

OHDSI Tools Ecosystem

Patrick Ryan

Janssen Research and

Development, Columbia

University Medical Center

Gowtham Rao
BlueCrossBlueShield

Kristin Feeney Kostka
Deloitte Consulting LLP

Anthony Sena
Janssen Research and
Development

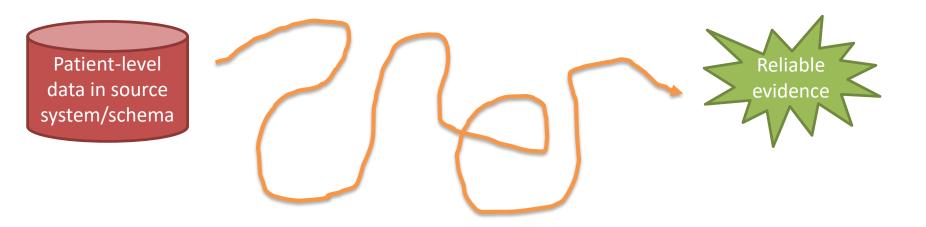
Greg Klebanov Odysseus Data Services

Agenda

800am-900am	Registration	
900am-1000am	Overview of OHDSI tools ecosystem	Patrick Ryan
1000am-1030am	Vocabulary	Patrick Ryan
1030am-1045am	Break	
1045am-1115am	Data sources (ACHILLES)	Kristin Feeney Kostka
1115am-1230pm	Cohort definition and characterization	Gowtham Rao
1230pm-130pm	Lunch	
130pm-200pm	Incidence rate	Kristin Feeney
200pm-230pm	Population-level effect estimation	Anthony Sena
230pm-300pm	Patient-level prediction	Anthony Sena
300pm-330pm	Break	
330pm-400pm	Network analyses (ARACHNE)	Greg Klebanov
	Design and implement your own	
400pm-500pm	OHDSI study!	Everyone

Overview of the OHDSI tools ecosystem

The journey to real-world evidence



The journey to real-world evidence

Patient-level data in source system/schema

Different types of observational data:

- Populations
 - Pediatric vs. elderly
 - Socioeconomic disparities
- Care setting
 - Inpatient vs. outpatient
 - Primary vs. secondary care
- Data capture process
 - Administrative claims
 - Electronic health records
 - Clinical registries
- Health system
 - Insured vs. uninsured
 - Country policies

The journey to real-world evidence

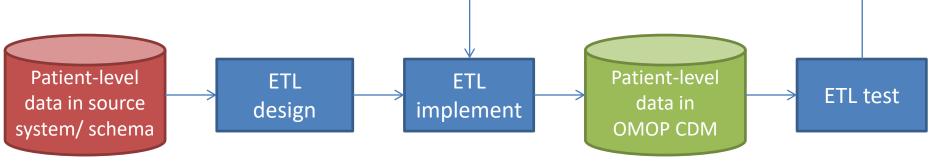
Patient-level data in source system/schema

Types of evidence desired:

- Cohort identification
 - Clinical trial feasibility and recruitment
- Clinical characterization
 - Treatment utilization
 - Disease natural history
 - Quality improvement
- Population-level effect estimation
 - Safety surveillance
 - Comparative effectiveness
- Patient-level prediction
 - Precision medicine
 - Disease interception

What are your research questions?

Structuring the journey from source to a common data model



OHDSI tools built to help

WhiteRabbit:

profile your source data

RabbitInAHat:

map your source structure to CDM tables and fields

ATHENA:

standardized vocabularies for all CDM domains

Usagi:

map your source codes to CDM vocabulary

CDM:

DDL, index, constraints for various RDBMS flavors; Vocabulary tables with loading scripts

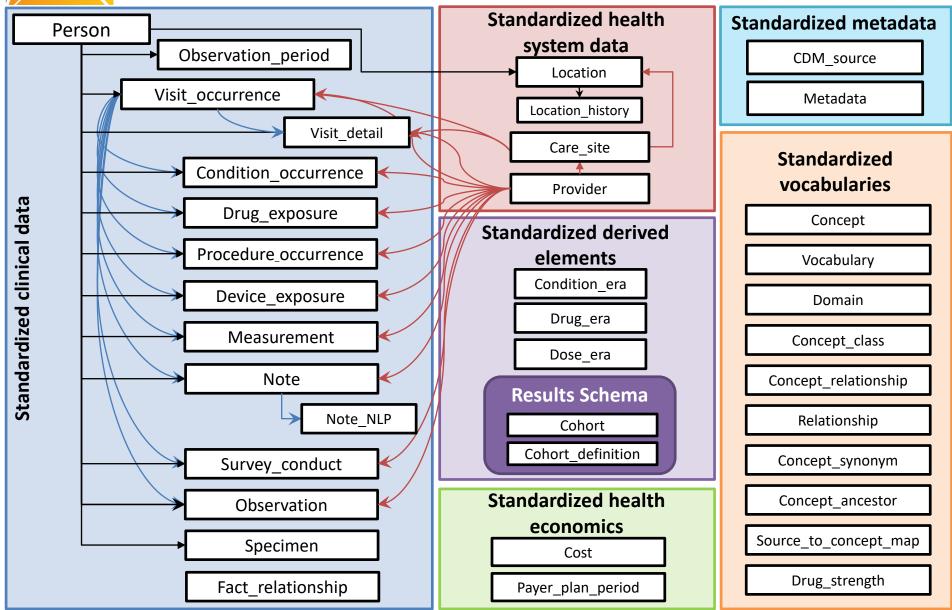
ACHILLES:

profile your
CDM data;
review data
quality
assessment;
explore
populationlevel summaries

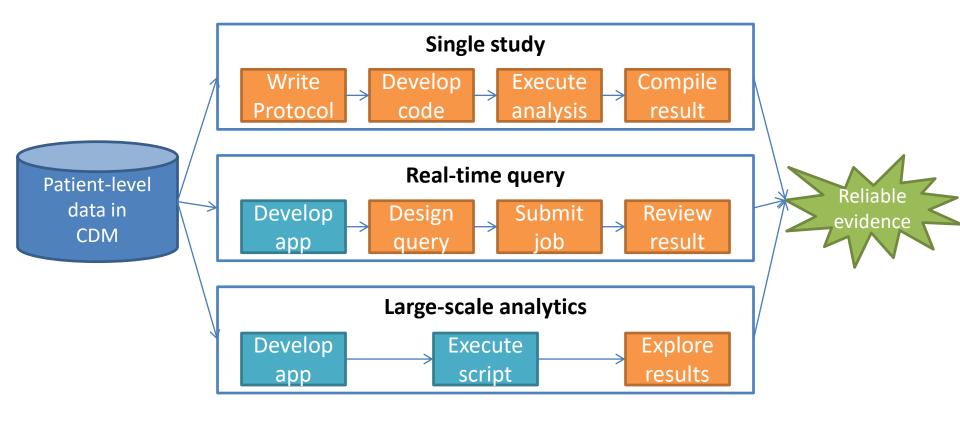
OHDSI Forums:

Public discussions for OMOP CDM Implementers/developers

OMOP CDM Version 6

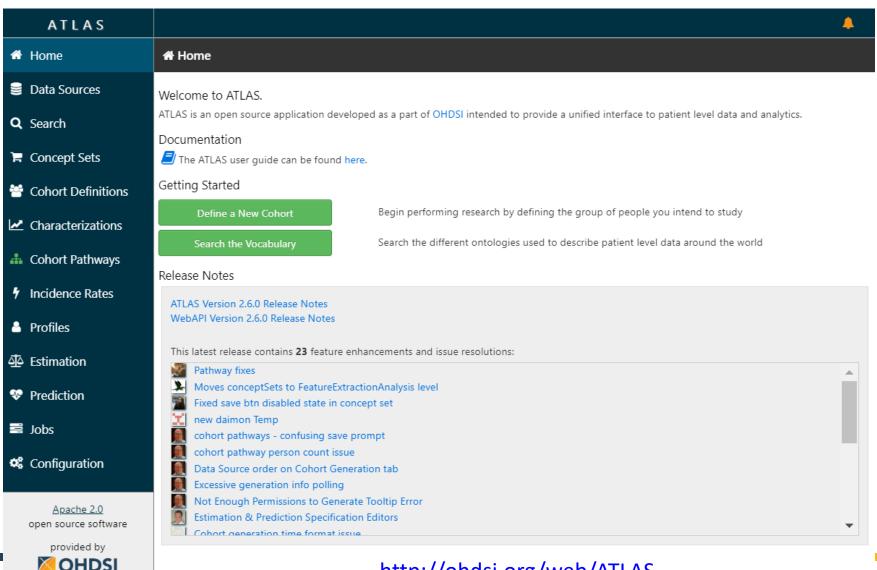


Structuring the journey from a common data model to evidence



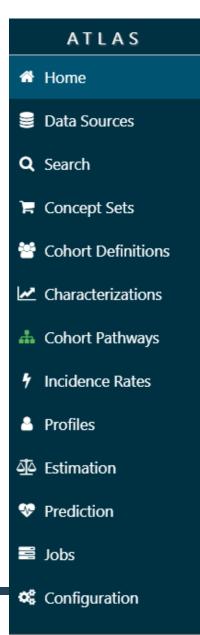
join the journey

ATLAS – an open-source platform to design and execute observational analyses



http://ohdsi.org/web/ATLAS

Analytic use cases supported in ATLAS



methods

Cohort Method

New-user cohort studies using large-scale regression for propensity and outcome models

Self-Controlled Case Series

Self-Controlled Case Series analysis using few or many predictors, includes splines for age and seasonality.

Self-Controlled Cohort

A self-controlled cohort design, where time preceding exposure is used as control.

IC Temporal Pattern Disc.

A self-controlled design, but using temporal patterns around other exposures and outcomes to correct for timevarying confounding.

Case-control

Case-control studies, matching controls on age, gender, provider, and visit date. Allows nesting of the study in another cohort.

Case-crossover

Case-crossover design including the option to adjust for time-trends in exposures (so-called case-time-control).

Patient Level Prediction

Build and evaluate predictive models for user-specified outcomes, using a wide array of machine learning algorithms.

Feature Extraction

Automatically extract large sets of features for userspecified cohorts using data in the CDM.

Empirical Calibration

Use negative control exposure-outcome pairs to profile and calibrate a particular analysis design.

Method Evaluation

Use real data and established reference sets as well as simulations injected in real data to evaluate the performance of methods.

Database Connector

Connect directly to a wide range of database platforms, including SQL Server, Oracle, and PostgreSQL.

Sql Render

Generate SQL on the fly for the various SQL dialects.

Cyclops

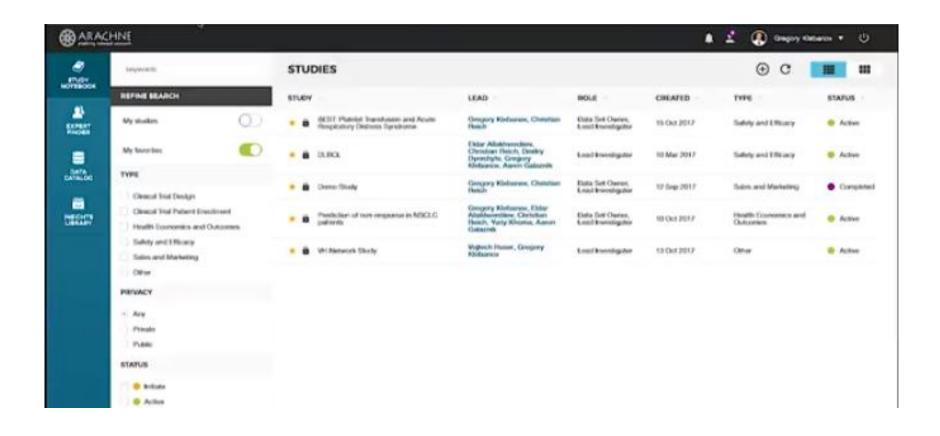
Highly efficient implementation of regularized logistic, Poisson and Cox regression.

Ohdsi R Tools

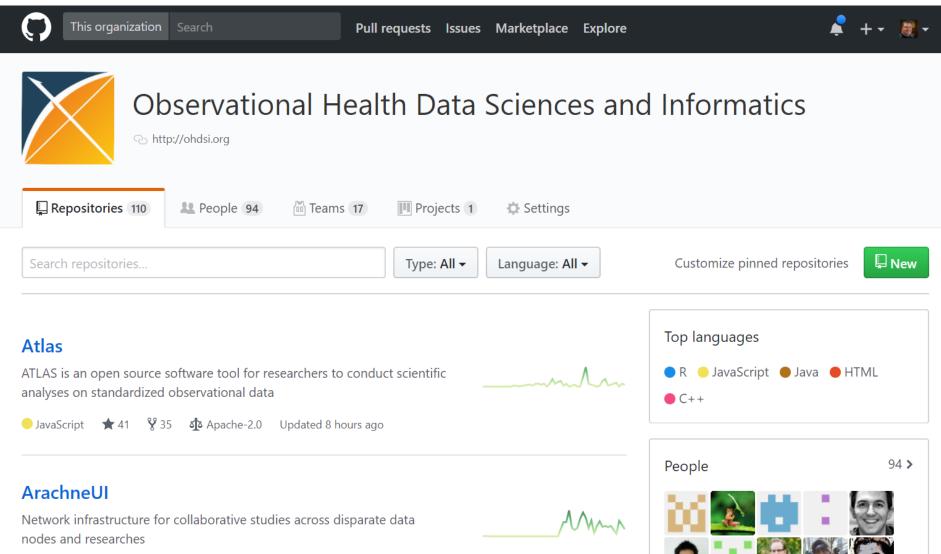
Support tools that didn't fit other categories, including tools for maintaining R libraries.

Method characterizatior

ARACHNE – an open-source platform to enable analyses across the OHDSI network



All of OHDSI tools are open source and freely available



Cardiovascular, Bleeding, and Mortality Risks in Elderly Medicare Patients Treated With Dabigatran or Warfarin for Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA; Rongmei Zhang, PhD; Mary Ross Southworth, PharmD; Mark Levenson, PhD; Ting-Chang Sheu, MPH; Katrina Mott, MHS; Margie R. Goulding, PhD; Monika Houstoun, PharmD, MPH; Thomas E. MaCurdy, PhD; Chris Worrall, BS; Jeffrey A. Kelman, MD, MMSc

Background—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general practice settings has not been established.

Methods and Results—We formed new-user cohorts of propensity score—matched elderly patients enrolled in Medicare who initiated dabigatran or warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012. Among 134414 patients with 37587 person-years of follow-up, there were 2715 primary outcome events. The hazard ratios (95% confidence intervals) comparing dabigatran with warfarin (reference) were as follows: ischemic stroke, 0.80 (0.67–0.96); intracranial hemorrhage, 0.34 (0.26–0.46); major gastrointestinal bleeding, 1.28 (1.14–1.44); acute myocardial infarction, 0.92 (0.78–1.08); and death, 0.86 (0.77–0.96). In the subgroup treated with dabigatran 75 mg twice daily, there was no difference in risk compared with warfarin for any outcome except intracranial hemorrhage, in which case dabigatran risk was reduced. Most patients treated with dabigatran 75 mg twice daily appeared not to have severe renal impairment, the intended population for this dose. In the dabigatran 150-mg twice daily subgroup, the magnitude of effect for each outcome was greater than in the combined-dose analysis.

Conclusions—In general practice settings, dabigatran was associated with reduced risk of ischemic stroke, intracranial hemorrhage, and death and increased risk of major gastrointestinal hemorrhage compared with warfarin in elderly patients with nonvalvular atrial fibrillation. These associations were most pronounced in patients treated with dabigatran 150 mg twice daily, whereas the association of 75 mg twice daily with study outcomes was indistinguishable from warfarin except for a lower risk of intracranial hemorrhage with dabigatran. (Circulation. 2015;131:157-164. DOI: 10.1161/CIRCULATIONAHA.114.012061.)

Key Words: anticoagulant ■ pharmacoepidemiology ■ safety ■ thrombin inhibitor ■ warfarin

- Baseline

 characterization of
 target and
 comparator cohort
- Descriptive summaries of:
 - Demographics
 - Medical history (prior conditions)
 - Medication use (prior drugs)
 - Prior procedures
 - Risk scores

Table 1. Sociodemographic Factors, Medical Conditions, and Medication Use at Baseline in Propensity Score-Matched Medicare Beneficiaries Initiating Dabigatran or Warfarin for Atrial Fibrillation, 2010–2012

Characteristic	Dabigatran, % (n=67 207)	Warfarin, % (n=67 207)	Standardized Mean Difference
Age group, y			
65-74	42	41	0.01
75-84	43	43	0.01
≥85	16	16	0.00
Female sex	51	52	0.01
Race/ethnicity			
White	92	92	0.00
Black	3	3	0.00
Other	5	5	0.00
Medical history			
General			
Diabetes mellitus	33	34	0.00
Hypercholesterolemia	74	74	0.00
Hypertension	87	87	0.00
Kidney failure			3.00
Acute	5	5	0.00
Chronic	13	13	0.00
Obesity	11	11	0.00
Peptic ulcer disease	<1	<1	0.00
Prior bleeding event	-	-	0.00
Hospitalized	1	1	0.00
Not hospitalized	3	3	0.00
Smoking	16	16	0.01
Cardiovascular disease	10	10	0.01
Acute myocardial infarction			
Past 1–30 d	1	1	0.01
Past 31–183 d	1	1	0.00
Coronary revascularization	16	16	0.00
Heart failure	10	10	0.01
Hospitalized	4	4	0.01
	14	14	0.00
Outpatient			
Other ischemic heart disease	48	49	0.01
Stroke			0.00
Past 1–30 d Past 31–183 d	2	2	0.00
Other cerebrovascular disease	13	13	0.00
Transient ischemic attack	7	7	0.00
Cardioablation	2	2	0.00
Cardioversion	9	9	0.02
Other medical conditions			
Falls	5	5	0.00
Fractures	2	2	0.00
Syncope	10	10	0.00
Walker use	3	3	0.00
CHADS ₂ score*			
0-1	28	28	0.01

Table 1. Continued

Characteristic	Dabigatran, % (n=67 207)		Standardized Mean Difference
2	40	40	0.00
3	21	21	0.01
≥4	10	11	0.01
HAS-BLED score†			
1	9	9	0.01
2	50	50	0.01
3	32	32	0.01
≥4	9	9	0.00
Medication use			
General			
Estrogen replacement	2	3	0.00
H2 antagonists	5	5	0.00
NSAIDs	15	15	0.00
Proton pump inhibitors	26	27	0.01
SSRI antidepressants	13	13	0.01
Cardiovascular			
ACEVARB	59	59	0.00
Antiarrhythmics	25	25	0.01
Anticoagulants (injectable)	7	7	0.01
Antiplatelets	17	17	0.01
β-Blockers	70	71	0.00
Calcium channel blockers	42	42	0.01
Digoxin	17	16	0.00
Diuretics			
Loop	28	28	0.00
Potassium sparing	5	5	0.01
Thiazide	29	29	0.00
Nitrates	10	11	0.01
Statins	57	57	0.00
Fibrates	5	5	0.00
Diabetes related			
Insulin	6	6	0.00
Metformin	13	14	0.00
Sulfonylureas	9	10	0.00
Other	6	6	0.00
Metabolic inhibitors:			
Amiodarone	10	10	0.00
Dronedarone	5	5	0.02
Verapamil	2	2	0.00
Azole antifungals	<1	<1	0.00

Additional factors included in the propensity score model are shown in the online-only Data Supplement. ACEI/ARB indicates angiotensin convertingenzyme inhibitor/angiotensin receptor blocker; NSAIDs, nonsteroidal antiinflammatory drugs; and SSRI, selective serotonin reuptake inhibitor.

‡Days supply of use overlapped with the date of first prescription for warfarin

[&]quot;The CHADS, score assigns points for the presence of congestive heart failure, hypertension, age ≥ 75 y, diabetes mellitus, stroke, or transient ischemic

[†]The HAS-BLED score assigns points for the presence of hypertension, abnormal renal or liver function, stroke, bleeding history, labile international normalized ratio, sge ≥65 y, and antiplatelet drug or alcohol use; ^{92,13} Labile international normalized ratio could not be determined from claims data and was excluded from our scoring.

Table 2. Outcome Event Counts, Incidence Rates, and Adjusted Hazard Ratios With 95% Cls Comparing Propensity Score-Matched New-User Cohorts of Dabigatran and Warfarin Treated for Nonvalvular Atrial Fibrillation, With Warfarin as the Reference Group

	No. of Events		Incidence Rate per 1000 Person-Years		
	Dabigatran	Warfarin	Dabigatran	Warfarin	
Primary outcomes					
Ischemic stroke	205	270	11.3	13.9	
Major hemorrhage	777	851	42.7	43.9	
Gastrointestinal	623	513	34.2	26.5	
Intracranial	60	186	3.3	9.6	
Intracerebral	44	142	2.4	7.3	
Acute myocardial infarction	285	327	15.7	16.9	
Secondary outcomes					
All hospitalized bleeds	1079	1139	59.3	58.8	
Mortality*	603	744	32.6	37.8	

^{*}For 1064 deaths not preceded by a primary study outcome, the adjusted hazard ratio (95% confidence interval [CI]) was 0.89 (0.79–1.00 P=0.051), whereas for 283 deaths occurring within 30 days after a primary outcome, the adjusted hazard ratio (95% CI) was 0.77 (0.61–0.98 P=0.03).

 Incidence rate during target and comparator cohorts based on observing new events during 'time-at-risk' for eight selected outcome cohorts

Table 2. Outcome Event Counts, Incidence Rates, and Adjusted Hazard Ratios With 95% Cls Comparing Propensity Score—Matched New-User Cohorts of Dabigatran and Warfarin Treated for Nonvalvular Atrial Fibrillation, With Warfarin as the Reference Group

	Adjusted Hazard Ratio (95% CI)	<i>P</i> Value
Primary outcomes		
Ischemic stroke	0.80 (0.67-0.96)	0.02
Major hemorrhage	0.97 (0.88-1.07)	0.50
Gastrointestinal	1.28 (1.14-1.44)	< 0.001
Intracranial	0.34 (0.26-0.46)	< 0.001
Intracerebral	0.33 (0.24-0.47)	< 0.001
Acute myocardial infarction	0.92 (0.78-1.08)	0.29
Secondary outcomes		
All hospitalized bleeds	1.00 (0.92-1.09)	0.97
Mortality*	0.86 (0.77-0.96)	0.006

^{*}For 1064 deaths not preceded by a primary study outcome, the adjusted hazard ratio (95% confidence interval [CI]) was 0.89 (0.79–1.00; P=0.051), whereas for 283 deaths occurring within 30 days after a primary outcome, the adjusted hazard ratio (95% CI) was 0.77 (0.61–0.98; P=0.03).

 Population-level effect estimation examining temporal association between target and comparator cohorts and eight selected outcome cohorts

The common building block of all observational analysis: cohorts

Required inputs:

Target cohort:

Person cohort start date cohort end date

Comparator cohort:

Person cohort start date cohort end date

Outcome cohort:

Person cohort start date cohort end date

Desired outputs:

Clinical characterization

Baseline summary of exposures

(treatment utilization)

Clinical characterization

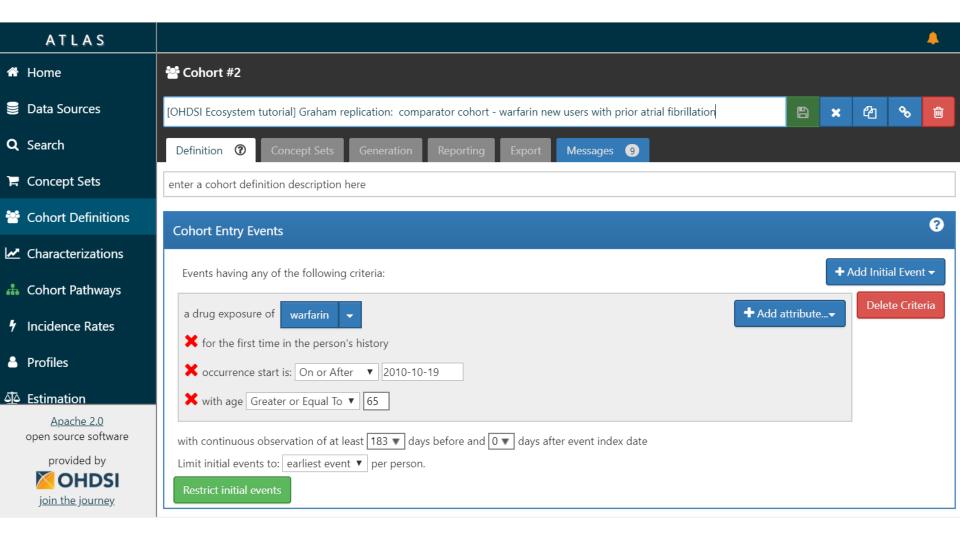
Baseline summary of outcome
(disease natural history)

Incidence summary
Proportion/rate of outcome
occurring during time-at-risk for exposure

Population-level effect estimation Relative risk (HR, OR, IRR) of outcome occurring during time-at-risk for exposure

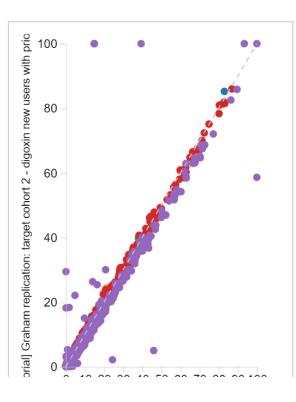
Patient-level prediction
Probability of outcome occurring during
time-at-risk for each patient in population

OHDSI in action: Cohort definition

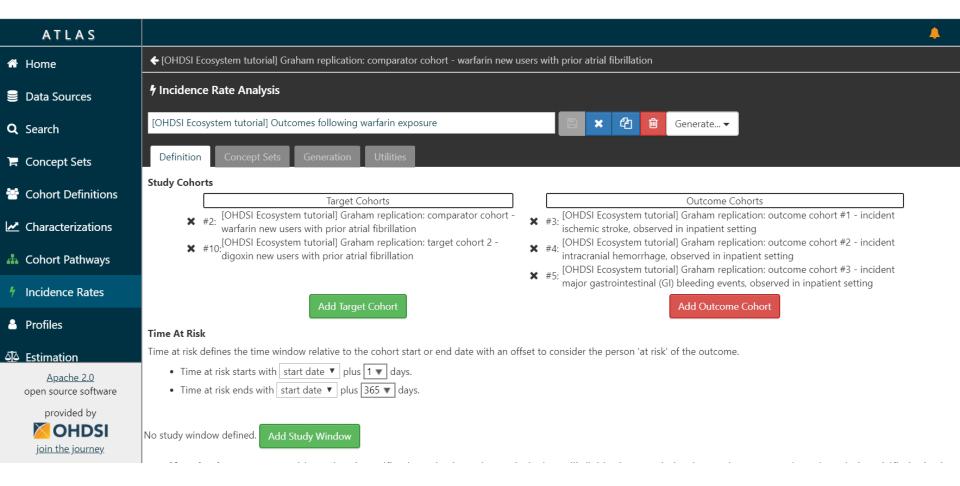


OHDSI in action: Cohort characterization

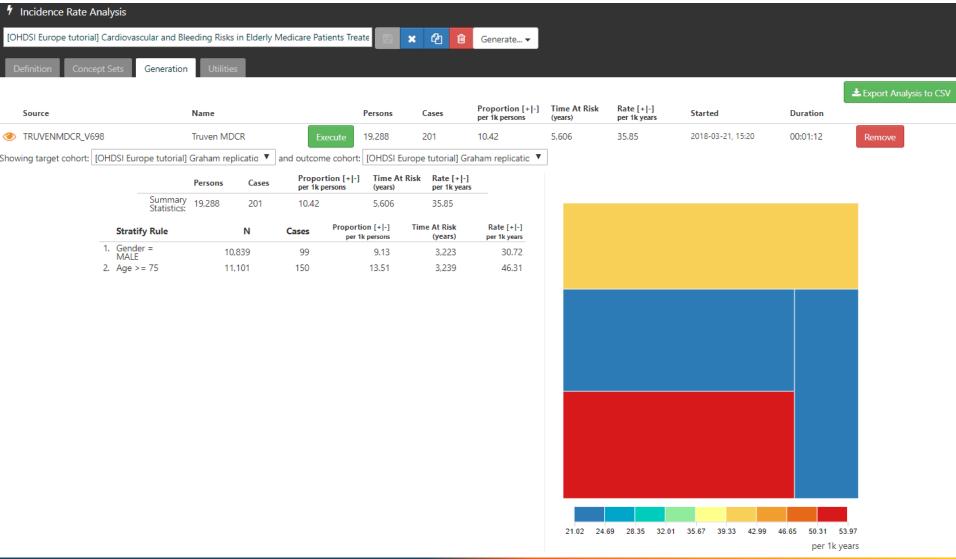
I prevalence covariates							
ow 10 ▼ entries				Search:			
Covariate ^	[OHDSI Ecosystem tutorial] Graham replication: comparator cohort - warfarin new users with prior atrial fibrillation		[OHDSI Ecosystem tutorial] Graham replication: target cohort 2 - digoxin new users with prior atrial fibrillation		Std diff		
	Count 🖣	Pct	Count 🏺	Pct 🔷			
age group: 00-04	54	1.37%	21	1.34%	-0.0020		
age group: 65-69	611	15.50%	257	16.36%	0.0153		
age group: 70-74	836	21.20%	382	24.32%	0.0461		
age group: 75-79	792	20.09%	323	20.56%	0.0074		
age group: 80-84	689	17.47%	247	15.72%	-0.0304		
age group: 85-89	548	13.90%	173	11.01%	-0.0578		
age group: 90-94	272	6.90%	114	7.26%	0.0095		
age group: 95-99	141	3.58%	54	3.44%	-0.0052		
condition era group during day -365 through	4	0.10%	3	0.19%	0.0165		



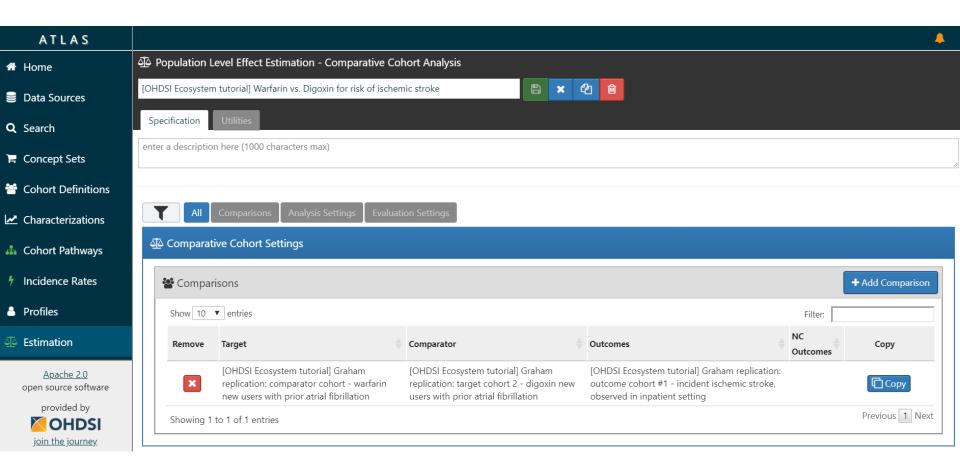
OHDSI in action: incidence rate specification



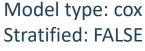
OHDSI in action: incidence rate generation

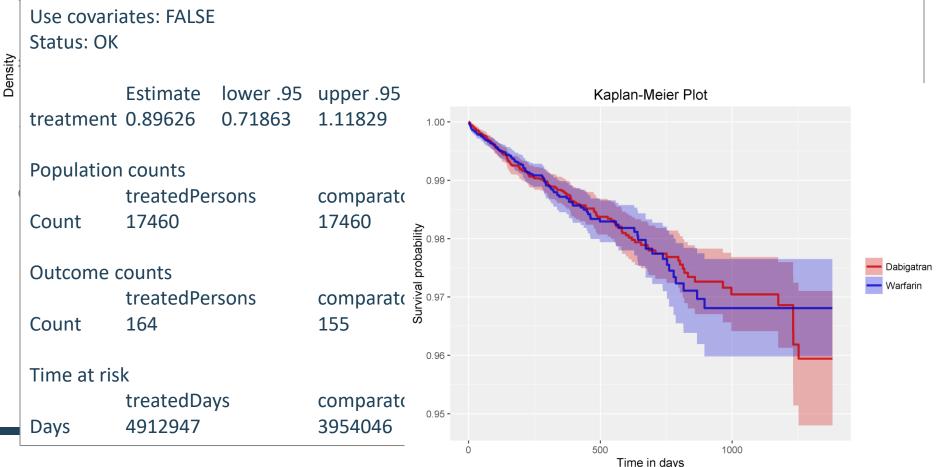


OHDSI in action: Population-level effect estimation design

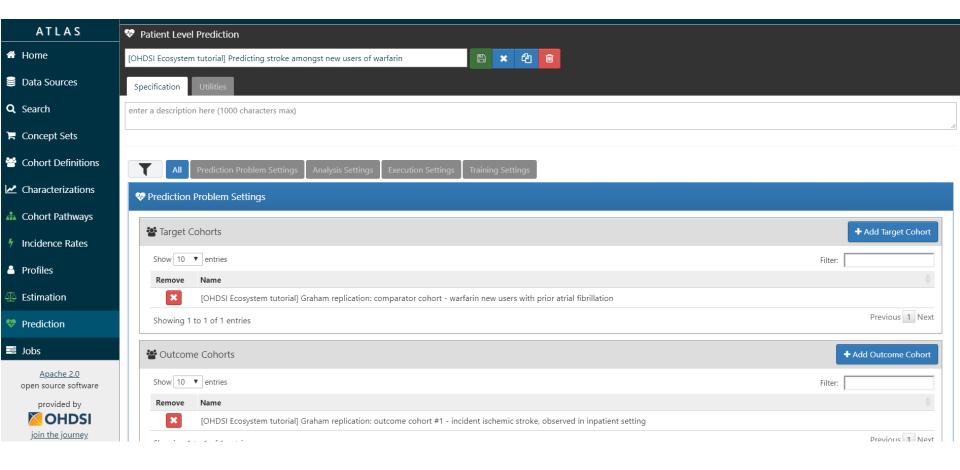


OHDSI in action: Population-level effect estimation implementation

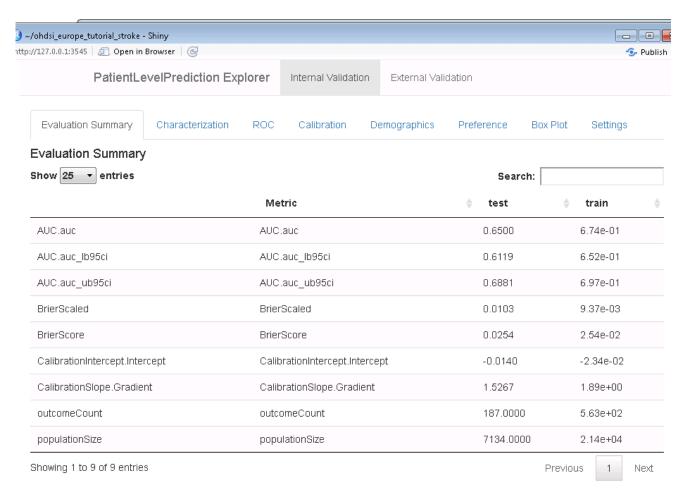




OHDSI in action: Patient-level prediction design



OHDSI in action: Patient-level prediction implementation



Vocabulary

Everything is a concept....everything needs to be defined in a common language

Cardiovascular Bleeding and Mortality Risks in Elderly Medicare Patients Treated With Dabigatran or Warfarin for Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA; Rongmei Zhang, PhD; Mary Ross Southworth, PharmD; Mark Levenson, PhD; Ting-Chang Sheu, MPH; Katrina Mott, MHS; Margie R. Goulding, PhD; Monika Houstoun, PharmD, MPH; Thomas E. MaCurdy, PhD; Chris Worrall, BS; Jeffrey A. Kelman, MD, MMSc

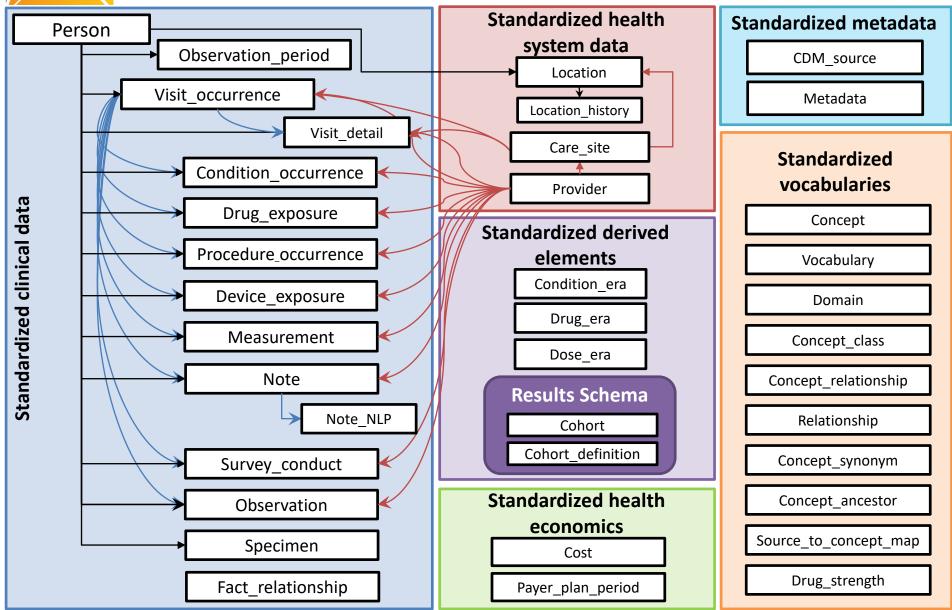
Background—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general practice settings has not been established.

Methods and Results—We formed new-user cohorts of propensity score—matched elderly patients enrolled in Medicare who initiated dabigatran of warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012. Among 134414 patients with 37 587 person-years of follow-up, there were 2715 primary outcome events. The hazard ratios (95% confidence intervals) comparing dabigatran with warfarin (reference) were as follows: ischemic stroke. 0.80 (0.67–0.96); intracranial hemorrhage 0.34 (0.26–0.46); major gastrointestinal bleeding 1.28 (1.14–1.44); acute myocardial infarction, 0.92 (0.78–1.08); and death, 0.86 (0.77–0.96). In the subgroup treated with dabigatran 75 mg wice daily, there was no difference in risk compared with warfarin for any outcome except intracranial hemorrhage, in which case dabigatran isk was reduced. Most patients treated with dabigatran 75 mg twice daily appeared not to have severe renal impairment, the intended population for this dose. In the labigatran 150-mg twice daily subgroup, the magnitude of effect for each outcome was greater than in the combined-dose analysis.

Conclusions—In general practice settings, dabigatran was associated with reduced risk of ischemic stroke, intracranial hemorrhage, and death and increased risk of major gastrointestinal hemorrhage compared with warfarin in elderly patients with nonvalvular atrial fibrillation. These associations were most pronounced in patients treated with dabigatran 150 mg twice daily, whereas the association of 75 mg twice daily with study outcomes was indistinguishable from warfarin except for a lower risk of intracranial nemorrhage with dabigatran. (Circulation. 2015;131:157-164. DOI: 10.1161/CIRCULATIONAHA.114.012061.)

Key Words: anticoagulant ■ pharmacoepidemiology ■ safety ■ thrombin inhibitor ■ warfarin

OMOP CDM Version 6



OMOP Common Vocabulary Model

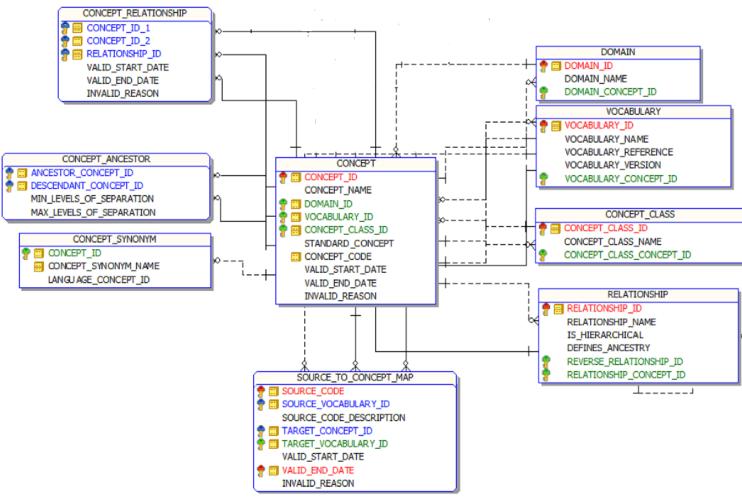
What it is

- Standardized structure to house existing vocabularies used in the public domain
- Compiled standards
 from disparate
 public and private
 sources and some
 OMOP-grown
 concepts

What it's not

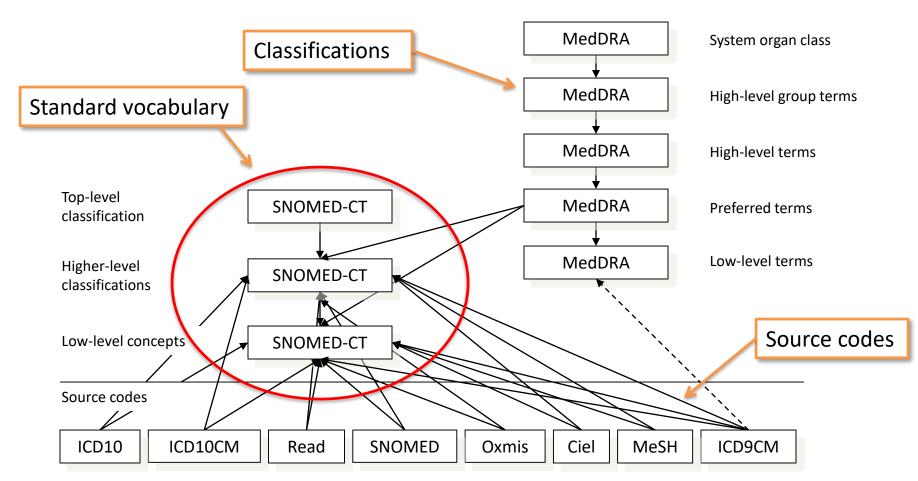
- Static dataset the vocabulary updates regularly to keep up with the continual evolution of the sources
- Finished product –
 vocabulary maintenance
 and improvement is
 ongoing activity that
 requires community
 participation and support

OMOP Vocabulary CDM

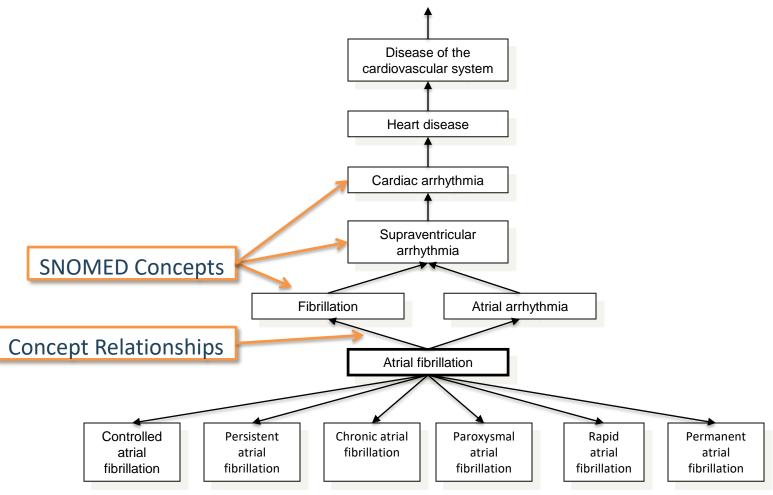


- 1. All content: concepts in concept table
- 2. Direct relationships between concepts listed in **concept_relationship**
- 3. Multi-step hierarchical relationships pre-processed in concept_ancestor

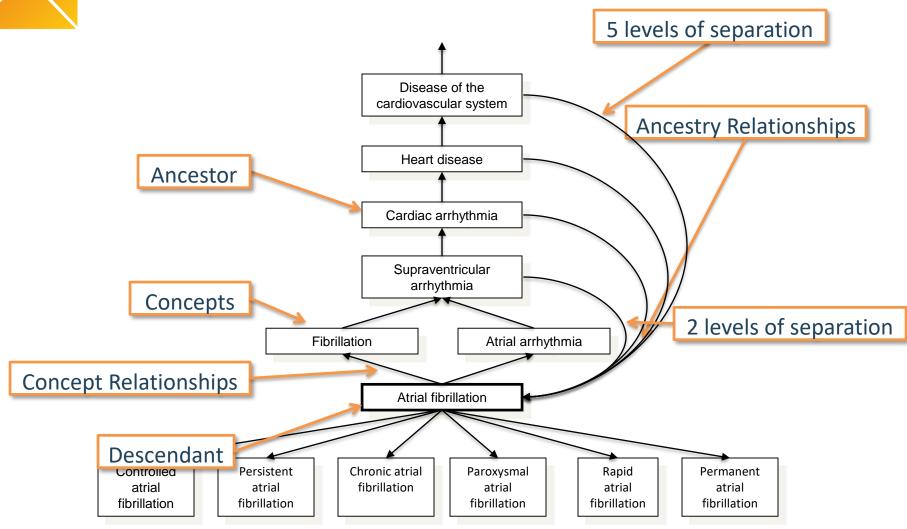
Condition Concepts



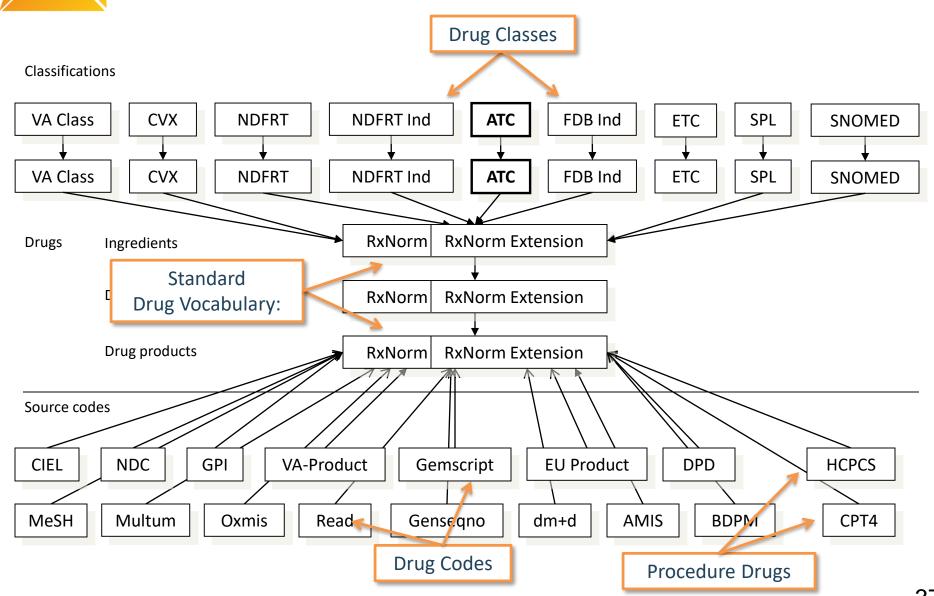
Condition ancestry around "atrial fibrillation"



Ancestry Relationships: Higher-Level Relationships



Drug Hierarchy



Vocabulary classifications improve your efficiency....and your quality!

Health Serv Outcomes Res Method (2013) 13:58–67 DOI 10.1007/s10742-012-0102-1

Applying standardized drug terminologies to observational healthcare databases: a case study on opioid exposure

Frank J. DeFalco · Patrick B. Ryan · M. Soledad Cepeda

- 60% of medication codes and 94% of records are mapped
- 45% of opiate codes covered by one of ATC, ETC, and NDF-RT are covered by all three
 - 15% missed by at least one
- No one classification scheme was better than the others

Vocabulary classifications improve your efficiency....and your quality!

DeFalco HSORM 2013

Table 3 Identification of related 11 digit NDC codes by drug class and vocabulary

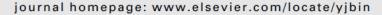
Drug class	Vocabulary	System grouping	Ingredients	Clinical drugs	NDC codes	Unique codes		
Opioid	ATC	Opioids	23	1,122	11,765	2		
Opioid	ETC.	Analgesics-narcotic	20	1,808	19,106	333		
Opioid	NDFRT	Opioid agonists	22	1,813	15,912	1,087		
Opioid	VA	Opioid analgesics	24	1,750	17,113	450		
NSAID	ATC	Antiinflam and antirheumatic products, non-steroids	52					ATC
NSAID	ETC.	NSAID analgesics	23				2	
NSAID	NDFRT	NSAID analgesics	23					
NSAID	VA	Nonsalicylate NSAIDs, antirheumatic	24			21		2,522
Antidiabetic	ATC	Drugs used in diabetes	53			34		
Antidiabetic	ETC.	Oral antidiabetic agents	19					
Antidiabetic	NDFRT	Insulin receptor agonists	42				9,207	
Antidiabetic	VA	Oral hypoglycemic agents	18					
Antidepressant	ATC	Antidepressants	47					1,898
Antidepressant	ETC.	Antidepressants	29			1,192		
Antidepressant	NDFRT	Serotonin uptake inhibitors, norepinephrine uptake inhibitors, dopamine uptake inhibitors	40		NDF-RT		5,479	circles r
Antidepressant	VA	Antidepressants	29 Fig.	1 Overden i	n agyaraga	of touloid NID	C drug codes by c	lassification syst

If we try to speak the same language, will there be loss in translation?

Journal of Biomedical Informatics 45 (2012) 689-696

Contents lists available at SciVerse ScienceDirect

Journal of Biomedical Informatics



Evaluation of alternative standardized terminologies for medical conditions within a network of observational healthcare databases *

Christian Reich a,*, Patrick B. Ryan a,b,1, Paul E. Stang a,b,1, Mitra Rocca c,2

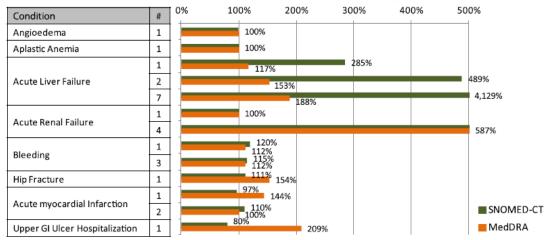
a Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, 9650 Rockville Pike, Bethesda, MD 20814, USA

^b Janssen Research & Development, LLC, 1125 Trenton-Harbourton Road, PO Box 200, MS K304, Titusville, NJ 08560, USA

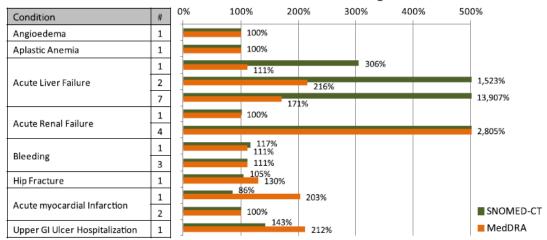
^c Office of Translational Sciences, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 21, Rm. 4608, Silver Spring, MD 20933, USA

Changing language may change your codelist, that may change your cohort depending on the disease...

Cohort size of HOI in MSLR for different terminologies



Cohort size of HOI in GE for different terminologies



...but in practice, running an estimation analysis using source vs. standard vocabulary yields similar results

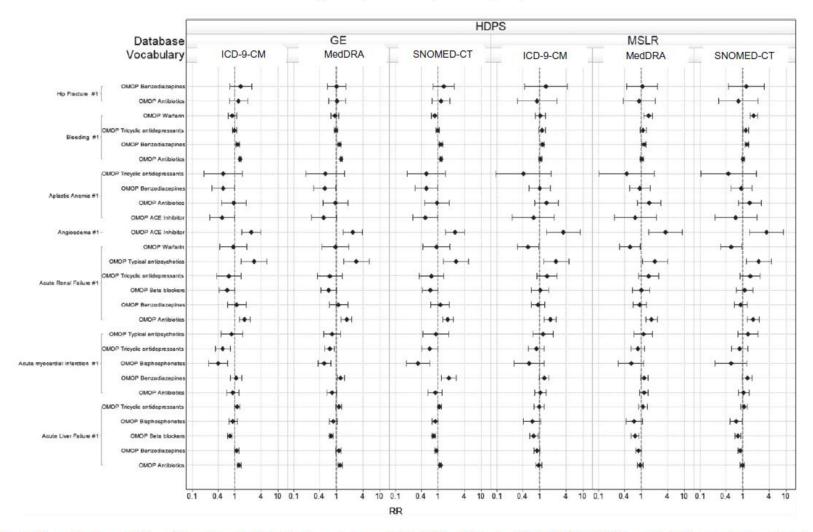


Fig. 3. Effect estimates and 95% confidence intervals for incident user design applied to MSLR and GE using ICD-9-CM, SNOMED-CT, and MedDRA as standard terminologies. Each dot represents the estimate of the effect of an individual HOI-drug combination (on the X-axis).

Demo: Searching the vocabulary in ATLAS

Follow along at:

(during training)

https://overview.ohdsi.amazingawsdemos.com

(public demo environment)

http://ohdsi.org/web/ATLAS

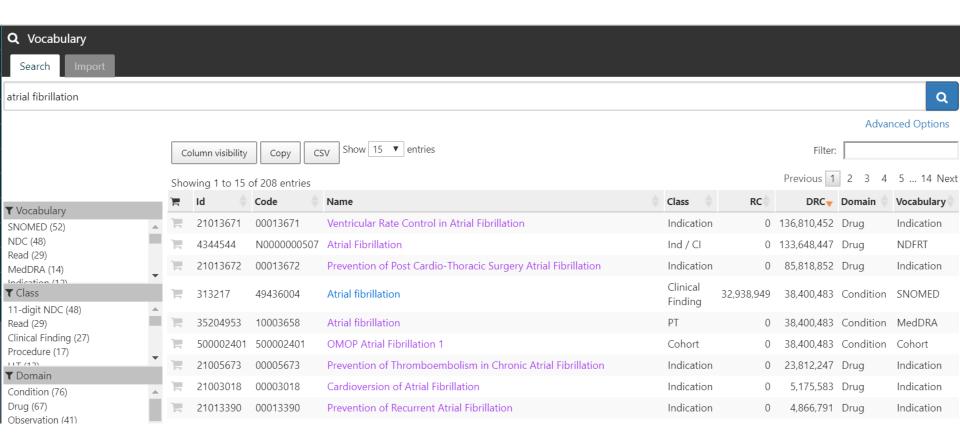
Demo: vocabulary search

Q Vocabulary						
Search	Import					
atrial fibrilla	tion					

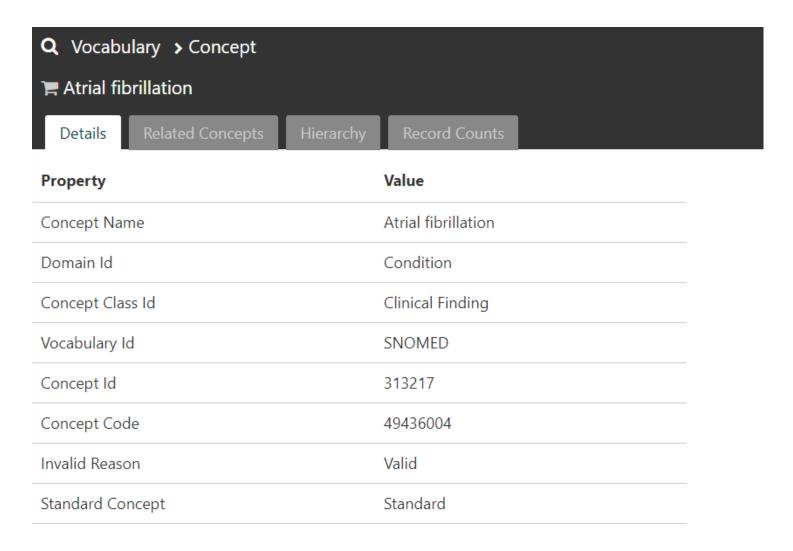
Q Vocabulary		
Search	Import	
427.31		

Search for concept names, concept IDs, or source codes across any domain in the OMOP CDM

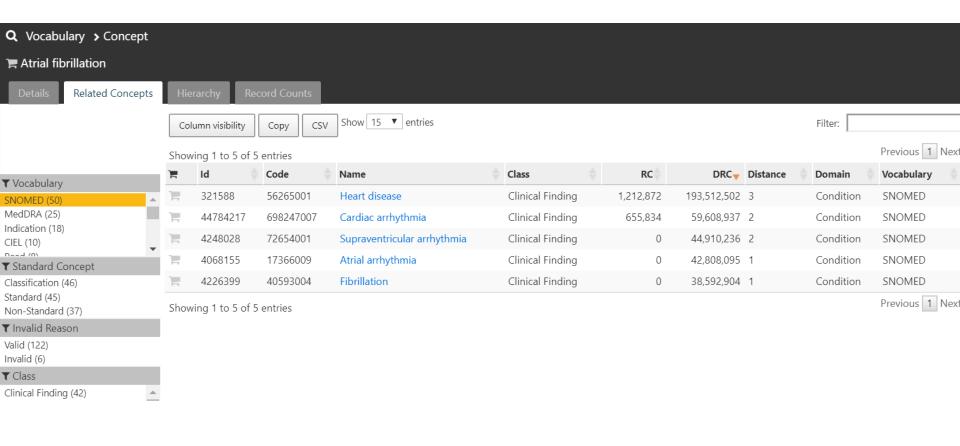
Demo: vocabulary search results



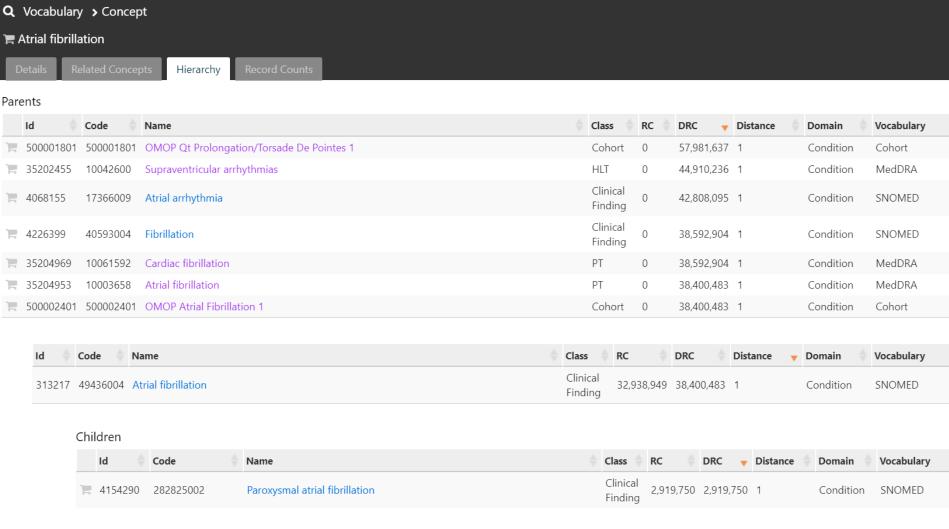
Demo: vocabulary concept selection



Demo: Concept relationship exploration

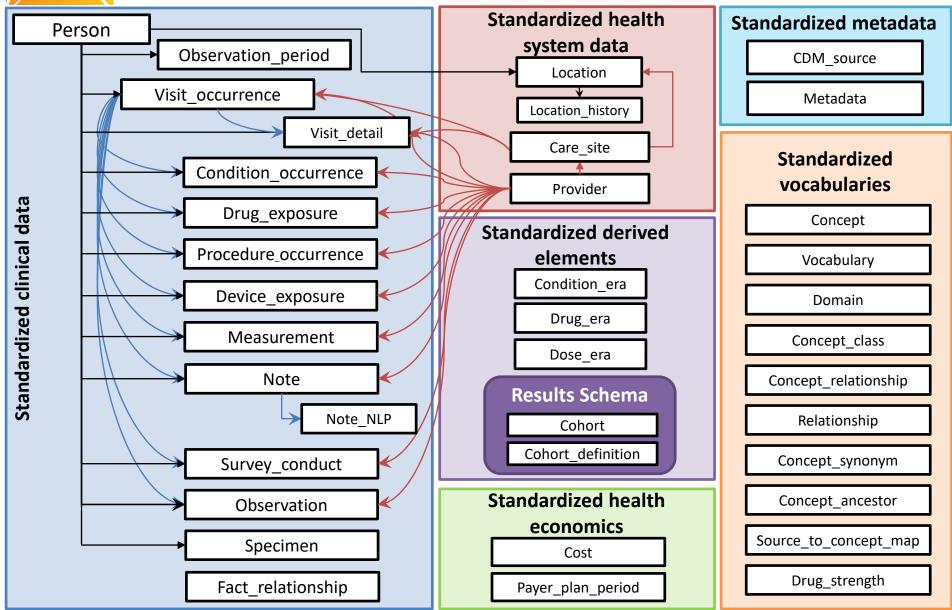


Demo: Concept hierarchy



Data Sources

OMOP CDM Version 6



Purpose of Achilles

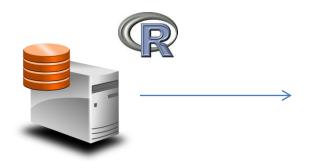
 ACHILLES is a platform which enables the characterization, quality assessment and visualization of observational health databases.

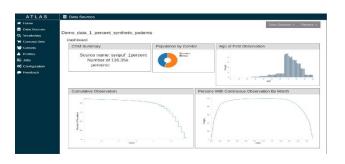
 ACHILLES provides users with an interactive, exploratory framework to assess patient demographics, the prevalence of conditions, drugs and procedures, and to evaluate the distribution of values for clinical observations.

Achilles – Under the Hood

Two step process

- Step 1: R Routine running against the local CDM instance. This R routine calculates summary statistics which allow to describe the distribution of patient-level data as well as a generic view on the quality of the data. The output of this step is summarized (and hence de-identfied) set of data stored in results tables in the CDM.
- Step 2: webapplication which can run standalone from a CDM instance. It requires the ACHILLES R results generated in step 1 as input. The webapplication allows interactive exploration for each of the entities (tables) in the OMOP scheme individually (not possible to query across multiple entities at the same time)

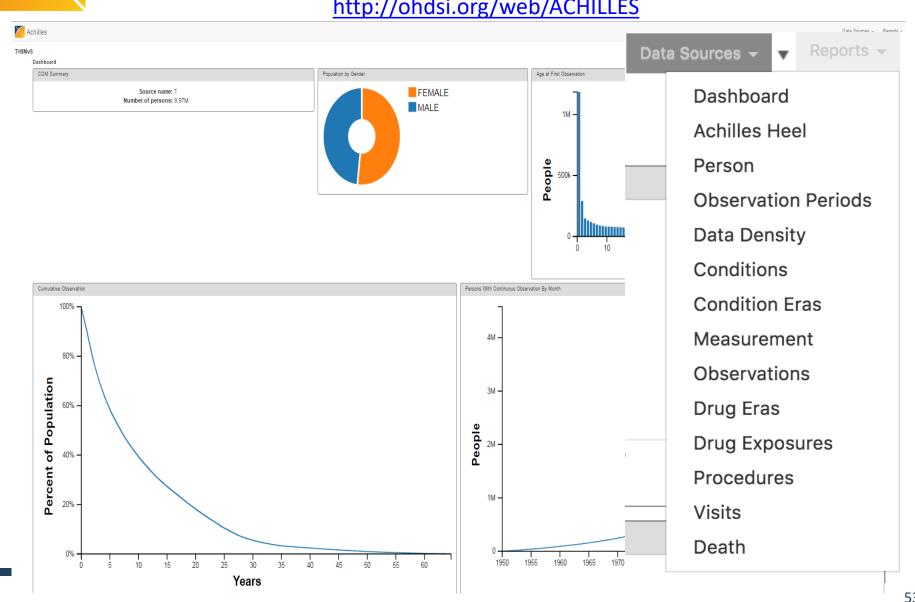


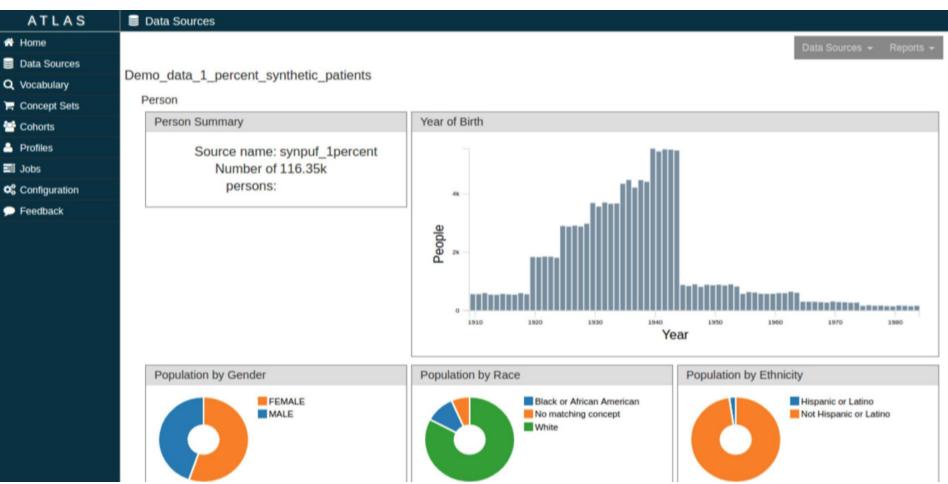


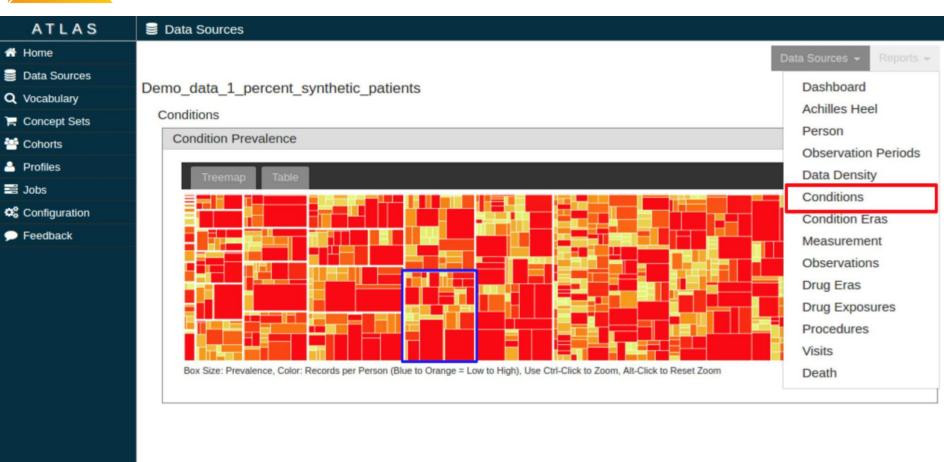
OMOP CDM

Basic Navigation

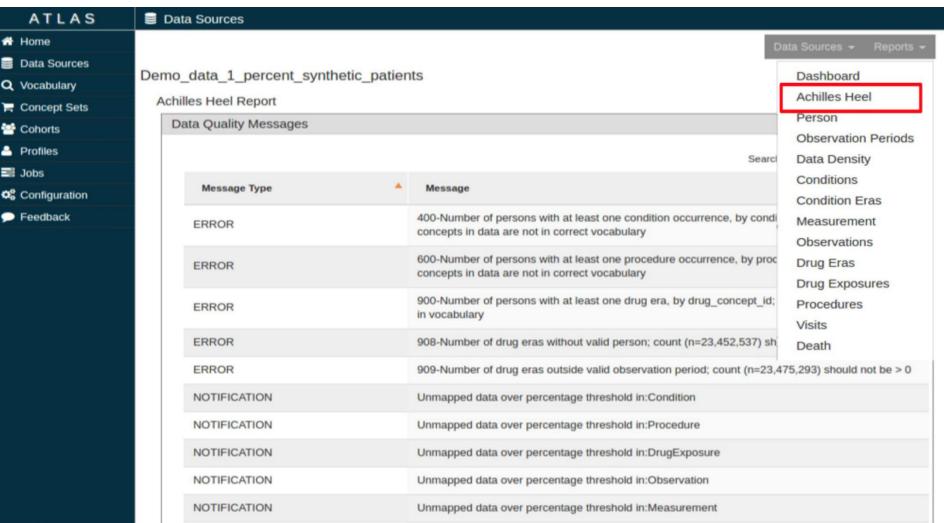
http://ohdsi.org/web/ACHILLES











Cohort: Definition and characterization

Construct of a 'Cohort'

Cohort

From Wikipedia, the free encyclopedia

Cohort may refer to:

Phenotype

Cohort (statistics), a group of subjects with a common defining characteristic for example age group

Cohort study, a form of longitudinal study used in medicine and social science

Defining 'phenotype'

Journal of the American Medical Informatics Association, 0(0), 2017, 1–6 doi: 10.1093/jamia/ocx110

Perspective

Perspective

High-fidelity phenotyping: richness and freedom from bias

George Hripcsak¹ and David J Albers¹

- A phenotype is a specification of an observable, potentially changing state of an organism (as distinguished from the genotype, derived from genetic makeup).
- The term phenotype can be applied to patient characteristics inferred from electronic health record (EHR) data.
- The goal is to draw conclusions about a target concept based on raw EHR data, claims data, or other clinically relevant data.
- Phenotype algorithms ie, algorithms that identify or characterize phenotypes may be generated by domain exerts and knowledge engineers, or through diverse forms of machine learning to generate novel representations of data.

Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance

RECEIVED 8 January 2015 REVISED 14 July 2015 ACCEPTED 15 July 2015 PUBLISHED ONLINE FIRST 2 September 2015

Wei-Qi Wei¹, Pedro L Teixeira¹, Huan Mo¹, Robert M Cronin^{1,2}, Jeremy L Warner^{1,2}, Joshua C Denny^{1,2}

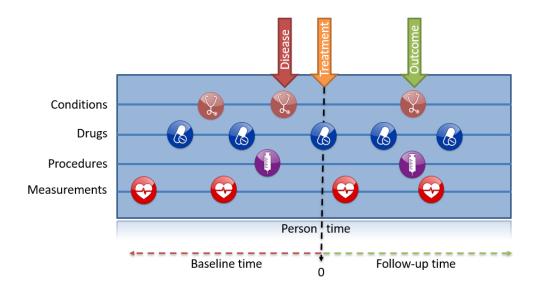
Figure 1: Weighted Venn diagrams of the distributions of patients with ICD-9, primary notes, and specific medications. Each color represents a resource. Different area colors represent the number of patients that were found within intersecting resources.

Two Approaches to Phenotyping

Rule-Based Phenotyping Probabilistic Phenotyping

Data are the building blocks for Phenotyping

Person level dataset
With time-stamped events
Events organized in domains



Conditions

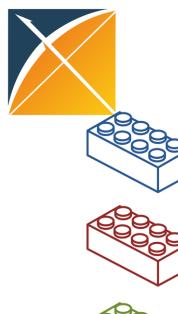
Drugs

Procedures

Measurements

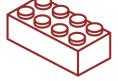
Observations

Visits

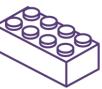


Data are the building blocks for Phenotyping

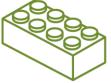
Sponsor



Drugs

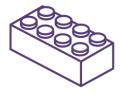


Benefit Plan

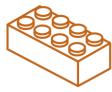


Procedures

Cost



Measurements



Observations

Visits

OHDSI's definition of 'cohort'

Cohort = a set of persons who satisfy one or more inclusion criteria for a duration of time

- One person may belong to multiple cohorts
- One person may belong to the same cohort at multiple different time periods
- One person may not belong to the same cohort multiple times during the same period of time
- One cohort may have zero or more members
- A codeset is NOT a cohort...

...logic for how to use the codeset in a criteria is required

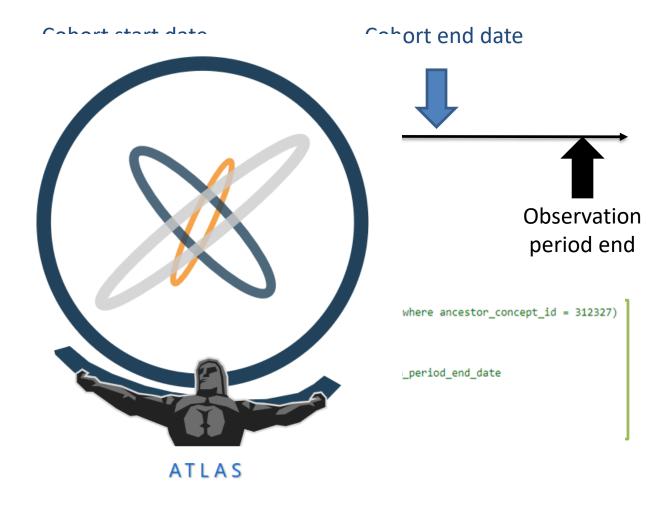
Cohort = Phenotype for a duration of time

OHDSI's definition of 'cohort'

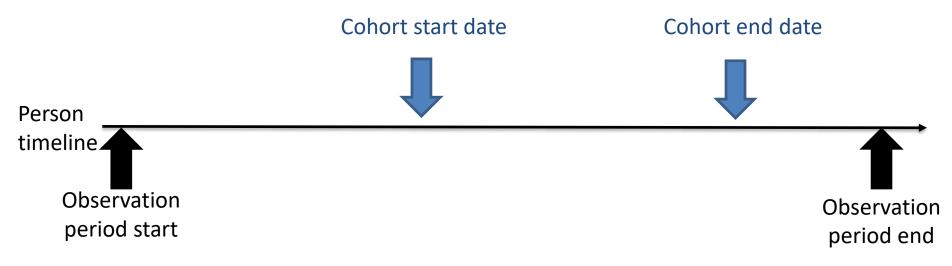
Person timeline Observation

period start

select allEvents.PERSON_ID, allEvents SELECT row number() over (partition PERSON ID, CONDITION_START_DATE & FROM CMSDESynPUF23m.condition_occur WHERE co.condition concept id in (s) allEvents JOIN CMSDESynPUF23m.observation perio JOIN CMSDESynPUF23m.person p on allEv WHERE allEvents.rn = 1 AND allEvents.start_date >= op.obse AND datediff(d, op.observation peri AND p.gender_concept_id = 8507 AND EXISTS (select 1 from CMSDESynPUF23m.com where co.condition start date >= AND allEvents.person id = co.pe and co.condition concept id in



Anatomy of rule based cohort definition



Criteria: rules, specific to a CDM, that is used to identify records (events) from patient data

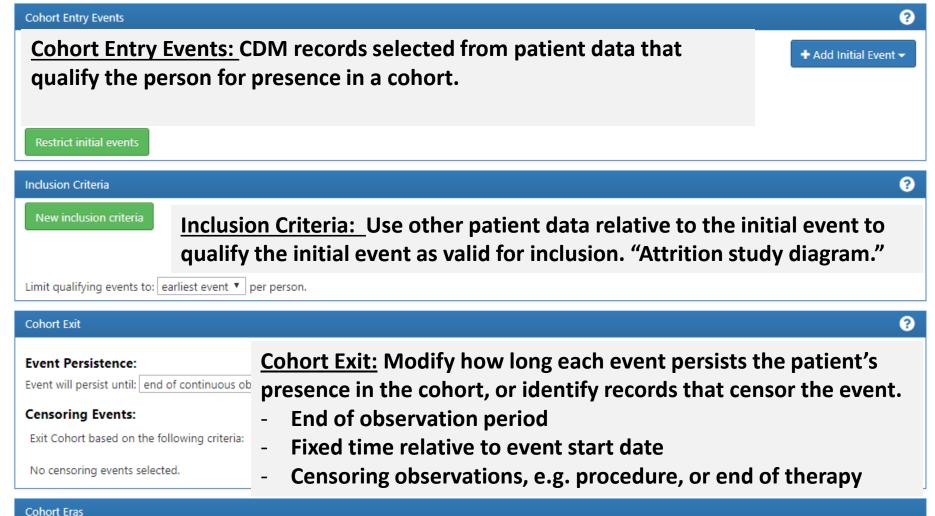
Criteria Types:

- 1. Cohort entry events
- 2. Inclusion criteria
- 3. Cohort exit
- 4. Cohort eras

Specify era collapse gap size: 0 ▼ days

add trimming options...

Rule based cohort definition in Atlas



Cohort Eras: Chain remaining event dates with an allowable gap

with optional left- and/or right-censor the final eras (trimming).

Cardiovascular, Bleeding, and Mortality Risks in Elderly Medicare Patients Treated With Dabigatran or Warfarin for Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA; Rongmei Zhang, PhD; Mary Ross Southworth, PharmD; Mark Levenson, PhD; Ting-Chang Sheu, MPH; Katrina Mott, MHS; Margie R. Goulding, PhD; Monika Houstoun, PharmD, MPH; Thomas E. MaCurdy, PhD; Chris Worrall, BS; Jeffrey A. Kelman, MD, MMSc

Background—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general practice settings has not been established.

Methods and Results—We formed new-user cohorts of propensity score—matched elderly patients enrolled in Medicare who initiated dabigatran or warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012. Among 134414 patients with 37587 person-years of follow-up, there were 2715 primary outcome events. The hazard ratios (95% confidence intervals) comparing dabigatran with warfarin (reference) were as follows: ischemic stroke, 0.80 (0.67–0.96); intracranial hemorrhage, 0.34 (0.26–0.46); major gastrointestinal bleeding, 1.28 (1.14–1.44); acute myocardial infarction, 0.92 (0.78–1.08); and death, 0.86 (0.77–0.96). In the subgroup treated with dabigatran 75 mg twice daily, there was no difference in risk compared with warfarin for any outcome except intracranial hemorrhage, in which case dabigatran risk was reduced. Most patients treated with dabigatran 75 mg twice daily appeared not to have severe renal impairment, the intended population for this dose. In the dabigatran 150-mg twice daily subgroup, the magnitude of effect for each outcome was greater than in the combined-dose analysis.

Conclusions—In general practice settings, dabigatran was associated with reduced risk of ischemic stroke, intracranial hemorrhage, and death and increased risk of major gastrointestinal hemorrhage compared with warfarin in elderly patients with nonvalvular atrial fibrillation. These associations were most pronounced in patients treated with dabigatran 150 mg twice daily, whereas the association of 75 mg twice daily with study outcomes was indistinguishable from warfarin except for a lower risk of intracranial hemorrhage with dabigatran. (Circulation. 2015;131:157-164. DOI: 10.1161/CIRCULATIONAHA.114.012061.)

Key Words: anticoagulant ■ pharmacoepidemiology ■ safety ■ thrombin inhibitor ■ warfarin

Graham et al. description of the outcomes

Study Outcomes

The primary outcomes were ischemic stroke, major bleeding with specific focus on intracranial and gastrointestinal bleeding, and AMI. Secondary outcomes were all hospitalized bleeding events and mortality. The *International Classification of Diseases, Ninth Revision, Clinical Modification* codes used to define these outcomes are listed in Table II in the online-only Data Supplement. The codes defining ischemic stroke have a positive predictive value (PPV) of 88% to 95%. ¹⁸⁻²⁰ Major bleeding was defined as

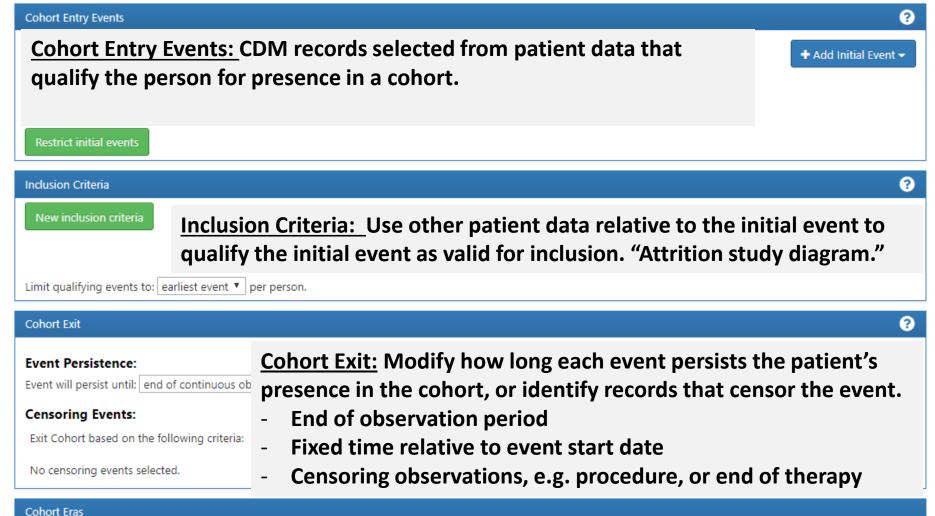
Table 2. International Classification of Disease, 9th edition, Clinical Modification (ICD 9-CM) codes used to define study outcomes.

Outcome	Outcome ICD-9 Codes		Setting
AMI	1st or 2nd	IP only	
Ischemic stroke	1st	IP only	

Specify era collapse gap size: 0 ▼ days

add trimming options...

Rule based cohort definition in Atlas



Cohort Eras: Chain remaining event dates with an allowable gap

with optional left- and/or right-censor the final eras (trimming).

73

Graham et al. description of the cohort(s)

A new-user retrospective cohort design was used to compare patients initiating dabigatran or warfarin for the treatment of nonvalvular AF.¹⁰ We identified all patients with any inpatient or outpatient diagnoses of AF or atrial flutter based on *International* Classification of Diseases, Ninth Revision coding who also filled at least 1 prescription for either drug from October 19, 2010 (US dabigatran approval date) through December 31, 2012, the study end date. Patients were excluded if they had <6 months of enrollment in Medicare before their index dispensing, were aged <65 years, received prior treatment with a study medication or rivaroxaban or apixaban (anticoagulants approved during the study), were in a skilled nursing facility or nursing home, or were receiving hospice care on the date of their cohort-qualifying prescription. Patients were also excluded if they had a hospitalization that extended beyond the index dispensing date. Patients discharged from the hospital on the same day as their index dispensing were included. Patients undergoing dialysis and kidney transplant recipients were also excluded. Additionally, because warfarin is approved for indications other than AF, we excluded patients with diagnoses indicating the presence of mitral valve disease, heart valve repair or replacement, deep vein thrombosis, pulmonary embolism, or joint replacement surgery in the preceding 6 months.

Demo: Implementing cohorts in ATLAS

Follow along at:

(during training)

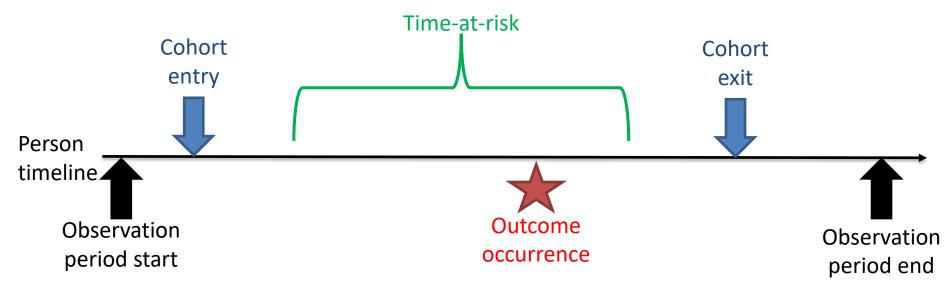
https://overview.ohdsi.amazingawsdemos.com

(public demo environment)

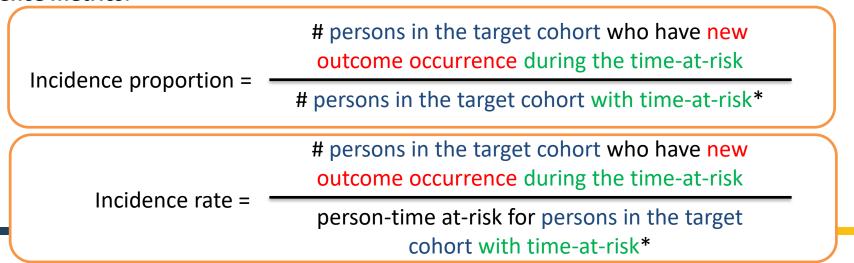
http://ohdsi.org/web/ATLAS

Incidence rate

Dissecting the anatomy of incidence



Incidence metrics:

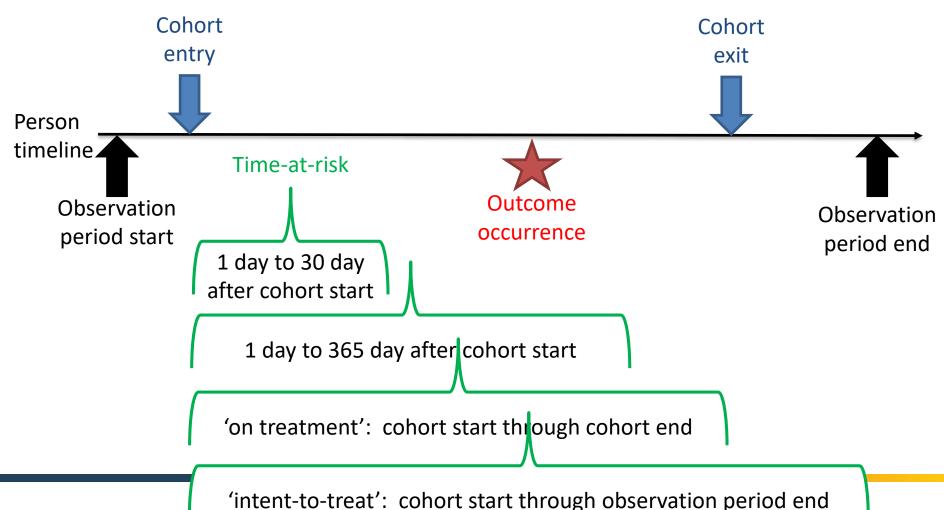


Myriad difficult choices that researchers have to make to produce a 'simple answer'

- How should the target cohort be defined?
- How should the outcome be defined?
- How should the time-at-risk be defined?
- How to account for patients with incomplete time-atrisk?
- Which statistical metrics should be reported?
- Which data should be used?

Myriad difficult choices that researchers have to make to produce a 'simple answer'

How should the time-at-risk be defined?



Decisions for incidence rate estimations in the OHDSI framework

- What's your Target cohort(s)?
- What's your Outcome cohort(s)?
- What's your time-at-risk?
- What's your stratification criteria?

Demo: Implementing incidence rates in ATLAS

Follow along at:

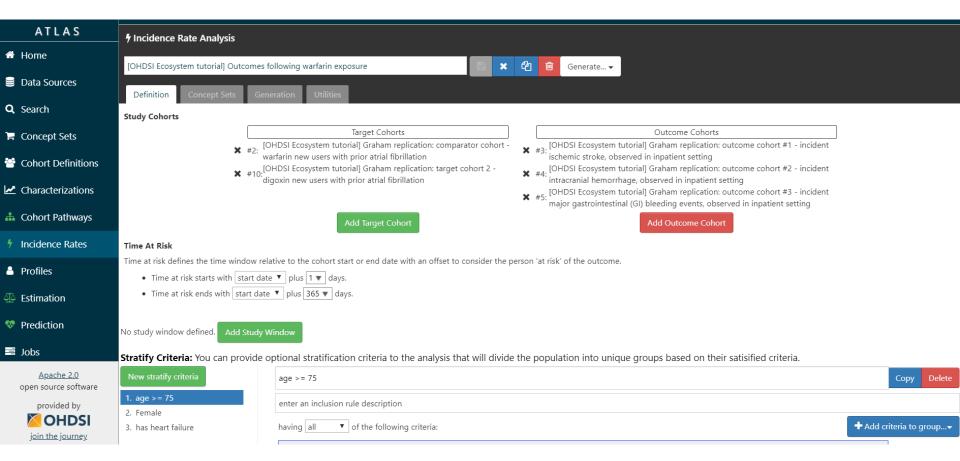
(during training)

https://overview.ohdsi.amazingawsdemos.com

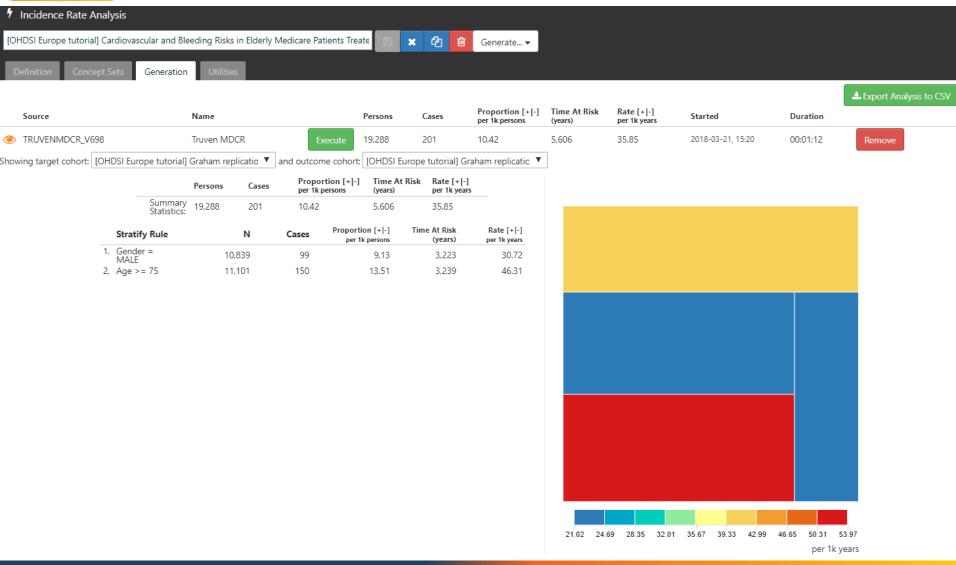
(public demo environment)

http://ohdsi.org/web/ATLAS

Demo: incidence rate specification



Demo: incidence rate generation



Estimation: Population-level effect estimation using the comparative cohort design

Full-day tutorial in 30 minutes

- Will focus on key concepts here
- View video of full day here: https://www.ohdsi.org/past-events/2017- tutorials-population-level-estimation/

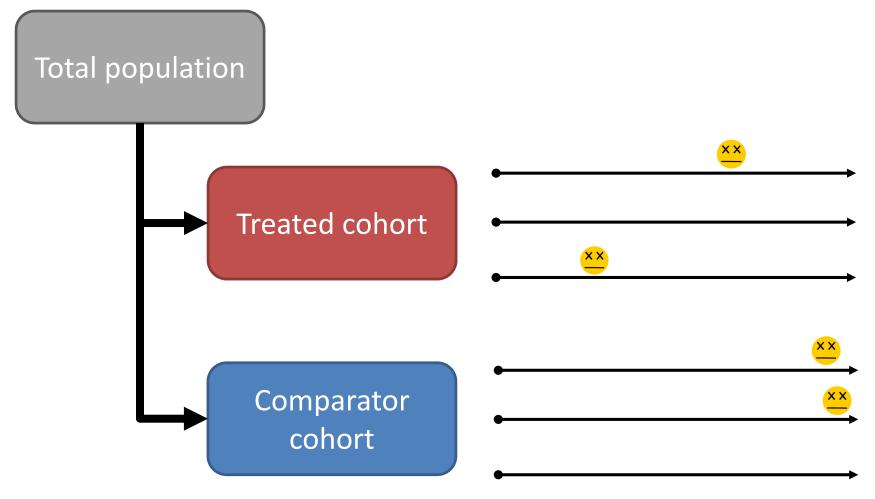
Two types of questions

Does exposure T cause outcome O?
 Effect estimation

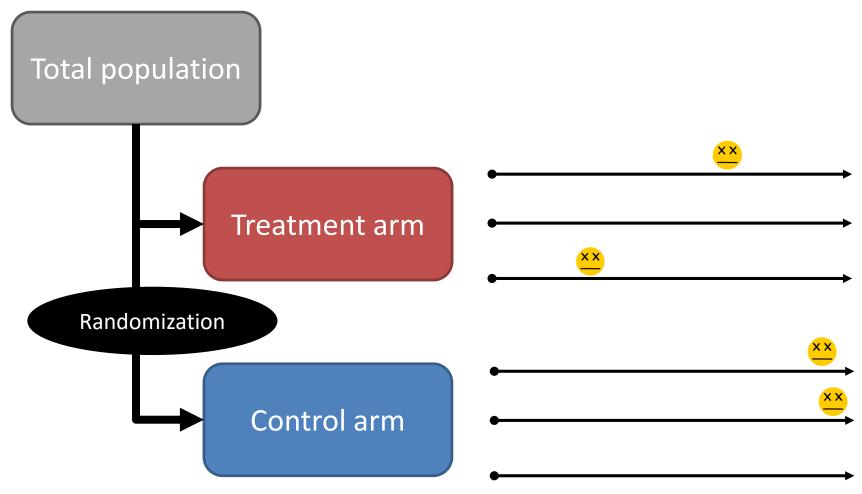
 Does exposure T cause outcome O compared to exposure C?

Comparative effect estimation

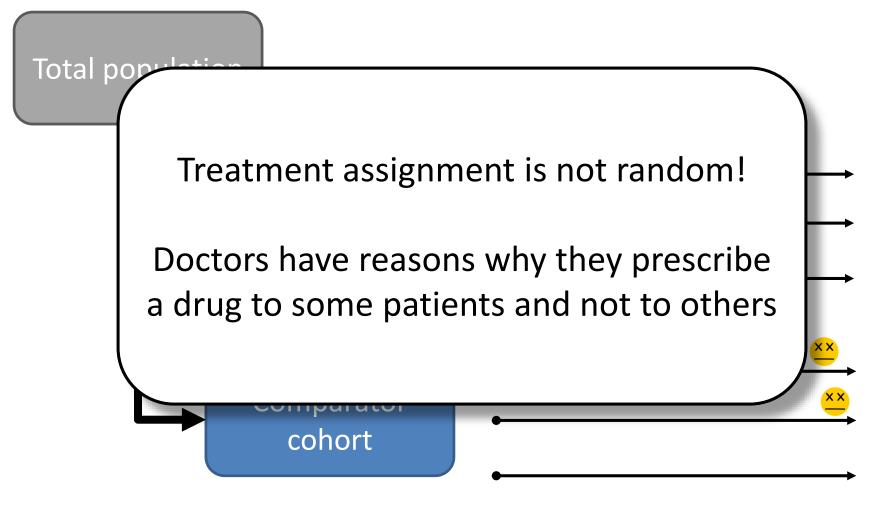
New-user cohort design



Randomized controlled trial



New-user cohort design

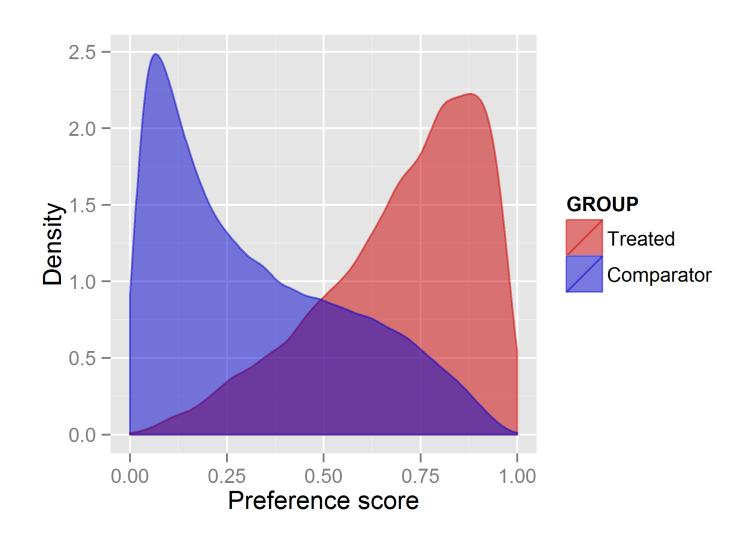


Propensity score (PS)

The propensity score is the probability of receiving the treatment, conditional on a set of baseline characteristics

$$P(treatment \mid X) = f(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots)$$
Intercept
Charlson Comorbidity Index
Gender
Age

PS score distribution



Using the PS

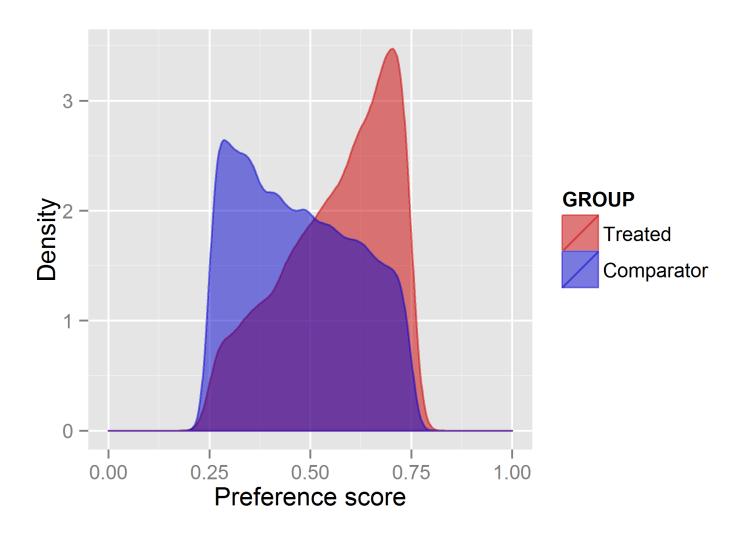
Trimming

if P(treatment) is around 50%, treatment assignment 'must be random'

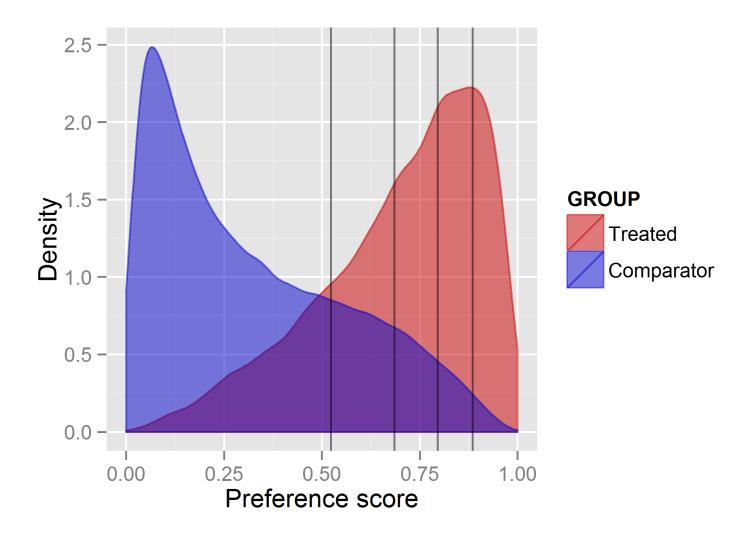
- Stratification or matching

 only compare subjects to subjects with a similar PS
- Inverse probability weighting
- Adding to the outcome model
 correct for the PS in the model used to predict the
 outcome

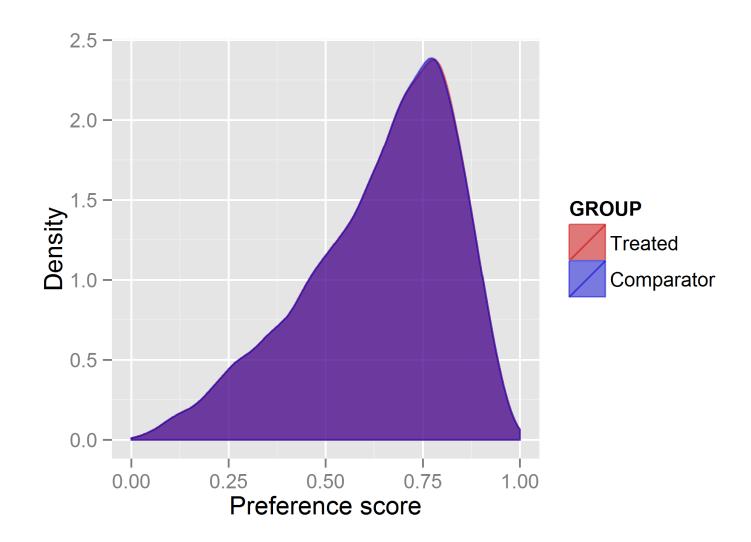
Trimming



Stratifying



Matching



Which variables go into the PS model?

Traditional: hard thinking by expert

High-Dimensional PS: rank many variables (e.g. all dry

(ar (H Important: make sure not to put the exposures themselves in the model!

 Our approach: put everything (demographics, all drugs, all drug classes, all conditions, all disease classes, all procedures, all observations, all severity indexes) in a regularized regression

Types of outcome models

- LogisticDid the outcome occur yes/no?
- Poisson
 How many times did the outcome occur?
- Cox
 What was the time to the first outcome or end of observation?
- Conditional or non-conditional (Logistic, Poisson, Cox)
 stratify by PS strata or matched sets

Cardiovascular, Bleeding, and Mortality Risks in Elderly Medicare Patients Treated With Dabigatran or Warfarin for Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA; Rongmei Zhang, PhD; Mary Ross Southworth, PharmD; Mark Levenson, PhD; Ting-Chang Sheu, MPH; Katrina Mott, MHS; Margie R. Goulding, PhD; Monika Houstoun, PharmD, MPH; Thomas E. MaCurdy, PhD; Chris Worrall, BS; Jeffrey A. Kelman, MD, MMSc

Background—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general practice settings has not been established.

Methods and Results—We formed new-user cohorts of propensity score—matched elderly patients enrolled in Medicare who initiated dabigatran or warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012. Among 134414 patients with 37587 person-years of follow-up, there were 2715 primary outcome events. The hazard ratios (95% confidence intervals) comparing dabigatran with warfarin (reference) were as follows: ischemic stroke, 0.80 (0.67–0.96); intracranial hemorrhage, 0.34 (0.26–0.46); major gastrointestinal bleeding, 1.28 (1.14–1.44); acute myocardial infarction, 0.92 (0.78–1.08); and death, 0.86 (0.77–0.96). In the subgroup treated with dabigatran 75 mg twice daily, there was no difference in risk compared with warfarin for any outcome except intracranial hemorrhage, in which case dabigatran risk was reduced. Most patients treated with dabigatran 75 mg twice daily appeared not to have severe renal impairment, the intended population for this dose. In the dabigatran 150-mg twice daily subgroup, the magnitude of effect for each outcome was greater than in the combined-dose analysis.

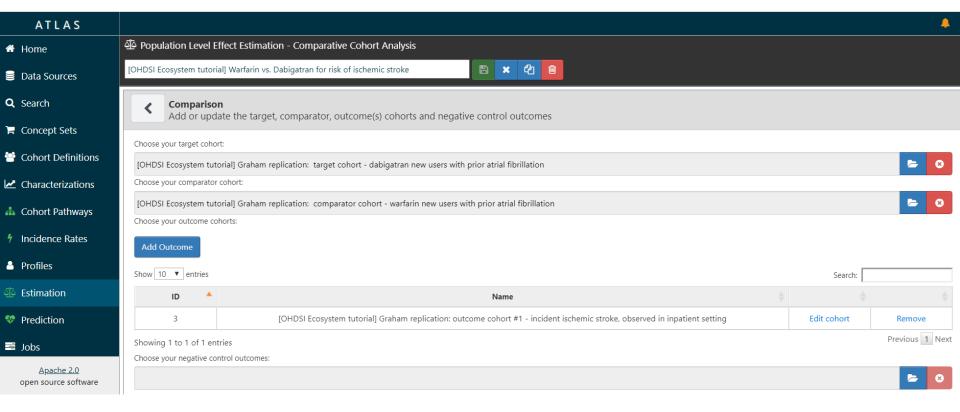
Conclusions—In general practice settings, dabigatran was associated with reduced risk of ischemic stroke, intracranial hemorrhage, and death and increased risk of major gastrointestinal hemorrhage compared with warfarin in elderly patients with nonvalvular atrial fibrillation. These associations were most pronounced in patients treated with dabigatran 150 mg twice daily, whereas the association of 75 mg twice daily with study outcomes was indistinguishable from warfarin except for a lower risk of intracranial hemorrhage with dabigatran. (Circulation. 2015;131:157-164. DOI: 10.1161/CIRCULATIONAHA.114.012061.)

Key Words: anticoagulant ■ pharmacoepidemiology ■ safety ■ thrombin inhibitor ■ warfarin

What is the design used by Graham et al?

Input parameter	Design choice
Target cohort (T)	dabigatran new users with prior atrial fibrillation
Comparator cohort (C)	warfarin new users with prior atrial fibrillation
Outcome cohort (O)	Ischemic stroke
Time-at-risk	1 day after cohort start → cohort end
Model specification	1:1 propensity score-matched univariable conditional Cox proportional hazards

Graham et al. description of the cohort selection strategy

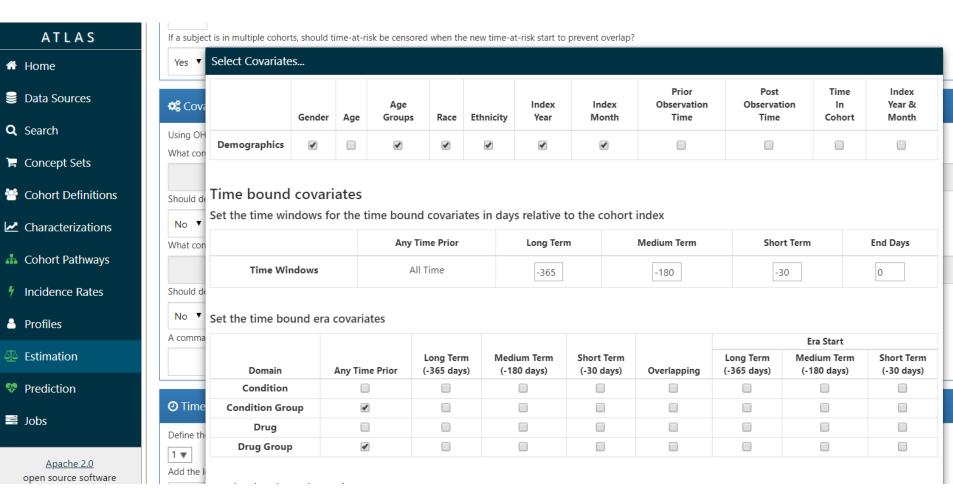


Graham et al. description of the covariate adjustment strategy

To reduce confounding due to imbalance in study covariates, propensity score matching was used. 14-16 Unconditional logistic regression was used to estimate the predicted probability of patients initiating dabigatran therapy given their sociodemographic characteristics, baseline medical comorbidities, medications used during the preceding 6 months, prescriber characteristics, and other potentially relevant variables (Table 1 and

Table I in the online-only Data Supplement). Dabigatran users were propensity score matched to warfarin users in a 1:1 ratio with the use of a greedy matching algorithm. The balance of measured covariates between the matched cohorts was assessed with the standardized mean difference, a measure not influenced by sample size and thus useful for comparing cohorts in large observational studies. A standardized mean difference of ≤0.1 indicates a negligible difference in the measured variables between groups.

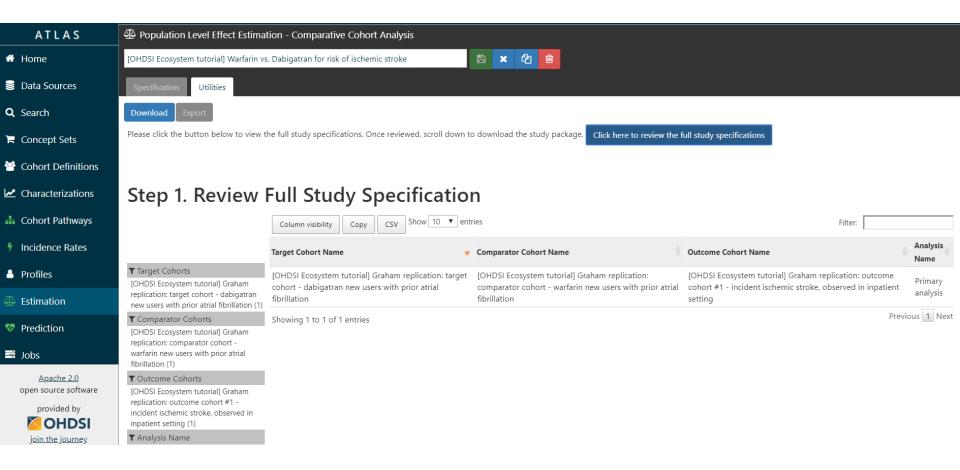
Graham et al. replication: Designing the covariate adjustment strategy in ATLAS



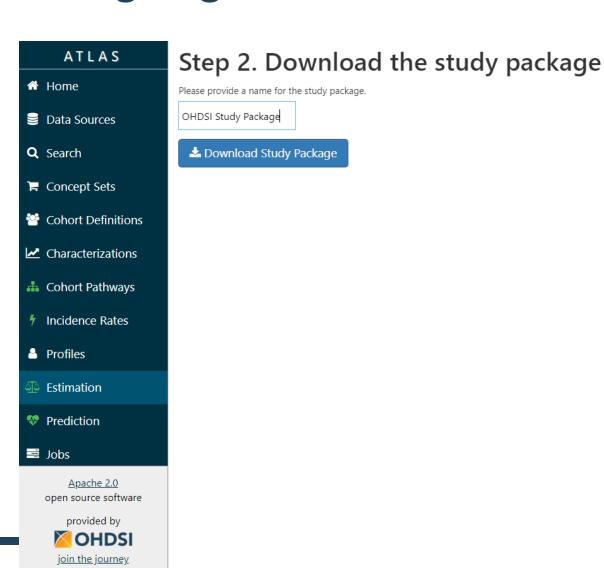
Graham et al. replication: Designing the covariate adjustment strategy in ATLAS

What concepts do you want to include in baseline covariates in the propensity score model? (Leave blank if you want to include everything)	
OHDSI estimation tutorial - Graham replication: covariates to include in PS model	
What concepts do you want to exclude from baseline covariates in the propensity score model? (Leave blank if you want to include everything)	
OHDSI estimation tutorial - Graham replication: covariates to exclude in PS model	=
How do you want to restrict your cohorts based on the propensity score distribution? None ▼ Do you want to perform matching or stratification?	
Matching	•
How many comparator patients do you want to select for each target patient (within a defined caliper)?	
1	
Do you want to adjust for baseline covariates in the outcome model? No ▼	
No ▼	

Graham et al. replication: Designing a protocol in ATLAS

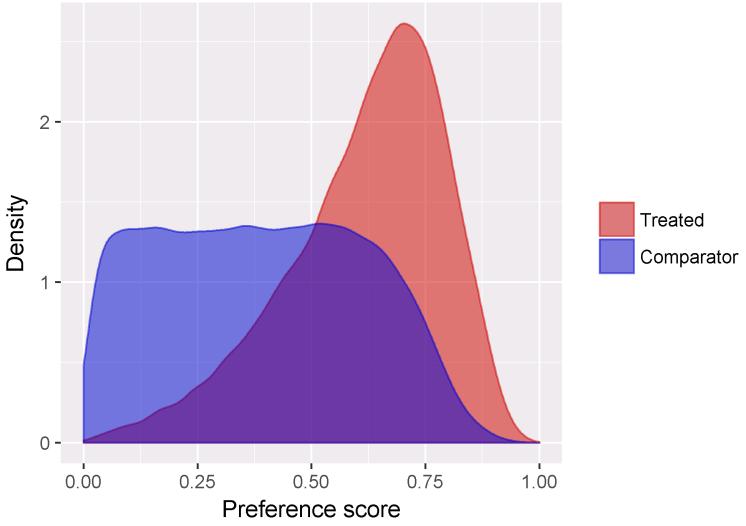


Graham et al. replication: Designing the source code in ATLAS

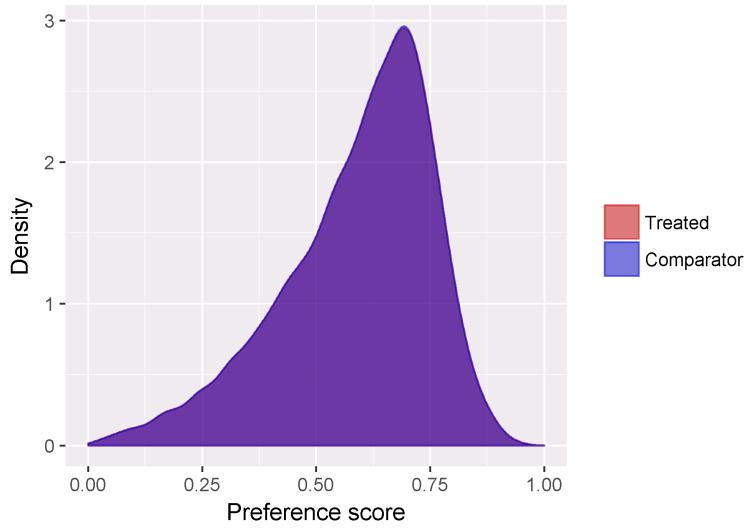


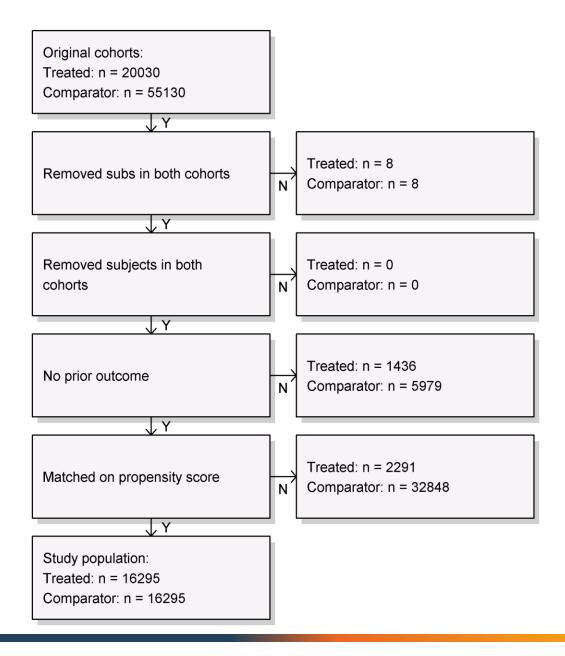
Interpreting results

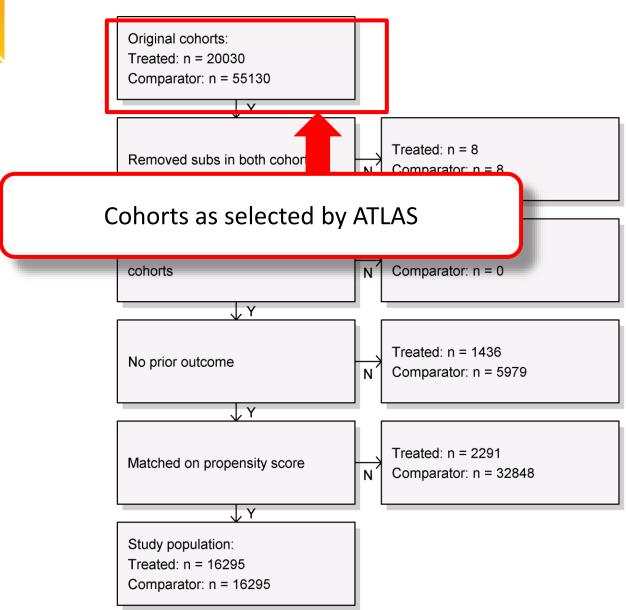
Plot propensity score distribution

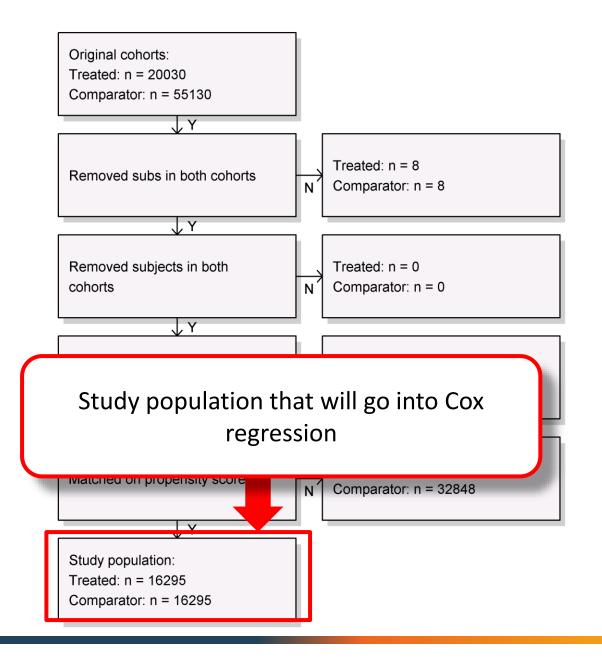


After matching

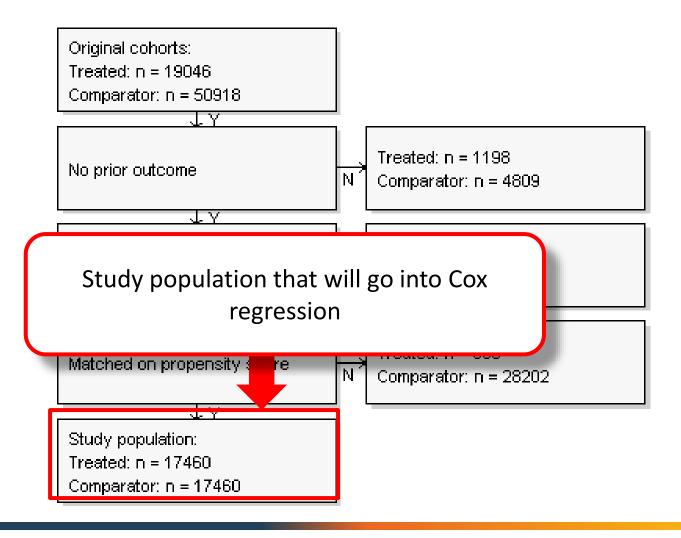




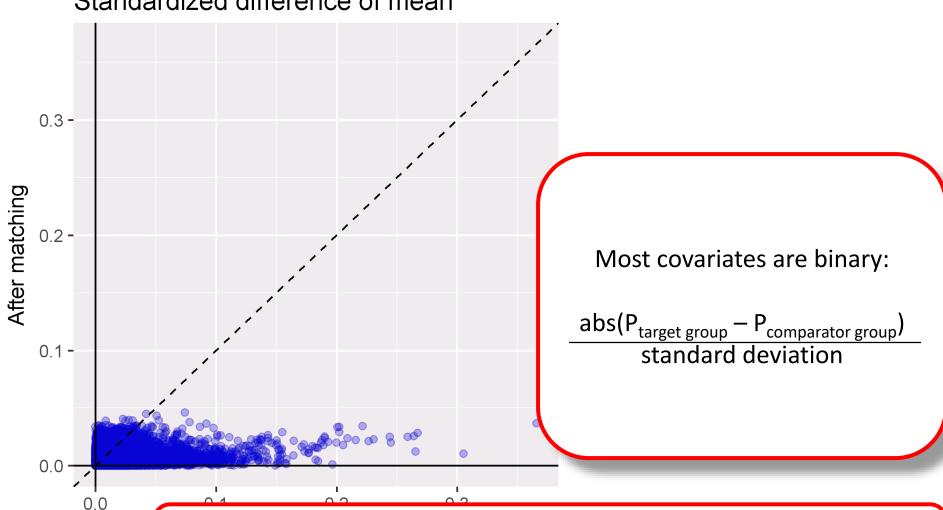




Attrition



Covariate balance



Graham: "A standardized mean difference of ≤0.1 indicates a negligible difference."

Model type: cox

Stratified: TRUF

Use covariates: FALSE

Use inverse probability of treatment weighting: FALSE

Status: OK

Estimate lower .95 upper .95 logRr

seLogRr

treatment 0.78000

0.51050 1.18316 -0.24846

0.2144

Population counts

treatedPersons

comparatorPersons

treatedExposures

comparatorExposures

Count

16295

16295

16295

16295

Outcome counts

treatedPersons

comparatorPersons

treatedExposures

comparatorExposures

Count

81

73

81

73

Time at risk

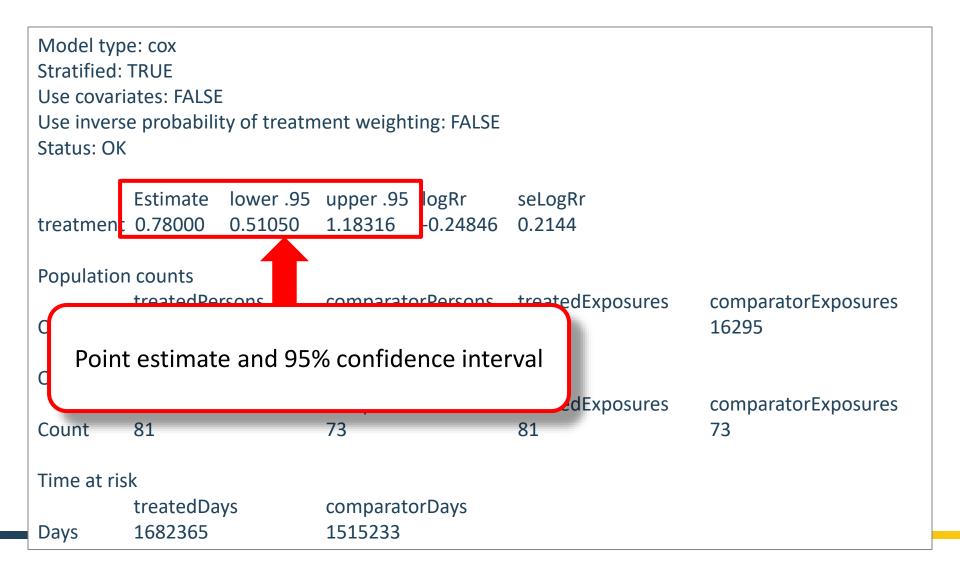
treatedDays

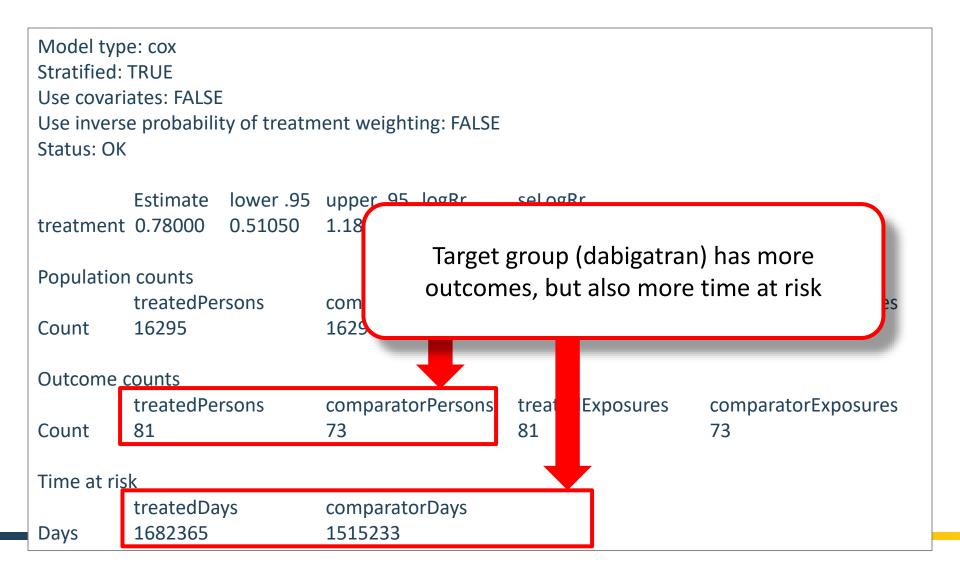
comparatorDays

Days

1682365

1515233





Model type: cox Stratified: TRUF

Use covariates: FALSE

Use inverse probability of treatment weighting: F/

Status: OK

Graham:

 $\mathsf{IR}_{\mathsf{dabigatran}}$ = 11.3

 $\mathsf{IR}_{\mathsf{warfarin}}$ = 13.9

 $\mathsf{HR}_{\mathsf{adjusted}}$ = 0.80 (0.67 - 0.96)

lower .95 upper .95 logRr Estimate treatment 0.78000 0.51050 1.18316

Population counts

treatedPersons

Count 16295 comparatorPers

16295

= 17.6 IR_{dabigatran}

 $\mathsf{IR}_{\mathsf{warfarin}}$ = 17.6

 $\mathsf{HR}_{\mathsf{adjusted}}$ = 0.78 (0.51 - 1.18)

Outcome counts

treatedPersons

Count 81 comparatorPersons 73

Exposures treat 81

comparatorExposures

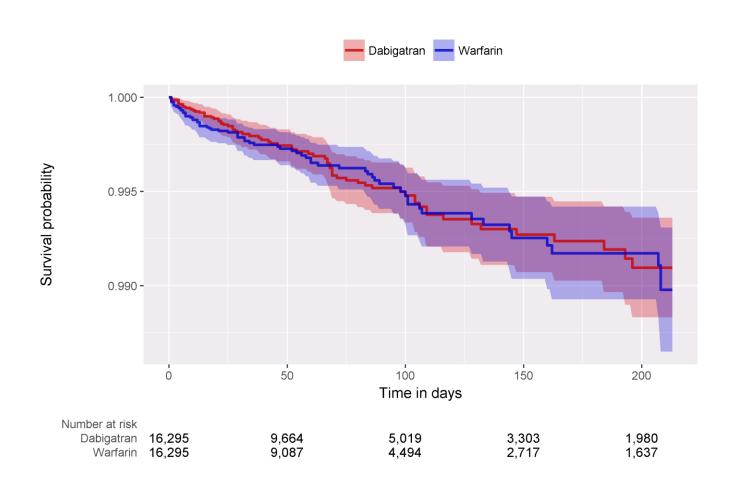
73

Time at risk

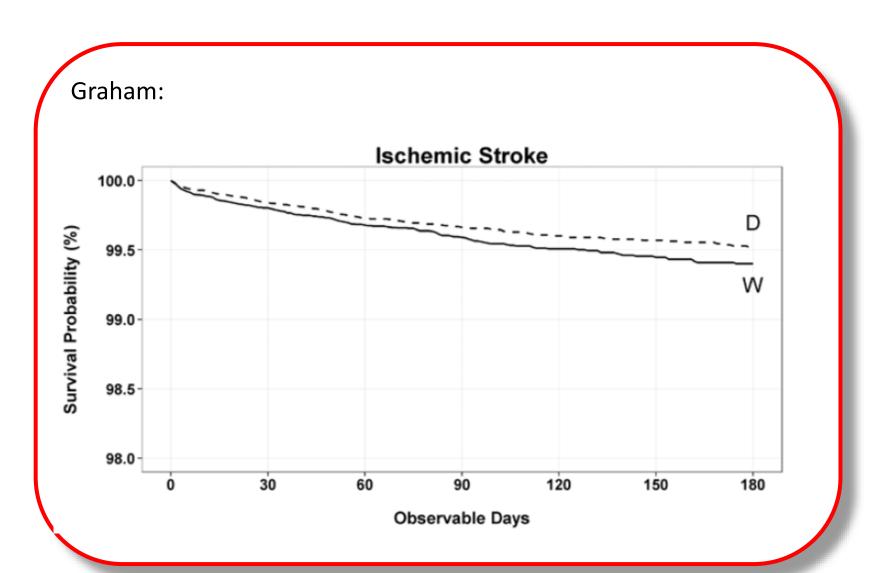
treatedDays comparatorDays 1682365 1515233

Days

Kaplan Meier plot



Kaplan Meier plot



In conclusion

- ATLAS can
 - Write protocol
 - Generate R code to do a study
- Not shown:
 - Include negative controls & calibrate P-value
 - Synthesize positive controls & calibrate CI
 - Multiple T, C, O
 - Multiple analyses
- Other study designs available in R
 - Self-controlled case series
 - Case-crossover & case-time-control
 - Case-control
 - Self-controlled cohort

Prediction: Patient-level predictive modeling and evaluation

Installing the R Package

Instructions found on the github:

https://github.com/OHDSI/PatientLevelPrediction

- 1. On Windows, make sure RTools is installed.
- 2. The DatabaseConnector and SqlRender packages require Java. Java can be downloaded from http://www.java.com.
- 3. Random forest, Naive Bayes and MLP require python 3.6. Python 3.6 can be downloaded from: https://www.continuum.io/downloads.
- 4. In R, use the following commands to download and install PatientLevelPrediction:

```
install.packages("drat")
drat::addRepo("OHDSI")
install.packages("PatientLevelPrediction")
```

5. We recommend testing your instalation by running:

```
PatientLevelPrediction::checkPlpInstallation()
```

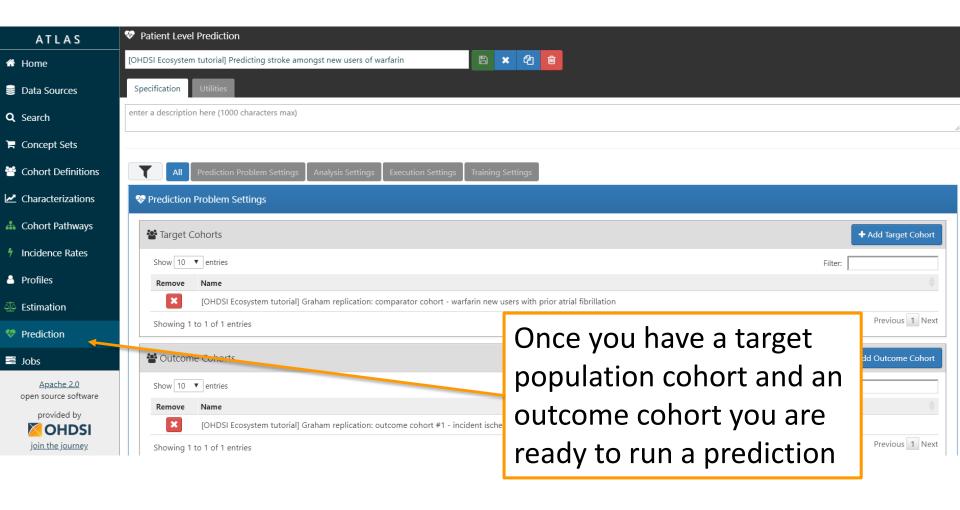
There is a function: checkPlpInstallation() that makes sure you have everything correctly set up

If you have a response other than 1 (indicating everything works), enter the response number in:

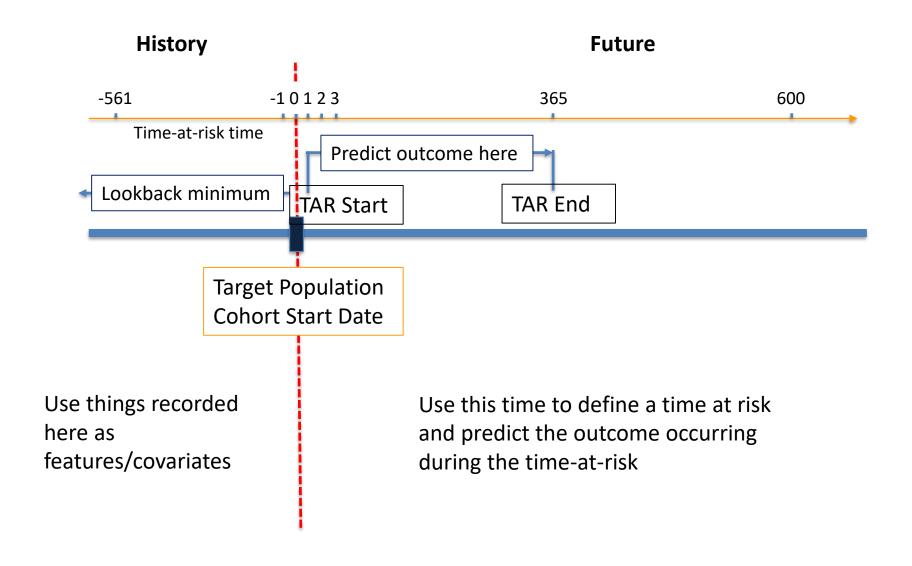
```
PatientLevelPrediction::interpretInstallCode()
```

Non-windows users: Please note that the package uses python to implement some of the classifiers. The package pythonInR is used as the interface, and in Linux or Mac OS it uses the same python specified in path (the python that loads when you type the command python). Please make sure the anaconda python is specified in your path rather than any default python (unless it is set up with the following packages), as the packages: numpy, scikit-learn and tensorFlow are required to run the patient level prediction python code.

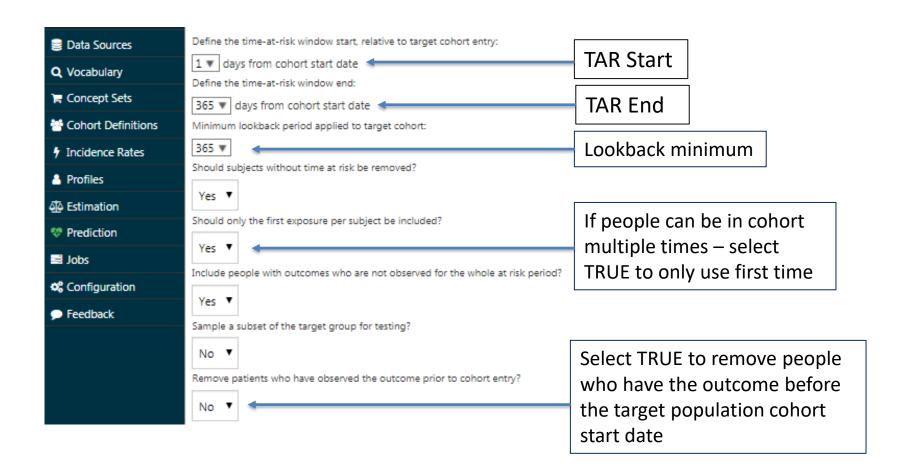
Generating R Code With Atlas



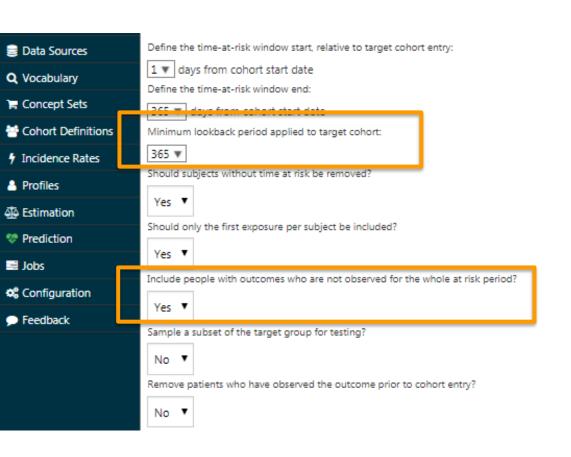
Prediction Parameters

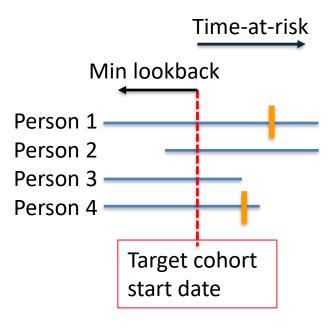


Prediction Design Choices



Prediction Design Choices Utcome

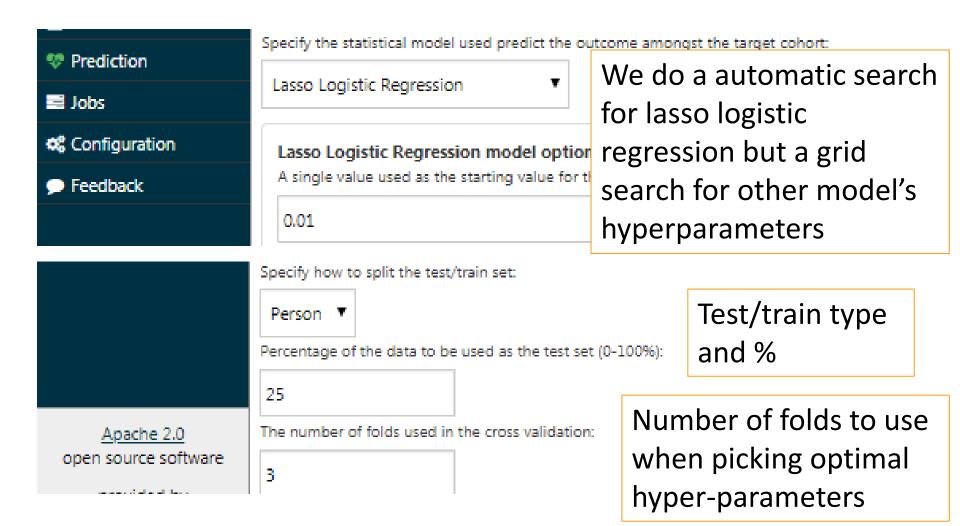




Person 2 doesn't have min lookback so excluded

Persons 3&4 don't have full time-at-risk

Training Choices



Feature/Covariate Choices

Standardised Features:

- Demographics (e.g., age, gender, ethnicity)
- Conditions (+ condition groups using SNOMED/MEDRA vocabs)
- Drug (+ drug groups)
- Procedures
- Measurements
- Observations
- Counts
- Some existing risk models
 (Flexible times before cohort start date (e.g., -365 to -1 days relative to cohort start date)

Custom Features:

Can also make any feature you want using R and SQL

Atlas Demo

I will show how to create the R code to predict

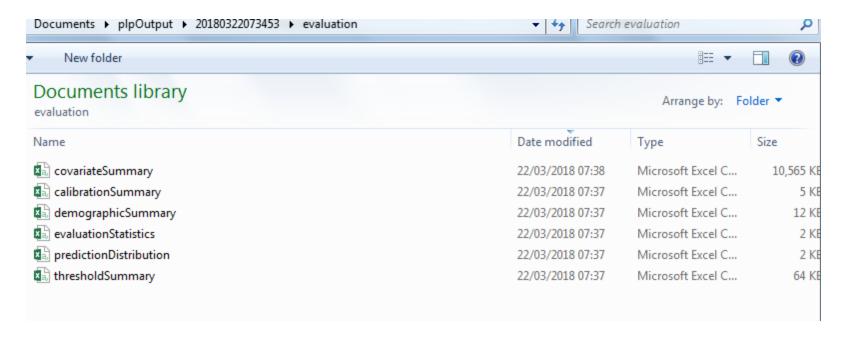
bleeding within 1 to 365 days after first time

	Option	Choice
Prediction Design Choices	Time at risk start	1
	Time at risk end	365
	Remove prior outcomes	TRUE
	Require time-at-risk	TRUE
	Use all outcomes	TRUE
Training choices	Classifier	Lasso LR
	N-folds	3
	Test %	25
	Split type	Person
Feature Choices	All demo, conditions (+groups), drugs (+groups), measurements, observations, procedures 365 days prior	
	Design Choices Training choices Feature	Prediction Design Choices Time at risk start Time at risk end Remove prior outcomes Require time-at-risk Use all outcomes Training Choices N-folds Test % Split type All demo, conditions (+groups), drugs (+groups)

When you run the atlas code, in the directory
 you specified there will be a nath: plamodels->

« Documents ▶ ohdsi_europe_tutorial_stroke ▶ plpmodels ▶ 20180322073453 ▶ ▼ 4 Search 20180322073453 Organize • Share with • New folder -Documents library * Favorites Arrange by: Folder ▼ 20180322073453 Desktop Recent Places Date modified Downloads 📗 plots 22-Mar-2018 2:34 ... evaluation 22-Mar-2018 7:38 ... 🚞 Libraries savedModel 22-Mar-2018 7:36 ... Documents 22-Mar-2018 7:40 ... 📄 plplog.txt Git Music Pictures ■ Videos 🌉 Computer 🚢 OSDisk (C:) all DVD Drive (E:) WinSDK 4 items

Evaluation folder:

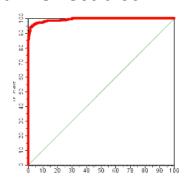


EvaluationStatistics

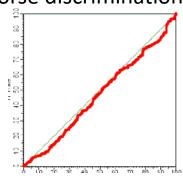
populationSize	2.6% of population have outcome	7134
outcomeCount		187
AUC.auc	0.649988	
AUC.auc_lb95ci	0.611923	
AUC.auc_ub95ci	0.688053	
BrierScore	0.025352	
BrierScaled	0.010316	
CalibrationIntercept.In	-0.01395	
CalibrationSlope.Gradi	1.526665	

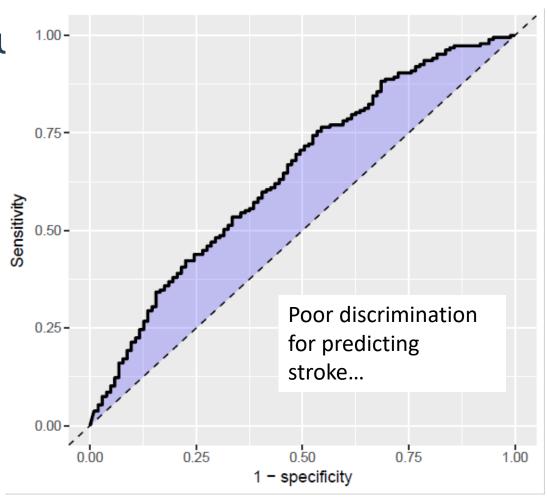
ROC Plot: Measu discrimination

Near Perfect discrimination:

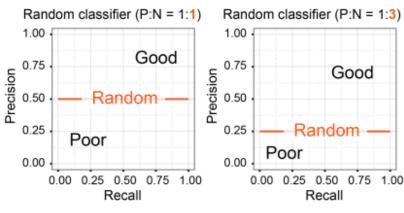


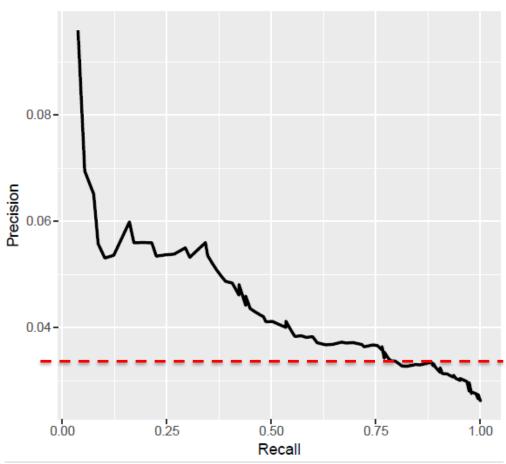
Worse discrimination:





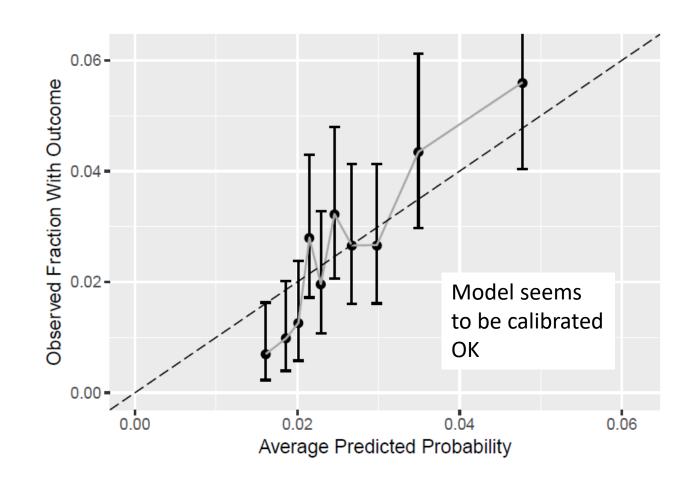
 Precision recall plot: Good to use when the outcome is rare to





CalibrationPlot

 Good calibration means dots around x=y line

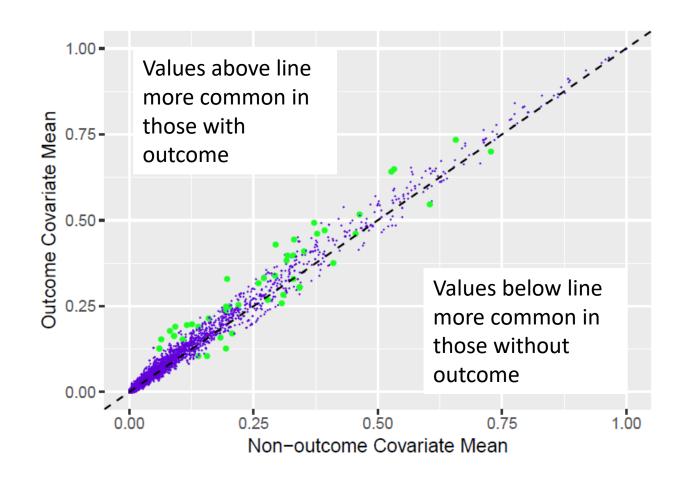


 Demographic Calibration:

 What expected and observed to be similar across age/gender

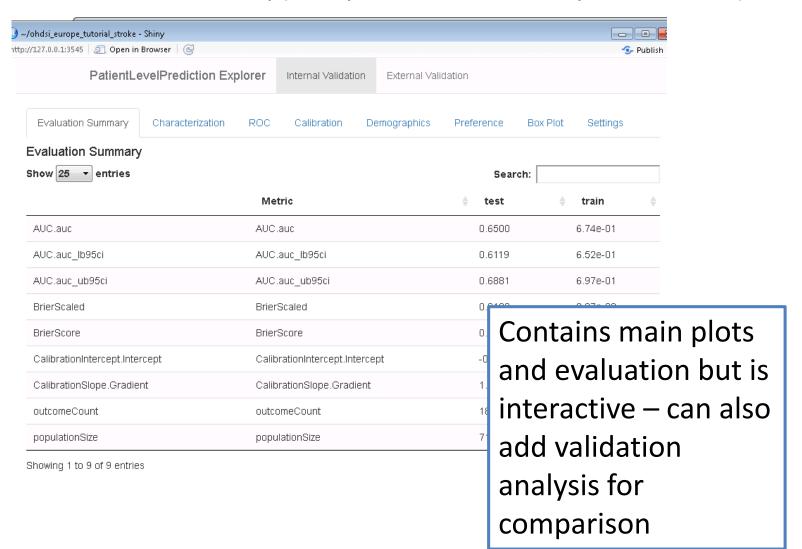
 If observed/expected differ than maybe need to treat that strata differently

 Variable scatterplot: shows differences between people with outcome and without outcome



PatientLevelPrediction Shiny View

PatientLevelPrediction::viewPlp(runPlp = results, validatePlp = externalVal)



Network analyses using ARACHNE

ARACHNE Research Network

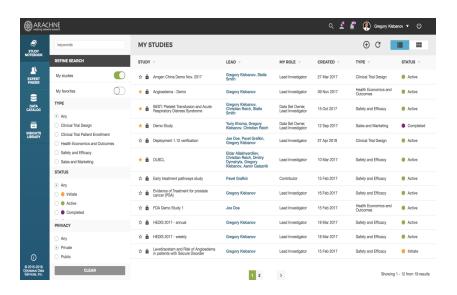
An open-source platform to enable federated studies across the OHDSI network

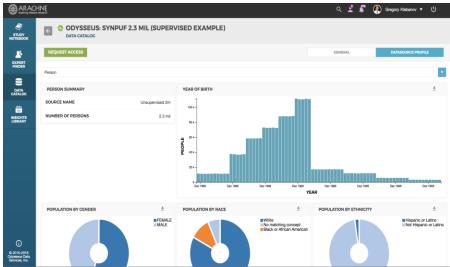
- Collaborative study lifecycle management
- Network Data catalog
- Secure, compliant and trusted data access
- Execute analysis across organizations
- Store analysis aggregate results
- Integration with OHDSI Tools (ATLAS, ACHILLES)
- Support for OHDSI standards and tools

ARACHNE UI

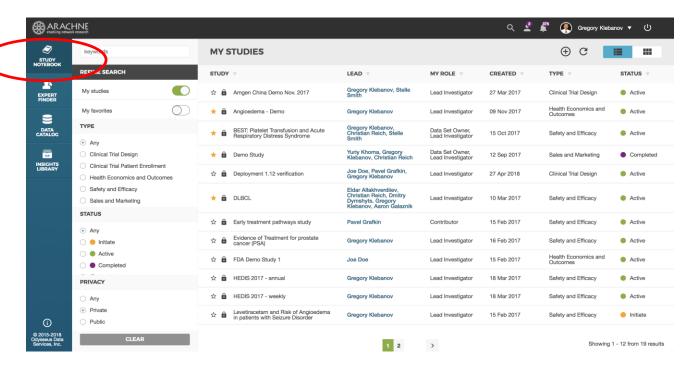
The ARACHNE UI allows access to the following:

- Network Studies
- OHDSI Participants (White pages)
- Network Data Catalog
- Insights Library





Study Workbook



Lists all participant's studies, including those marked as "public" (viewed by anyone) and "private" (viewed by study collaborators only)

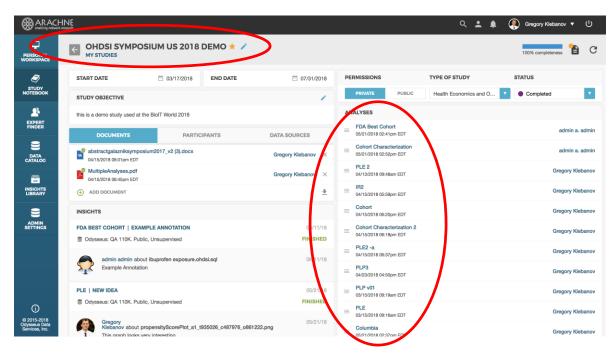
Network Study

The ARACHNE Network study is a collaborative workspace for all study documents, design artifacts, analysis code, execution activities as well as results repository

The ARACHNE Network study allows defining and setting a number of attributes, including name, objectives, lifecycle status, visibility (private or public), type of a study

The ARACHNE Network Study allows study members to create and manage a various studyrelated analyses:

- Simple cohort counts
- Cohort characterization
- Incidence rates
- o PLP
- o PLE
- Complex custom code



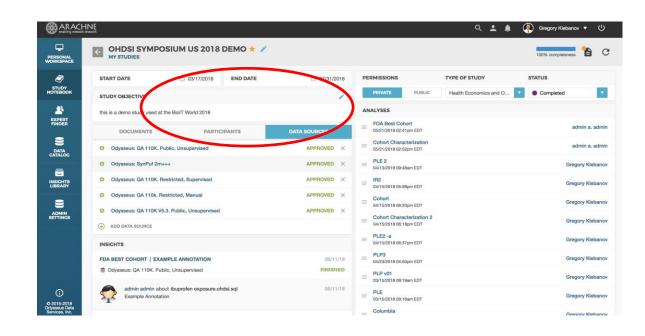
Study Data Sources and Collaborators

Study Lead Investigator can add data sets by requesting data set access. Data set becomes available for study analysis when approved by the data set owner

Study Lead Investigator can invite other OHDSI collaborators, including granting them the Lead Investigator role

Study Lead Investigators can modify study attributes, manage data access, collaborators

Study collaborators can create new analyses, execute them and review and annotate results



Simple Cohort Count Analysis

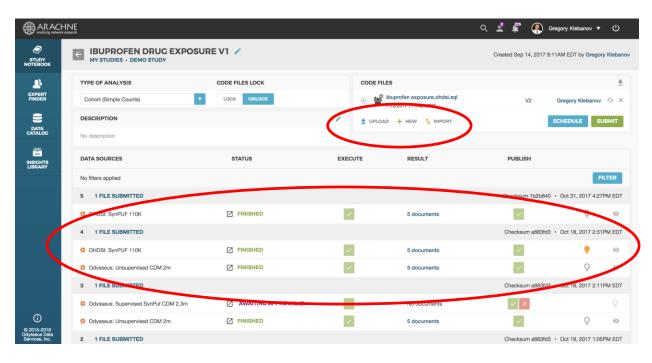
Allows performing simple counts

Cohorts definitions can be added by:

- Importing from ATLAS instances connected
- Uploading files
- Creating new file

An existing ATLAS defined cohort can be used:

- o JSON
- OHDSI.SQL

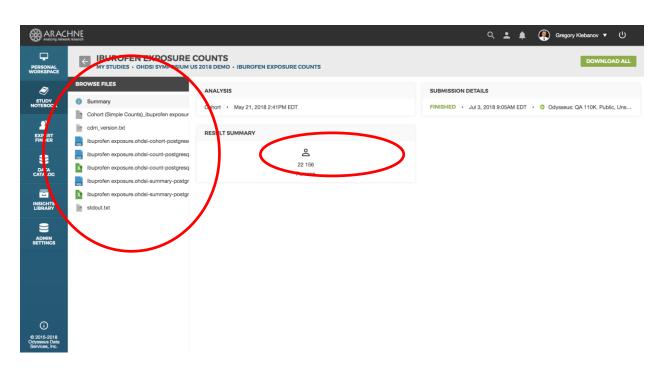


ARACHNE allows simultaneous analysis analysis execution against multiple data sets across the network.

Job submissions can be pre-scheduled

Simple Cohort Count Analysis

- ARACHNE will save a history of jobs executions, including:
 - Submitted Code
 - Execution and approval log
 - Analysis results
- The analysis submissions can be viewed and annotated

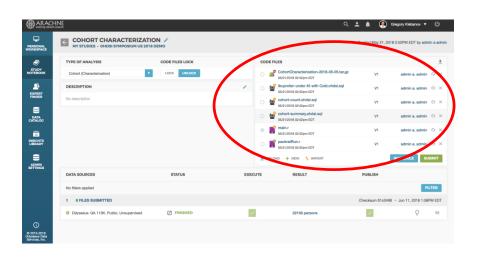


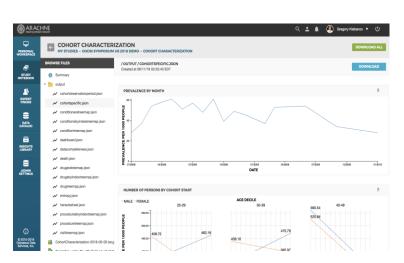
Cohort Characterization Analysis

The Cohort Characterization analysis allows performing Heracles against remote data

ARACHNE will automatically package analyses imported from ATLAS into a self-contained packrat R package

The Heracles execution parameters can be set by modifying the execution R module shell

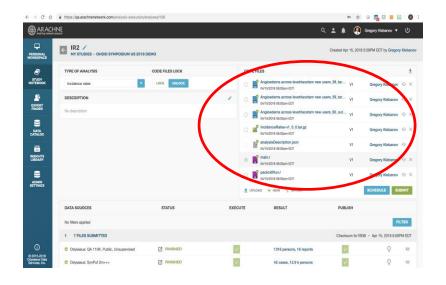


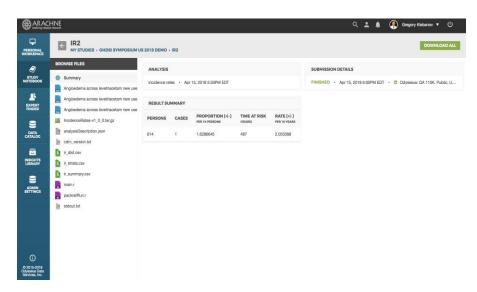


Incidence Rates

The Incidence Rate analysis allows performing calculating incidence rates against remote data

ARACHNE will automatically package analyses imported from ATLAS into a self-contained packrat R package

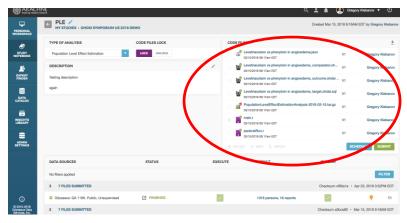


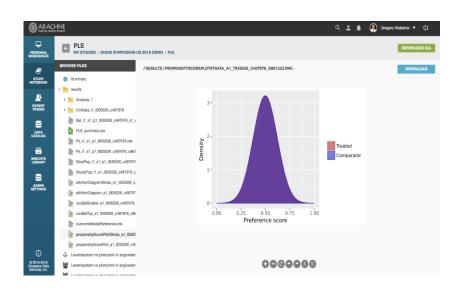


PLE and PLE methods

ARACHNE support both Population-Effect Estimation and Patient-Level Prediction methods

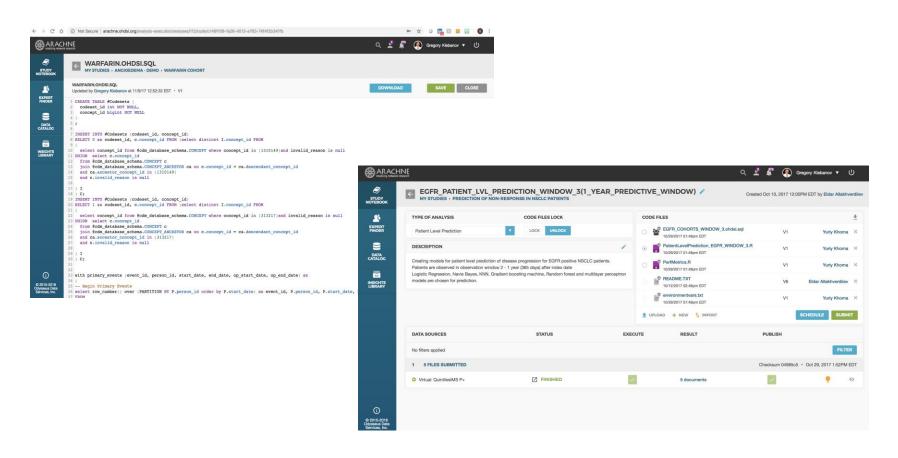
ARACHNE will automatically package analyses imported from ATLAS into a self-contained packrat R package





Custom Code

ARACHNE support the execution of the custom SQL or R code



Demo: Utilizing ARACHNE

Follow along at:

http://arachne.ohdsi.org/

Design and implement your own study!

Questions?

Thanks for joining the journey!