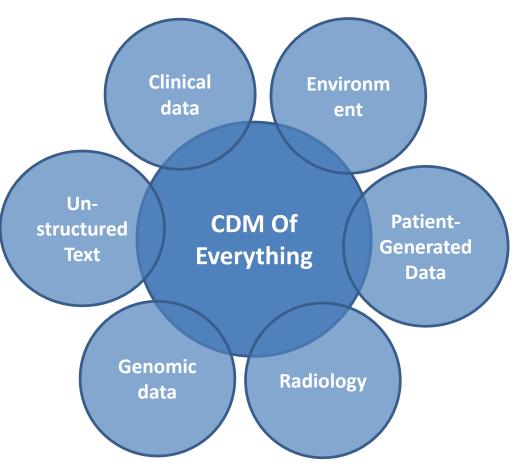
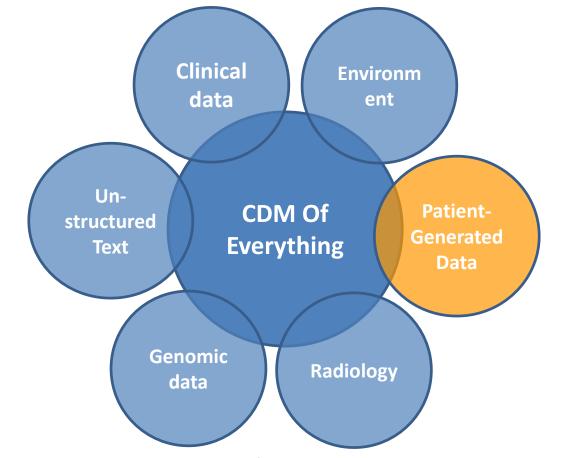


Integration of heterogeneous medical data based on common data model -2nd Part of FEEDER-NET

Seng Chan You


Finding the missing link for big biomedical data


OHDSI: A Journey for Simplicity, Beauty and Symmetry in Medical Data

- Symmetry in medical data
 - By grand unification across all aspects of health data, various types of medical data, such as clinical, genomic, radiologic, and patientgenerated data, would be **indistinguishably accessible** in the single database
 - OHDSI tools ecosystem can work across various types of medical data

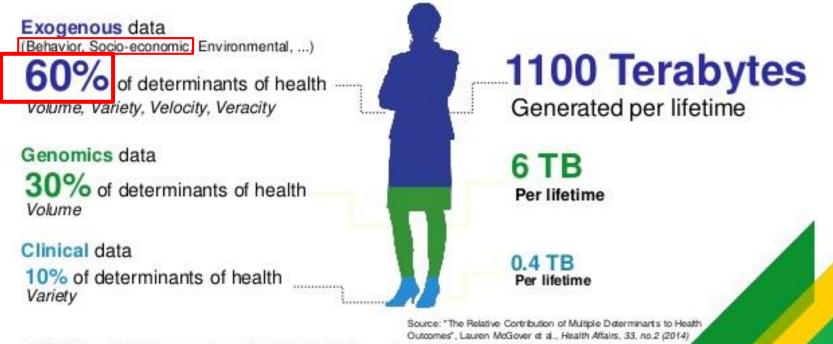
Common Data Model of Everything in Medicine

Seng Chan You, MD¹, Youngin Kim, MD², Jaehyung Cho¹, Rae Woong Park, MD, PhD^{1,3}

¹Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea;

²Medicine, Noom, Inc, Seoul, Korea

³Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea



Patient-Generated Health Data

Because everyone matters.

IBM

Exponential Growth in New Forms of Data Will Play an Increasing Important Role in Enabling Better Outcomes

IBM Health and Social Programs Summit | #IBMH\$P\$14 | #smartercare | #socialprograms

Apple Health Apple


adl KT LTE	5	2率 1:47		* 9	8% 💻 +	atlikt U	ΓE		오후 1:47		* 9	3% 💼 +
< 4월					۲	く 4월						
н н	82	÷	4		<u>E</u>	91	2	82	÷	4		E
22 23	24	25	26	27	28	22	23	24	25	26	27	28
2	2018년 4	월 239	김 월요일					2018년	4월 23'	길 월요일		
즐겨찾기						활동						
제지방 체중			5		-	걸음				4,1	$\cap 4$	710
					7:26						25 25	월급 1:39
체지방률				~ -	_	화도	에너지				00	
세이공품				8.5		-0					92	
				오늘 오전	7:26						오늘 오취	1:39
체중			61	3.2) .	걷기					24	km
			0.		_ kg 7:26					4	25 23	
황동						오른	층계				c	5
걸음				~ .								3⊜
22			4,1(4ر	걸음						오늘 오취	1:29
				오는 오취	‡ 1:39	수면						
활동 에너지			C	92		수면				-	7 _{, N} 2 [,]	1
				05.04	1:39						- 지간 오늘 오렌	「世 7:18
			Ø		*					¢		*
12 in	건강 데이터		[이다] 소스	5	표 정보	21 A		건강 데이티		데이터 소스	5	표 정보

NOOM

	• •	
*	•••• • • • • • • • • • • • • • • • • •	·
Cancel	wed Thu Today	421 Nov
Q 🚔	Log your meals	Ĺ
Bananas	624 Cal logged 1110 Cal	
Oatmeal +	Walk 10,000 steps	
Unsweetened Coffee	5974 steps HLODO	i't have to
Honey	Learn why walking is so good for you	lose weight
Coffee		at healthy recipes and on't have time to cook

Samsung ivieuical Center Diabetes Note

Image: Status of the s

300 kcal

12 단위

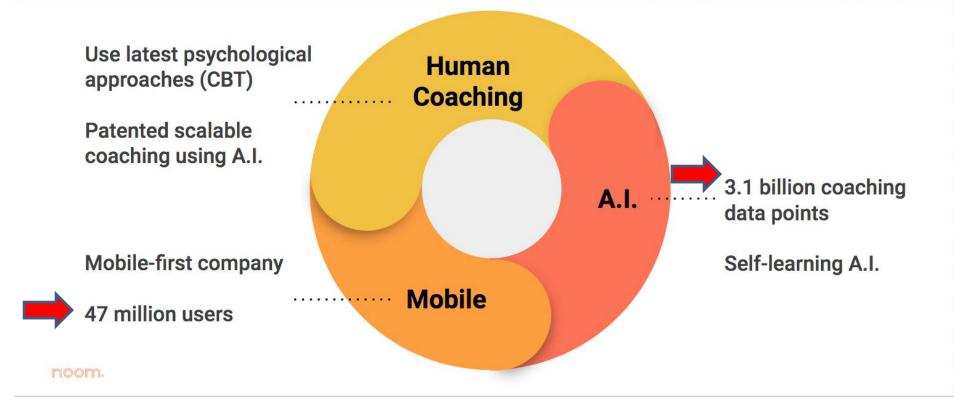
10 단위

아침 📄

밥 1공기(210g)

아침식전 트레시바

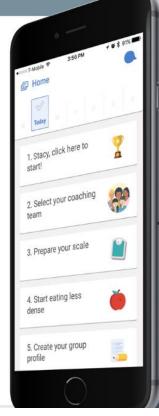
아침식전 애피드라


Schematic data flow

Integrated PGHD can be PGHD, converted into supplied to doctors for OMOP-CDM, is transferred practice. This data can be to hospital and integrated useful for additional with hospital's CDM. observational research. **Provider** actions Hospital's data can be transferred to application for Patients actions post-hospitalization care Health Most smartphone Patients enables sharing data Patient downloads health users have between apps via OS's health application compatible with app (eg iPhone's Health app) downloaded health-OHDSI (eg, NOOM) and related applications agrees to share their data with specific hospital

NOOM converted their data into CDM

Noom is a behavior change company that uses A.I., Human Coaching and Mobile Technology to create the world's most effective solutions for lifestyle & chronic conditions



NOOM converted their data into CDM

Noom Solution: **Effective & Scalable** Behavior Change Courses

What the user sees

- 100% mobile, interactive & customized courses renewing every 2 - 8 months
- Dedicated personal & group coach for each user
- Best-in-class tools like 3.7M Food DB with predictive search
- Durable results: 84% who start, complete; 60% keep off lost weight a year later¹

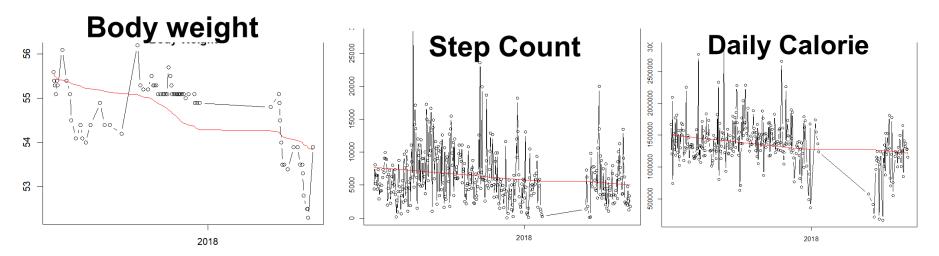
Behind the scenes

- Al-enabled coaching tools
- Proprietary coach dashboard
- 401 coaches worldwide (90% remote)
- Virtual clinical supervision & Noomiversity
- 3.1 billion virtual & human coaching data points (causal data)

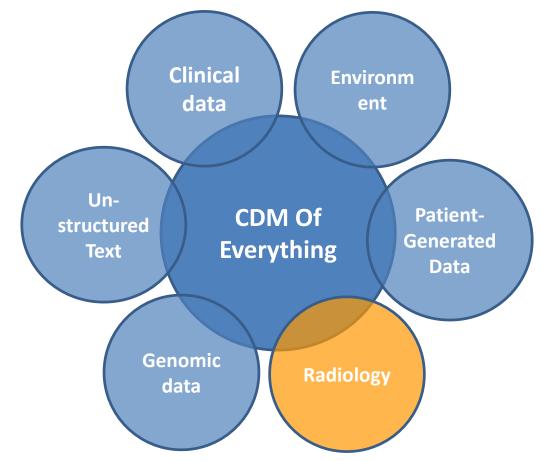
¹ One-year follow-up data; published in JMIR 2018;6(5):e93

ETL result of sample data from NOOM

- NOOM converted their sample data (n=100) into CDM
 - weight, daily step count, and daily dietary calories

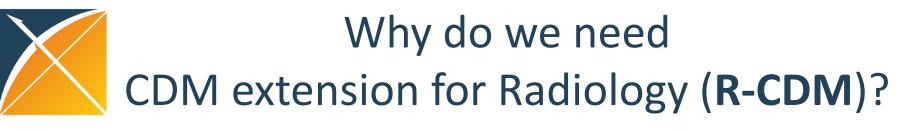

measurem	person_id	measurem	value_sour	unit_sourc	measurem	concept_name	measurement_date	measurement_datetime	value_as_r	unit_conce	unit_conce	measurem
1	1	Weight	103.4	kg	3025315	Body weight	2017-05-08	2017-05-08 22:56	103.4	4122383	kg	44818704
2	1	Weight	108	kg	3025315	Body weight	2017-03-22	2017-03-23 10:27	105	4122383	kg	44818704
3	1	Weight	109	kg	3025315	Body weight	2017-03-04	2017-03-04 9:46	106.7	4122383	kg	44818704
31	2	Weight	69.9	kg	3025315	Body weight	2017-07-11	2017-07-11 9:30	69.9	4122383	kg	44818704
32	2	Weight	70	kg	3025315	Body weight	2018-04-26	2018-04-26 9:39	65.8	4122383	kg	44818704
33	2	Weight	69.8	kg	3025315	Body weight	2018-02-28	2018-02-28 9:24	69.8	4122383	kg	44818704

observatio person	id observation_source_value	value_sour	unit_sourc ob	oservatio	concept_name	observation_date	value_as_number	unit_conce	unit_conceobservation	observatio	Observation_type_concept_name
1	1 Steps	9097 0	count	3034985	Number of steps in 24 hour Measured	2017-07-04	9348	44777556	per 24 hours	44814721	App generated
2	1 Steps	1600 0	count	3034985	Number of steps in 24 hour Measured	2017-04-24	1519	44777556	per 24 hours	44814721	App generated
3	1 Steps	7200 0	count	3034985	Number of steps in 24 hour Measured	2017-05-15	7269	44777556	per 24 hours	44814721	App generated
170	2 Steps	4944 (count	3034985	Number of steps in 24 hour Measured	2018-04-28	4944	44777556	per 24 hours	44814721	App generated
171	2 Steps	1800 (count	3034985	Number of steps in 24 hour Measured	2017-08-09	1687	44777556	per 24 hours	44814721	App generated
172	2 Steps	4381 0	count	3034985	Number of steps in 24 hour Measured	2018-02-14	4943	44777556	per 24 hours	44814721	App generated
173	2 Steps	8735 0	count	3034985	Number of steps in 24 hour Measured	2017-09-15	3626	44777556	per 24 hours	44814721	App generated
9147	19 Dietary Calories	1598000 0	calorie 4	4037128	Dietary calorie intake	2018-04-03	1498000	9472	calorie	44814721	Patient reported
9148	19 Dietary Calories	1186000 0	calorie 4	4037128	Dietary calorie intake	2018-04-04	1176000	9472	calorie	44814721	Patient reported
9149	19 Dietary Calories	1772000 0	calorie 4	4037128	Dietary calorie intake	2018-04-05	1672000	9472	calorie	44814721	Patient reported
9150	19 Dietary Calories	1329000 0	calorie 4	4037128	Dietary calorie intake	2018-04-06	1309000	9472	calorie	44814721	Patient reported
1											


Visualization of irregular time-series data

- Identification of trend in time-series data might be very difficult, if the patient records it irregularly.
- By using **dynamic linear regression**, the trend can be shown in the plot (red line) for better understanding of the data.

Common Data Model of Everything in Medicine


Seng Chan You, MD, MS¹, Kwang Soo Jeong¹, Si Hyung No², Kwon-Ha Yoon, MD, PhD³, Chang-Won Jeong, PhD², Rae Woong Park, MD, PhD^{1,4}

¹Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea;

²Imaging Science based Lung and Bone Disease Research Center, Wonkwang University, Iksan, Korea;

³Department of Radiology, Wonkwang University Colledge of Medicine

⁴Department of Biomedical Sciences, Aiou University Graduate School of Medicine, Suwon, Korea

Oncology radiology imaging integration into CDM 🖋

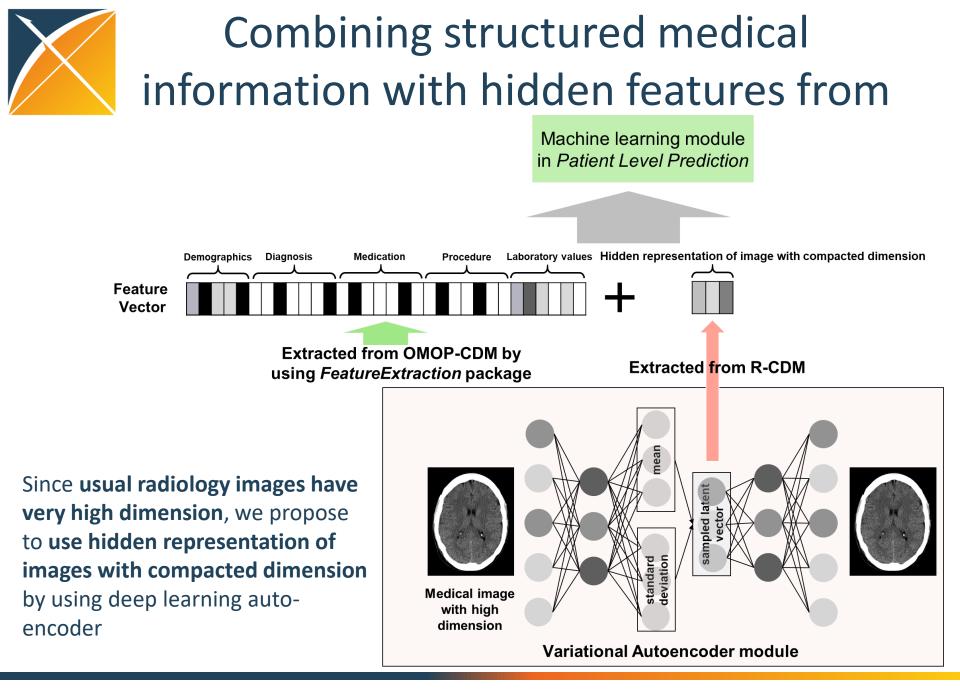
CDM Builders

Patrick_Ryan V

Dec '16

Reply

Team: I'm in <u>Sweden</u> right now, they've got some exciting research going on that involves linking various national registries (including prescription, hospitalization, and cancer) with a new dataset that pulls out radiology images of tumor sites, that can then be used for predictive modeling via deep learning and other algorithms. The team at Karolinska Institute have already demonstrated successful ETL for most of the registers, but as a community, we don't yet have a common solution for storing the imaging files and whatever associated records to link to them. Has anyone in the community worked on this problem, whether it be for oncology or for other areas? @Rijnbeek, does the work you've led in EKG imaging have some applicability here?

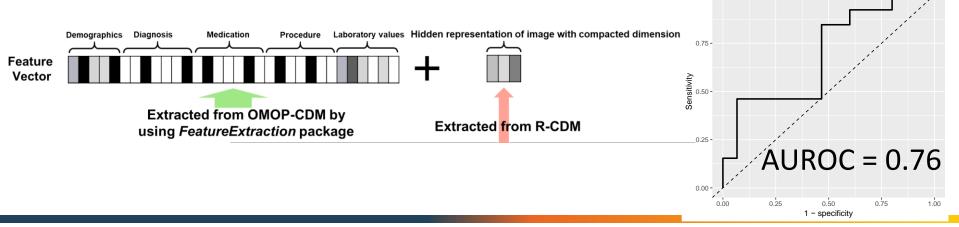


Basic concept for standardization of radiology data (R-CDM)

- MetaData and Path of images are stored in two tables
 - Radiology_Occurrence: each row represents single radiologic procedure
 - Device, Modality(CT/MRI,...), Total image counts, Radiology dosages, path, and etc.
 - Radiology_Image: each row represents single image from radiologic procedure
 - Phase (Non-contrast/contrast), Image number, pixel data, path, and etc.

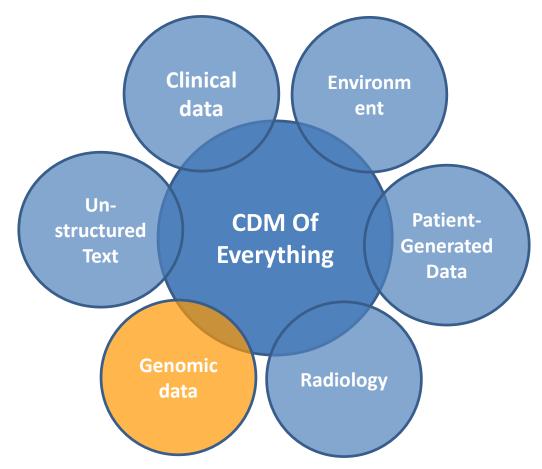
	Radiology_Occurrence)									
РК	Radiology occurrence ID	VARCHAR(255)	-	Radiology_Image							
	Radiology_occurrence_date	DATE		PK	Image ID	INT					
N	Radiology occurrence datetime	DATETIME		1	Source ID	VARCHAR(255)					
	Person ID	VARCHAR(64)		FK	Radiology_occurrence_ID	VARCHAR(255)					
FK,N	Condition_occurrence_ID	INT			Person ID	VARCHAR(64)					
FK	Device_concept_id	VARCHAR(25)			Person orientation concept id	VARCHAR(4)					
	Radiology_modality_concept_id	VARCHAR(5)		N	Image_type	VARCHAR(255)					
N	Person_orientation_concept_id	VARCHAR(10)		N	Radiology_phase_concept_id	VARCHAR(128)					
	Radiology_protocol_concept_id	VARCHAR(100)		3	Image_no	INT					
	Image_total_count	INT			Phase_total_no	INT					
N	Anatomic_site_concept_id	INT			Image_resolution_rows	INT					
N	Radiology_comment	VARCHAR(3000)			Image_resolution_columns	INT					
N	Image_dosage_unit_concept_id	VARCHAR(5)		N	Image_Window_Level_Center	VARCHAR(25)					
	Dosage_value_as_number	FLOAT		N	Image_Window_Level_Width	VARCHAR(25)					
N	Image_exposure_time_unit_concept_id	VARCHAR(5)		N	Image_slice_thickness	FLOAT					
N	Image_exposure_time	FLOAT			Image_filepath	VARCHAR(255)					
	Radiology_dirpath	VARCHAR(255)									
N	Visit occurrence id	INT		_	1						

http://forums.ohdsi.org/t/oncology-radiology-imaging-integration-into-cdm/2018/23?u=scyou



Pilot Study: Prediction of poor

functional outcome in ischemic stroke


Study Design

- Target cohort: The patients with ischemic stroke (n= 141)
- Outcome: Poor functional outcome 3 months after stroke, which defined by modified Rankin Scale more than 3 (n= 64)
- Machine learning algorithm: Lasso logistic regression
- Covariates: age group, gender, index year, and procedures combined with latent feature vector extracted from noncontrast phase of brain CT

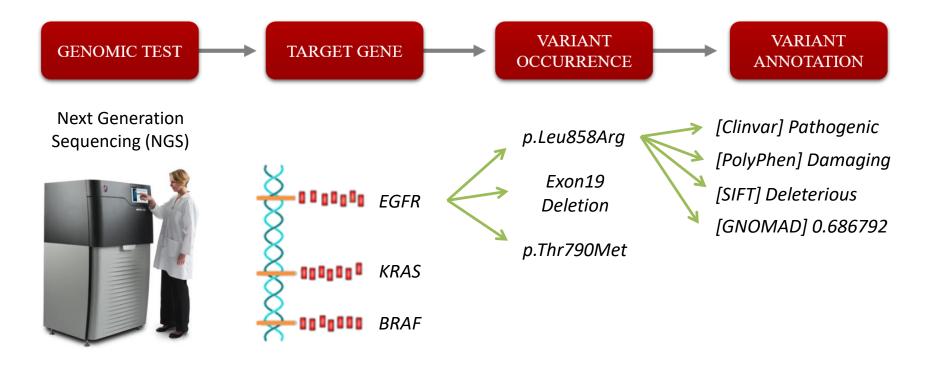
Common Data Model of Everything in Medicine

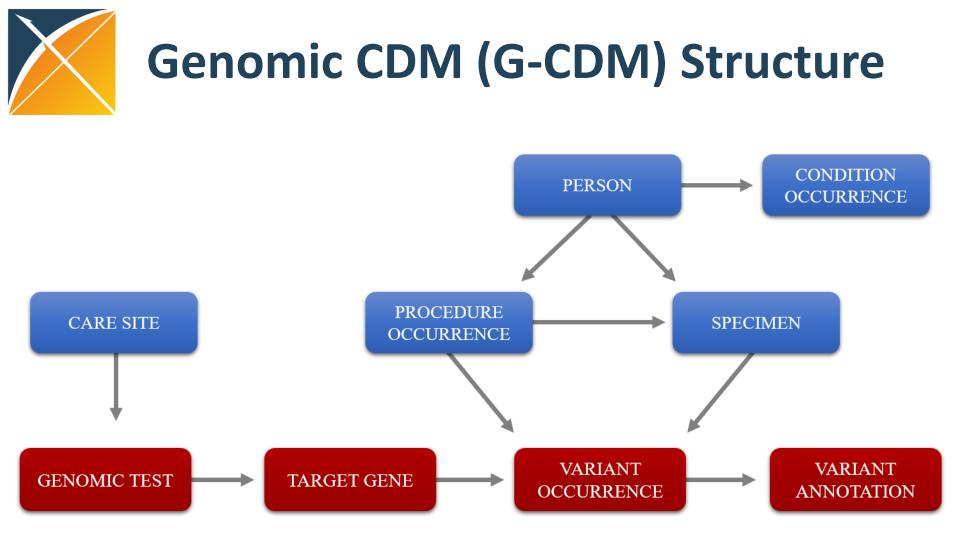
Seo Jeong Shin, MS¹, Seng Chan You, MD, MS¹, Jin Roh, MD, PhD², Rae Woong Park, MD, PhD^{1, 3} ¹Dept. of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; ²Dept. of Pathology, Ajou University Hospital, Suwon, South Korea; ³Dept. of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea

Because everyone matters.

IBM

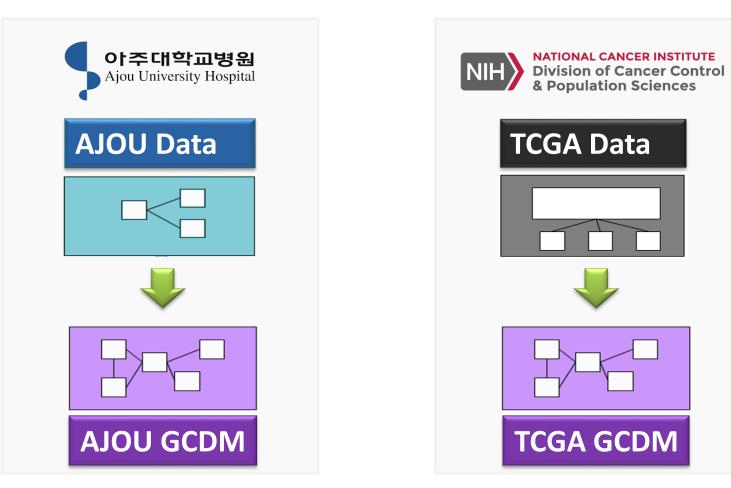
Exponential Growth in New Forms of Data Will Play an Increasing Important Role in Enabling Better Outcomes



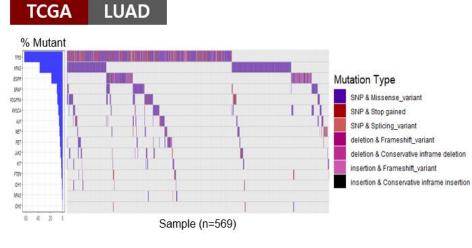

Background: Surge of genomic data

- Global waves of 'precision medicine'
 - Precision medicine initiative in US: Population of 1M, \$215M
 - Precision medicine initiative in China
- Insurance coverage of NGS in Korea
 - Since March 2017, national insurance coverage for targeted NGS in cancer patients has started in Korea.
 - No. of target genes
 - level 1: 5~50 (cost paid by the patient: \$450)
 - Level 2: 51~ (cost paid by the patient: \$640)
- Despite much progress, genomic and clinical data are still generally collected and studies in silos, in individual institutions, or individual nations

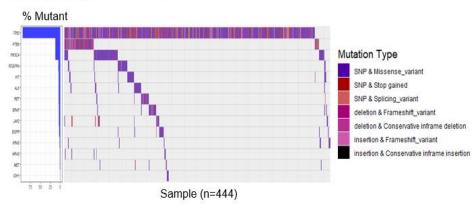
Genomic Test Process

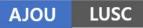


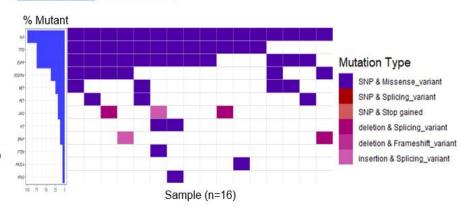
Schematic diagram of the relationship between the tables that make up the GCDM.



The data structures of the two institutes were unified.


Study Re Waterfall p of lung


Study Results: Waterfall plot of adenocarcinoma and squamous cell carcinoma of lung



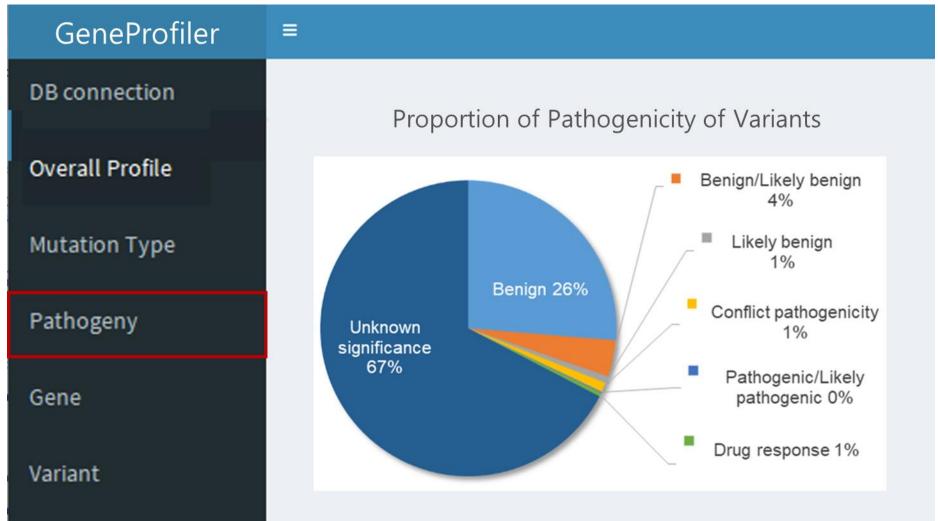
AJOU LUAD % Mutant Mutation Type SNP & Missense_variant 1044 SNP & Splicing_variant ROFF SNP & Stop gained 59.0 deletion & Splicing_variant deletion & Frameshift_variant deletion & Conservative inframe deletion insertion & Splicing_variant insertion & Frameshift variant insertion & Conservative inframe insertion 100 75 50 25 0 Sample (n=51)

TCGA LUSC

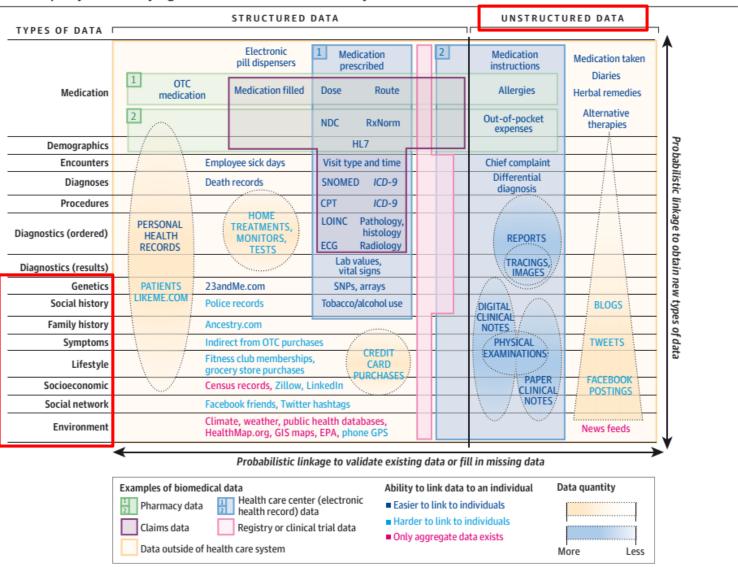


Gene profiler:


Visualization of structural and functional variant


Gene profiler:

Visualization of structural and functional variant


Gene profiler: Visualization of proportion of pathogenicity of variants

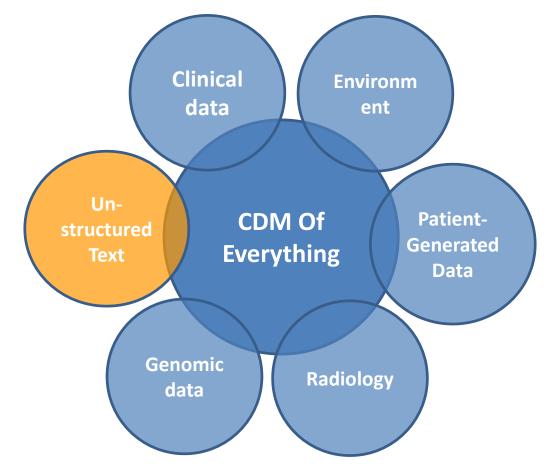

Connecting the missing link for big biomedical data

Figure. The Tapestry of Potentially High-Value Information Sources That May be Linked to an Individual for Use in Health Care

Common Data Model of Everything in Medicine

Giup Jang¹, Seng Chan You, MD², Dongsu Park², Youngmi Yoon, PhD³, Rae Woong Park, MD, PhD^{2,4}

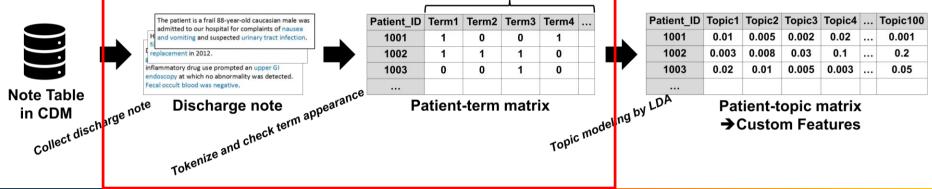
¹Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; ²Imaging Science based Lung and Bone Disease Research Center, Wonkwang University, Iksan, Korea;

³Department of Radiology, Wonkwang University Colledge of Medicine

⁴Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea

Cross-Language Natural Language Processing based on OMOP-CDM

- We aim to develop the cross-language natural language processing (NLP) module for medical free-text in OMOP-CDM by using topic modeling.
- To demonstrate the feasibility, we build prediction model for 30-day readmission through emergency room by combining features from structured clinical data and unstructured free-text in discharge note in OMOP-CDM



Overall Process

Tokenization of medical free-text based on medical dictionary

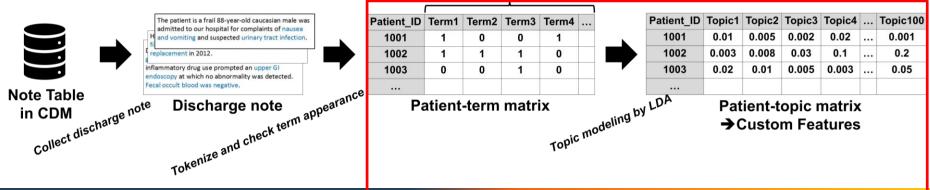
- Tokenization is to divide a sentence into a minimum number of meaningful units.
- Topic modeling by Latent Dirichlet Allocation (LDA)
 - Topic modeling allows a document to have multiple topics and to analyze the characteristics of the document in more detail than common cluster method.
 - LDA is one of the topic modeling algorithm, and it is highly modular and can be easily extended.
- Extracting features from note
 - Values for each topic estimated from the note by topic modeling were allocated into individual covariates. We developed *noteCoavariateExtraction* function, which is compatible with OHDSI tool ecosystem

(https://github.com/OHDSI/StudyProtocolSandbox/tree/master/noteCovariateExtraction).

Overall Process

Tokenization of medical free-text based on medical dictionary

• Tokenization is to divide a sentence into a minimum number of meaningful units.


Topic modeling by Latent Dirichlet Allocation (LDA)

- Topic modeling allows a document to have multiple topics and to analyze the characteristics of the document in more detail than common cluster method.
- LDA is one of the topic modeling algorithm, and it is highly modular and can be easily extended.

Extracting features from note

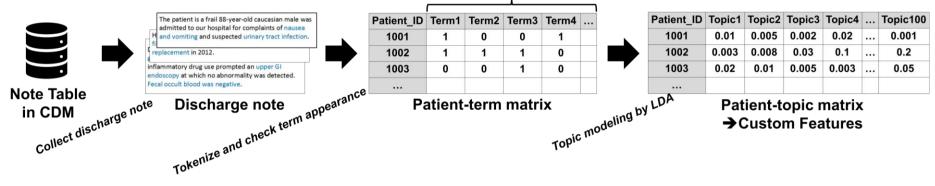
• Values for each topic estimated from the note by topic modeling were allocated into individual covariates. We developed *noteCoavariateExtraction* function, which is compatible with OHDSI tool ecosystem

(https://github.com/OHDSI/StudyProtocolSandbox/tree/master/noteCovariateExtraction).

Overall Process

Tokenization of medical free-text based on medical dictionary

• Tokenization is to divide a sentence into a minimum number of meaningful units.

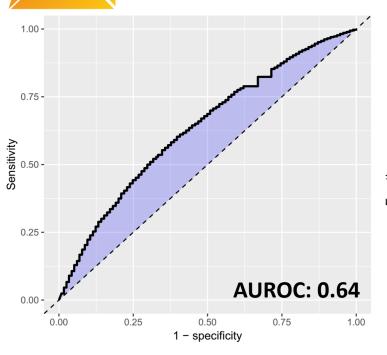

Topic modeling by Latent Dirichlet Allocation (LDA)

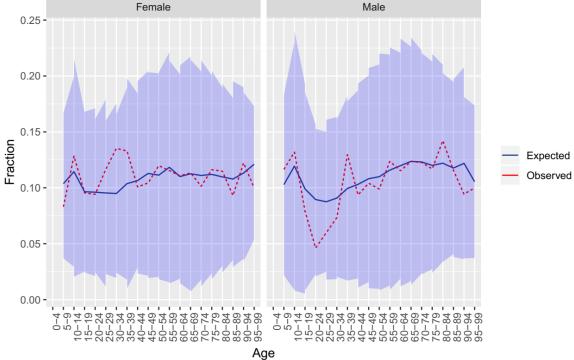
- Topic modeling allows a document to have multiple topics and to analyze the characteristics of the document in more detail than common cluster method.
- LDA is one of the topic modeling algorithm, and it is highly modular and can be easily extended.

Extracting features from note

• Values for each topic estimated from the note by topic modeling were allocated into individual covariates. We developed *noteCoavariateExtraction* function, which is compatible with OHDSI tool ecosystem

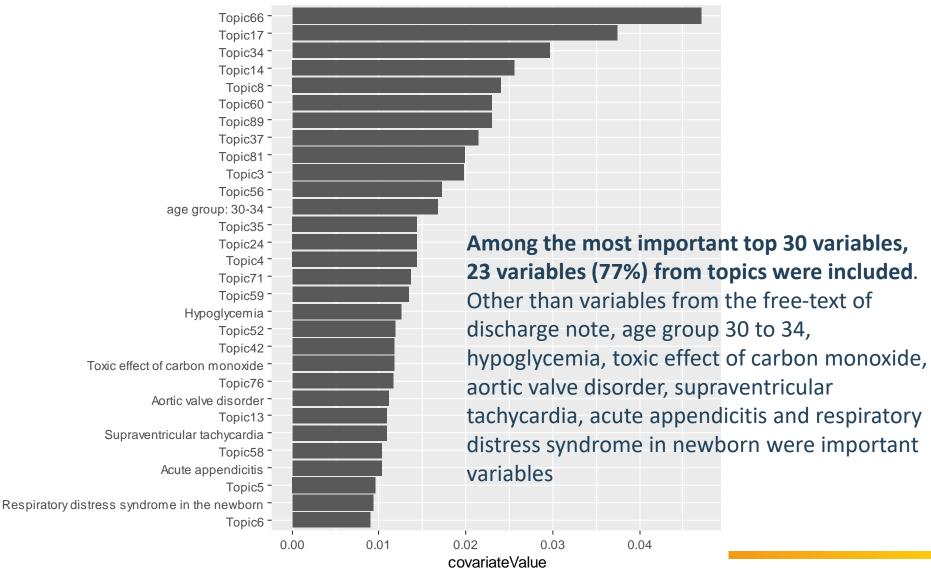
(https://github.com/OHDSI/StudyProtocolSandbox/tree/master/noteCovariateExtraction).

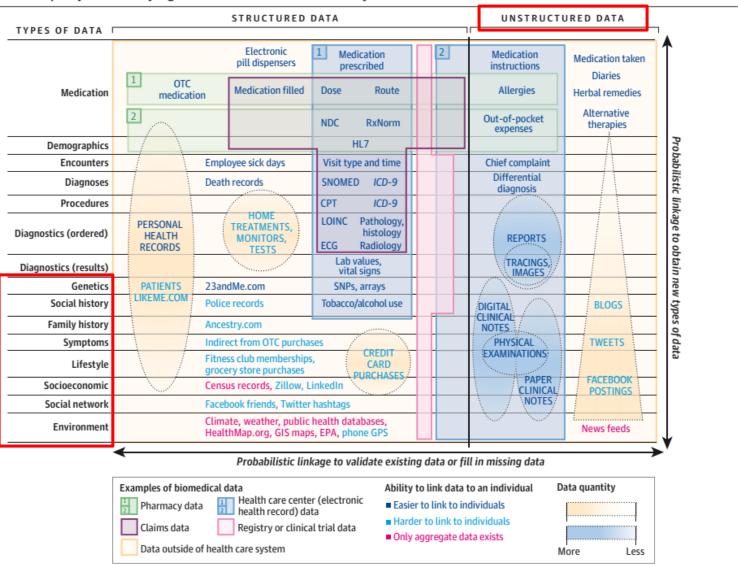




Experiments

- Building prediction model for readmission through emergency room to validate feasibility and usefulness of proposed NLP process
- Target cohort at risk: Subjects who admitted to the hospital and stayed 7 days or more from 1st January 2005 to 1st December 2017.
- Outcome cohort: Subjects who readmitted through emergency room within 30 days after discharge
- Covariates from conventional CDM: Gender, age group, race, ethnicity, index year, index month and condition within 30 days


Experiments-result

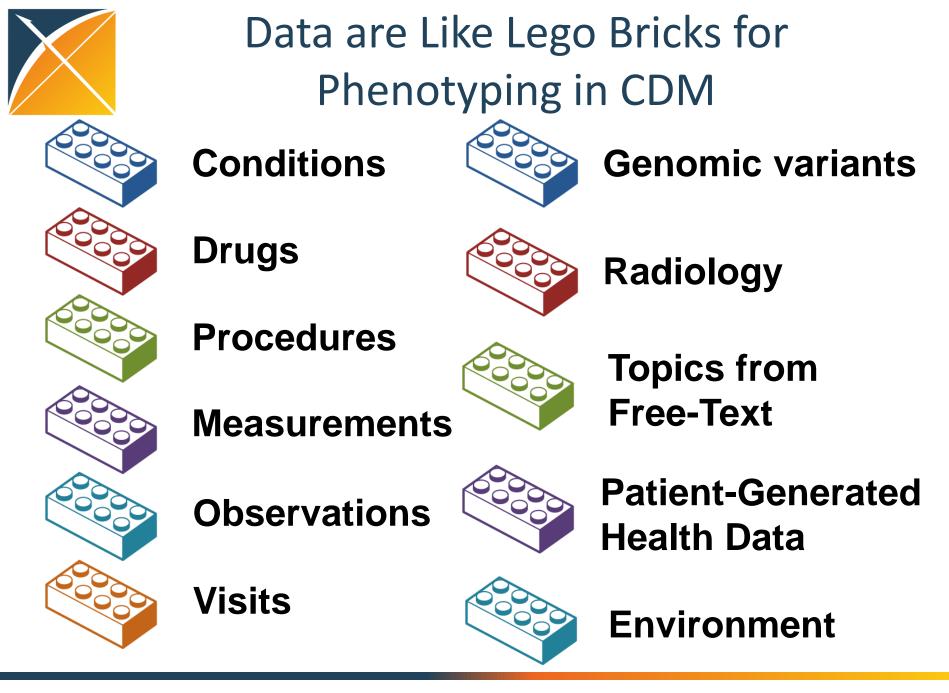

Top 30 most important values

Connecting the missing link for big biomedical data

Figure. The Tapestry of Potentially High-Value Information Sources That May be Linked to an Individual for Use in Health Care

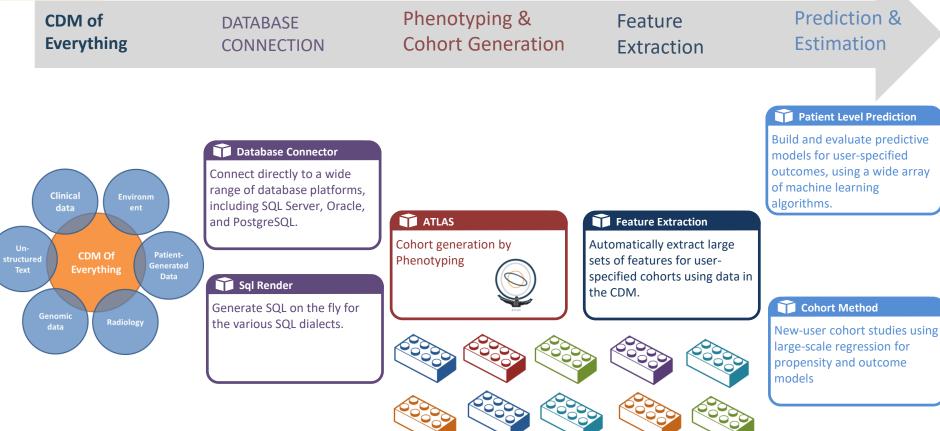
Data are Like Lego Bricks for Phenotyping in CDM

Conditions


Drugs

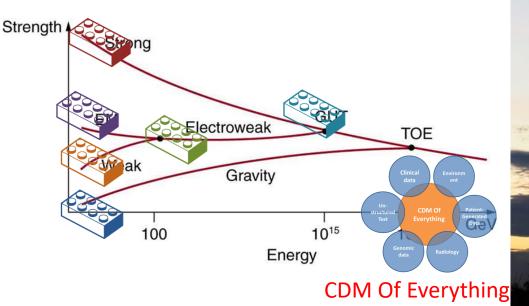
Procedures

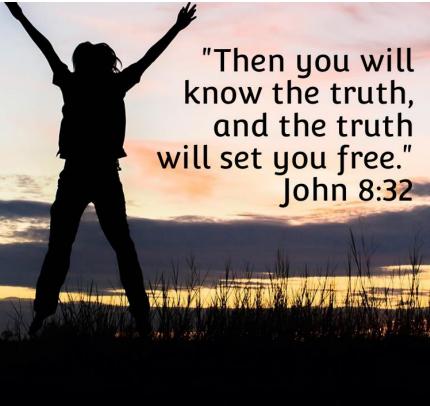
Measurements


Observations

Visits

OHDSI Tools Ecosystem with CDM of Everything




Symmetry in medical data

- By grand unification across all aspects of health data, various types of medical data would be indistinguishably accessible in the single database
- OHDSI tools ecosystem can work across various types of medical data

OHDSI: A Journey for Simplicity, Beauty and Symmetry in Medical Data

hank 0 M for your time