary statistics for electronic health record network analysis for use in high-throughput phenotyping algorithms. Journal of biomedical informatics 2018;78:87y101
• Averitt, Amelia J; Weng, Chunhua; Perotte, Adler J; Clinical Trial Eligibility Criteria and the Burden of Generalizability. 2018;
• Banda, Juan M; Seneviratne, Martin; Hernandez-Boussard, Tina; Shah, Nigam H; Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models. 2018;
• Bhatcharyya, Mouni; Jurvitz, Claudaty; Shatkay, Hagit. Co-occurrence of medical conditions: Exposing patterns through probabilistic topic modeling of named codes. Journal of biomedical informatics 2018;82:11y40
• Block, Jason P; Bailey, L Charles; Gillman, Matthew W; Lunsford, Douglas; Boone-Heinonen, Janet; Cleveland, Lauren P; Finkelstein, Jonathan; Horgan, Casey E; Jay, Melanie; Reynolds, Julian S; PCORnet Antipsychotics and Childhood Growth Study: Process for Cohort Creation and Cohort Description. Academic pediatrics 2018;;
• Callahan, Allison; Shah, Nigam H; Machine Learning in Healthcare. Key Advances in Clinical Informatics 2018;;7:291
• Callahan, Tiffany J; Bodenreider, Olivier; Kahn, Michael G; Towards Patient-Driver Phenotyping and Similarity for Precision Medicine. 2018;
• Chen, Joe; Heyse, Joseph; Lai, Tze Leung. Medical Product Safety Evaluation: Biological Models and Statistical Methods. 2018;
• Chen, Robert. Tackling chronic diseases via computational phenotyping: algorithms, tools and applications. 2018;
• Chung, Kyungyong; You, Hyun; Cho, Do-Eun. Ambient context based modeling for health risk assessment using deep neural network. Journal of Ambient Intelligence and Humanized Computing 2018;9
• Coiera, Enrico; Ammerwurth, Elke; Georgiou, Andrew; Magrabi, Farah. Does health informatics have a replication crisis?. Journal of the American Medical Informatics Association 2018;;
• Davadzahemami, Behrouz; Delen, Dursun; A chronological pharmacovigilance network analysis approach for predicting adverse drug events. Journal of the American Medical Informatics Association 2018;;
• Ding, Daisy Yi; Simpson, ChloeÂ©; Pohl, Stephen; Kale, Dave C; Jung, Kenneth; Shah, Nigam H; The Effectiveness of Multitask Learning for Phenotyping with Ambient Intelligence and Humanized Computing 2018;9
• Fejza, Amelia; GenêveÂ©, Pierre; Layaïda da, Nabili; Bossob, Jean-Luc; Scalable and Interpretable Predictive Models for Electronic Health Records. OSA 2018:5th IEEE International Conference on Data Science and Advanced Analytics 2018;;10:1y15"}

Methods 2018-47

- Probabilistic modeling personalized treatment pathways using electronic health records. Journal of biomedical informatics 2018;86;39y48
- Innocentie, Julia; Hamer, Richard; Shi, Omiyori. Knowledge Engineering Framework to Quantify Dependencies Between Epidemiological and Biomolecular Factors in Breast Cancer. 2018;
- Kim, Joo-Chang; Chung, Kyungyong. Neuro-network based adaptive context prediction model for ambient intelligence. Journal of Ambient Intelligence and Humanized Computing 2018;8:13
- Koola, Jeo D; Davis, Sharon E; Al-Nimri, Omar; Par, Sharrad K; Fabbi, Daniel; Malin, Bradley A; Ho, Samuel B; Matheny, Michael E. Development of an automatic labeling approach against a de novo hepatorenal syndrome. Journal of biomedical informatics 2018;80;7y95
- McTaggart, Stuart; Nagle, Clifford; Caldwell, Jacqueline; Alvarez-Madrazo, Samantha; Colleen, Helen; Binnie, Marion; Use of text-mining methods to improve the efficiency in the calculation of drug exposure to support pharmacoepidemiology studies. International journal of pharmacoepidemiology 2018;47:63y624
- Nishimura, Ak; Tian, Yuxi; Suchard, Marc A. Improved computational tool for QHDSI: Bayesian penalized regression Separating known risk factors among the large number of potential confounders. 2018;
- Rajkumar, Abhishek; Oren, Eyal; Chen, Kai; Dai, Dailian; Nissen, Hardt; Mir, Liu; Li, Xiaobo; Marcus, Jake; Sun, Mimi. Scalable and accurate deep learning with electronic health records. npj Digital Medicine 2018;1:1;18
- Schneweiss, Sebastian; Automated data-adaptive analytics for electronic health data to study causal treatment effects. Clinical epidemiology 2018;10;711
- Schuemie, Martin J; Hirpsck, George; Ryan, Patrick B; Madigan, David; Suchard, Marc A; Improving reproducibility by using high-throughput observational studies with empirical calibration. Phil. Trans. R. Soc. A 2018;376;2128;20170356
- Schuemie, Martin J; Ryan, Patrick B; Hirpsck, George; Madigan, David; Suchard, Marc A; Improvement in a method for signal detection for observational studies with empirical calibration. PLoS ONE 2018;13;7;80420
- Schuemie, Martin J; Schuemie, Maarten; Marquering, Sa; Rottier,Imports; Rcpp; LinkingTo; Package â€œCaseControlâ€™. 2018;
- Sharma, Himanshu; Mao, Chengsheng; Zhang, Yichen; Vatanli, Haleh; Yao, Liang; Zhong, Yichen; Rasmussen, Luke; Jiang, Guojuan; Pathak, Jyothishman; Luo, Yuan; Portable Machine Learning System: A Portable Machine Learning Approach to i2b2 Obesity Challenge. 2018 IEEE International Conference on Healthcare Informatics Workshop (ICH-W) 2018;;86y97
- Sharma, Himanshu; Mao, Chengsheng; Zhang, Yichen; Vatanli, Haleh; Yao, Liang; Zhong, Yichen; Rasmussen, Luke; Jiang, Guojuan; Pathak, Jyothishman; Luo, Yuan; Developing a Portable Natural Language Processing Based Phenotyping System. arXiv preprint arXiv:1807.09638 2018;;
- Stricker, Bruno H; Adverse reaction signal detection methodology in pharmacoepidemiology. European journal of epidemiology 2018;2:Jan
- Thirun, N; Lassalle, R; Blin, P; Schuemie, M; Droz-Perroteau, C; Moore, N; Aâ€œevaluation of â€œapprocase â€œpopulation dans la base du SNDS en vue de la gâ€œpharmacovigilance de signaux de pharmacovigilance â€œprojet ALCAPONE â€œAlert generation using the caseâ€œpopulation approach in the French claims databasesâ€œ. Revue dâ€œépidémiologie et de Santé Publique 2018;66;528
- Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A; Evaluating large-scale propensity score performance through real-world and synthetic data experiments. International Journal of Epidemiology 2018;;
- Trinh, Nhng Th; SoÂ©d, Elodie; Benkebl, Medhi. Benefits of combining changedâ€œpoint analysis with disproportionality analysis in pharmacoepidemiology signal detection. Pharmacopropharmacovigilance and drug safety 2018;
- Wang, Liwei; Rastegar-Mojarrad, Majid; R, Zhiliang; Liu, Sijia; Ke, Moon; Sungrim; Shen, Feichen; Wang, Yanshan; Yao, Lixia; Davis III, John M; Detecting pharmacovigilance signals combining electronic medical records with spontaneous reports: a case study of conventional disease-modifying antirheumatic drugs for rheumatoid arthritis. Frontiers in Pharmacology 2018;;
- Wendling, T; Jung, K; Callahan, A; Schuler, A; Shah, NH; Gallego, B; Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases. Statistics in medicine 2018;;
- Winter, Christof; Ganslandt, Thomas; Bietenhard, Andreas; No mathematical shortcuts for standardization or harmonization of laboratory measurements. LaboratoryMedizin 2018;42:2;61y62
- Wong, Adrian; Plasek, Joseph M; Montecalvo, Steven P; Zhou, Li. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2018;;
- Wu, Xingchong; Zhu, Jia; Xiao, Danyang; Lin, Xueping; Ding, Rui; GA-ADE: a novel approach based on graph algorithm to improves the detection of adverse drug events. Multimedia Tools and Applications 2018;77;3;3493y3507
- Zhang, Pengyue; Li, Meng; Chang, Chien-iWei; Wei, Lang; Xi, Yang; Cheng, Lijun; Feng, Wexing; Schleyer, Titus K; Quinney, Sara K; Wu, Lei; NotMath; Threeâ€œElementMixtureBaselineModelâ€œBaselineModelâ€œModelBased Adverse Drug Event Signal Detection for the Adverse Event Reporting System. CPT: Pharmacometrics & Systems Pharmacology 2018;7;8;499y506
- Zhou, Xiaofeng; Bao, Warren; Gaffney, Mike; Shen, Rongjun; Young, Sarah; Bate, Andrew; Performance of sequential analysis methods for active drug safety surveillance using observational data. Journal of biopharmaceutical statistics 2018;28;4;668y681
- Zhou, Xiaofeng; Douglas, Ian J; Shen, Rongjun; Bate, Andrew; Signal Detection for Recently Approved Products: Adapting and Evaluating Self-Controlled Case Series Method Using a US Claims and UK Electronic Medical Records Database. Drug safety 2018;41;5;523y536
- Zhou, Ruiyin; Yao, Xinchai; Wang, Shuguang; Kim, Jin-Dong; Cohen, Kevin Bretonnel; Chen, Ruying; Wang, Xuying; Xua, Jia; Bo; Trigger Words Detection by Integrating Attention Mechanism into bi-LSTM Neural Networkâ€œA Case study in PubMedâ€œwide Trigger Words Detection for Prostate Cancer. 2018;
Data model 2018 (137)
Beyond Latin alphabet

의료 빅데이터를 활용한 질병 처방 예측 모델
고승완, 강현태, 오영택, 박재호, 허의남 - 한국정보과학회 학술발표 ..., 2018 - dbpia.co.kr
요약본 건의료 분야에서 빅데이터 활용의 기대 효과가 증가함에 따라 의료 데이터를 분석해 효과적인 치료 방법을 도출하는 연구에 대한 관심이 증대되고 있다. 의료 데이터 분석은 주로 어떤 질병에 대한 진단 및 처방 방법을 최적화하는 것에 목적을 두고 있으며, 이를 위해 코호트 ...
(Prediction model of disease prescription using medical big data)

Real World Data를 활용하는 관찰 연구 데이터베이스의 고려
木村映善 - 保健医療科学, 2018 - jstage.jst.go.jp
抄録: 全国的に収集されたReal World Data (RWD)を用いた観察研究からエビデンスを導出できるような取り組みが求められている。データベース設計に関する課題として、標準情報モデルへの統合、統制用語へのマッピング、各施設の測定結果などの組織間較正、患者個体の識別・追跡性の確保 ...
(A Study of Observational Research Data Using Utilization)

비정형 헬스케어 데이터 표준화
신수용 - 한국통신학회지 (정보와통신), 2018 - dbpia.co.kr
최근 전세계적으로 헬스케어 산업에 대한 관심이 부각되고 있고, 그 중에서도 헬스케어 데이터를 담당자들의 기계학습을 통한 의료 AI 산업이 급속히 주목을 받고 있다. 기계학습 기법의 특성상 의료 AI 개발을 위해서는 헬스케어 빅데이터가 반드시 필요하다 ...
(Standardization of Atypical Healthcare Data)

呼吸系统疾病专病队列研究的标准制定与数据共享
孙一鑫, 裴正存, 詹思延 - 中华流行病学杂志, 2018 - html.rhhz.net
目的: 慢性阻塞性肺疾病, 哮喘, 间质性肺疾病和肺血栓栓塞症是重大呼吸系统疾病,严重危害我国居民健康,整合并开展大规模人群队列研究有助于观察疾病的暴露,发病与转归情况。本研究针对我国社区与临床队列资源的多源异构现状,制定呼吸系统疾病专病...
(Standard setting and data sharing for the study of respiratory disease specific disease cohort)
Community
Community

• “Can we post your slides from your talk?”
 – Let me look over the deck.
 – Let me delete a few slides and send it back.
 – Let me check with my colleagues.

• OHDSI: Go ahead, it’s already on the Internet.
 – Open science
Community

• Non-traditional research groups
 – Skunkworks, Apple garage
 – Group comes together motivated by the goal
 – Expertise hidden in plain sight
Community

• Infrastructure – what is possible once you have:
 – Data network with a consistent data model
 – Tools
 • (eMERGE)
 – Culture
Community

• Potential collaborator
 – It’s a group project and it will be on the Internet
 – We don’t know where your name will end up, other than being in the list
Community

• New initiatives
 – So much to be done, need new groups
 – A lot of work
 – Love to run a large famous study
2018 Symposium Agenda

Friday, October 12th at the Bethesda North Marriott

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 – 8:00am</td>
<td>Registration with Light Breakfast</td>
</tr>
</tbody>
</table>
| 8:00 – 9:30am | **Welcome: Where’s Our Journey**
Speaker: George Hripcsak, MD, MS, Vivian Beaumont Allen Professor and Chair, Biomedical Informatics, Columbia University Irving Medical Center; Director, Medical Informatics Services, NewYork-Presbyterian Hospital/Columbia Campus |
| 9:30 – 11:30am | **Plenary Session**
Large-scale Evidence Generator and Evaluation of Network of Databases (LEGEND): Clinical applications in hypertension
Speakers: Patrick Ryan, PhD, Senior Director and Head, Epidemiology Analytics, Janssen Research & Development, Adjunct Assistant Professor of Biomedical Informatics, Columbia University
Martijn Schuemie, PhD, Director and Research Fellow, Epidemiology Analytics, Janssen Research & Development
Marc Suchard, MD, PhD, Professor, Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles |

Grand Ballroom Foyer
Grand Ballroom E-H
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30 – 1:00pm</td>
<td>OHDSI Collaborator Showcase: Part One
Software demonstrations and poster session highlighting OHDSI’s research and development</td>
<td>Grand Ballroom Foyer</td>
</tr>
<tr>
<td></td>
<td>Buffet lunch served from 12:30-1:00pm in Grand Ballroom</td>
<td></td>
</tr>
<tr>
<td>1:00 – 2:00pm</td>
<td>OHDSI Collaborator Showcase: Part Two – Lightning Talks
Moderator: Melanie Philofsky, RN, MS, Senior Business Analyst/Project Manager, Odysseus Data Services, Inc.
Speakers:
 - Iannis Drakos, Chief Consultant, Region Zealand
 - Kyu-pyo Kim, PhD, Associate Professor, Asan Medical Center
 - Mary Regina Boland, MA, MPhil, PhD, Assistant Professor, University of Pennsylvania
 - Fabricio Kury, PhD, Postdoctoral Research Scientist, Columbia University
 - James Weaver, Manager, Epidemiology Analytics, Janssen Research and Development
 - Clair Blacketer, MPH, PMP, Manager, Epidemiology Analytics, Janssen Research & Development; Co-lead, OHDSI Common Data Model workgroup
 - Ross D. Williams, MS, PhD Student, Erasmus University Medical Centre
 - Kristin Feeney Kostka, MPH, Collaborator, OHDSI; Data Science Lead, Deloitte Consulting LLP</td>
<td>Grand Ballroom E-H</td>
</tr>
<tr>
<td>Time</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 2:00 – 3:00pm | **OHDSI Collaborator Showcase: Part Three**
Software demonstrations and poster session highlighting OHDSI's research and development |
| 3:00 – 3:30pm| **Progress and Lessons Learned from the FDA BEST Program**
Moderator: Jon Duke, MD, MS, Director, Center for Health Analytics and Informatics, Georgia Tech; Principal Research Scientist, Georgia Tech College of Computing
Panelists:
 - Azadeh Shoabibi, PhD, MHS, CBER Sentinel Lead, CBER, US Food and Drug Administration
 - Alan E. Williams, PhD, Associate Director for Regulatory Affairs, Office of Biostatistics and Epidemiology, CBER, US Food and Drug Administration |
| 3:30 – 4:30pm| **Global Progress & Perspectives from the OHDSI Community**
Moderator: Hanieh Razzaghi, MPH, Assistant Director, PEDSnet Data Coordinating Center, Children’s Hospital of Philadelphia
Panelists:
 - Peter Rijnbeek, PhD, Assistant Professor, Erasmus Medical Center Rotterdam; Lead of OHDSI Europe; Co-Lead, OHDSI Patient Level Prediction WG; European Health Data and Evidence Network (EHDEN) Academic Lead
 - Nicole Pratt, PhD, Associate Professor, University of South Australia
 - Rae Woong Park, MD, PhD, Professor, Department of Biomedical Informatics, Ajou University School of Medicine; Lead of OHDSI Korea
 - Mui Van Zandt, Director Product Development, IQVIA; Co-lead of OHDSI China CDM/Vocabulary working group
 - André Ballalai Ferraz, Manager, RWE/RWD and Market Access in LATAM and Emerging Markets, IQVIA |
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 4:30 – 5:30pm | **Closing Session: Where’s Our Journey Going?**
| Speaker: Patrick Ryan, PhD, Senior Director and Head, Epidemiology Analytics, Janssen Research & Development, Adjunct Assistant Professor of Biomedical Informatics, Columbia University |
| 5:30pm-7:30pm | **Networking Reception**
| | - Titan Award winners announced
| | - Best Contribution winners announced
| | - Gayageum Performance by Seng Chan You
| | Light refreshments will be served |
| | Grand Ballroom E-H
| | Grand Ballroom Foyer |
OHDSI.ORG