Development and Validation of Phenotype Classifiers across the OHDSI Network

MEHR KASHYAP, MARTIN SENEVIRATNE, JUAN M. BANDA, NIGAM SHAH DEPARTMENT OF BIOMEDICAL INFORMATICS, STANFORD UNIVERSITY

BACKGROUND: ELECTRONIC PHENOTYPING

- Electronic phenotyping identifying patients within an electronic health record with a specific condition of interest
- Why is this important
 - Observational research
 - PRAGMATIC CLINICAL TRIALS
 - QUALITY IMPROVEMENT
 - CLINICAL DECISION SUPPORT SYSTEMS
- Key challenges
 - EHR HETEROGENEITY, MISSINGNESS, ACCURACY

BACKGROUND: ELECTRONIC PHENOTYPING

"silver-standard training sets"

a semi-supervised approach where training samples are labeled automatically (using an imperfect labeling heuristic) rather than by manual review

Intuition: noise-tolerant classifiers trained on imperfectly labeled data will abstract higher order properties of the phenotype beyond the original labeling heuristic

01	Halpern <i>et al.</i> (2016) <i>JAMIA</i>	•	Anchor learning
02	Agarwal <i>et al.</i> (2016) <i>JAMIA</i>	•	XPRESS
03	Banda et al. (2017) AMIA Transl Summits	•	APHRODITE OHDSI package

B Creating a silver standard

Source: Agarwal et al, 2016, JAMIA

BACKGROUND: APHRODITE VALIDATION TO DATE

- Previously locally validated for two phenotypes
 - Type 2 diabetes mellitus
 - Myocardial infarction

	Cases	Cont.	Acc.	Recall	PPV	Cases	Cont.	Acc.	Recall	PPV
Source	Му	ocardia	l Infar	ction (N	11)	Type 2	Diabet	t <mark>es Me</mark> l	litus (T2	2DM)
OMOP/PheKB definition ²	94	94	0.87	0.91	0.84	152	152	0.92	0.88	0.96
XPRESS 2	94	94	0.89	0.93	0.86	152	152	0.89	0.88	0.9
APHRODITE (750)	94	94	0.91	0.93	0.90	152	152	0.91	0.95	0.88
APHRODITE (1,500)	94	94	0.92	0.93	0.91	152	152	0.92	0.95	0.89
APHRODITE (10,000)	94	94	0.92	0.94	0.91	152	152	0.93	0.96	0.89

Source: Banda et al, 2017, AMIA Jt Summits Transl Sci Proc.

QUESTION 1

FOR SITUATIONS IN WHICH PRECISION IS IMPORTANT, CAN WE BUILD HIGH-PRECISION CLASSIFIERS USING A PRECISE LABELING FUNCTION, WITHOUT RELYING ON TEXT DATA?

QUESTION 2

CAN WE USE APHRODITE CLASSIFIERS AT OTHER OHSDI SITES? HOW GENERALIZABLE IS THE PIPELINE OR THE CLASSIFIERS IT CREATES?

QUESTION 3

CAN WE ASSESS CLASSIFIER PERFORMANCE BY COMPARING DEMOGRAPHICS OF PATIENTS IDENTIFIED AS CASES ACROSS MULTIPLE SITES?

Patient extract from Stanford Medicine Research Data Repository

1.8 million patients – laboratory results, procedures, drug exposures, diagnosis codes

Mapped to OMOP Common Data Model v5

METHODS: CLASSIFIER BUILDING PIPELINE

Source: Agarwal et al, 2016, JAMIA

METHODS: IMPERFECT LABELING HEURISTIC

- Labeling heuristic multiple mentions of disease specific code
- Patients with 2+ mentions of relevant codes considered cases
- High precision, low recall

METHODS: CLASSIFIER EVALUATION

EXPERIMENT 1: LOCAL RESULTS

Dhanatuna	Prevalence	Multiple me	ntions of S	NOMED code	APH cla	RODITE assifier	Recall boost	Precision loss	
r nenotype	in test set	No. of mentions Reca		Precision	Recall	Precision	using classifier	using classifier	
Appendicitis	0.05	2	0.31	1.00	0.97	0.99	+0.66	-0.01	
T2DM	0.14	4	0.24	0.99	0.60	0.91	+0.36	-0.08	
Cataracts	0.17	4	0.07	0.97	0.63	0.93	+0.56	-0.04	
Heart Failure	0.02	4	0.33	0.94	0.99	0.56	+0.66	-0.38	
Abdominal Aortic Aneurysm	0.04	4	0.22	0.99	0.53	0.97	+0.31	-0.02	
Epileptic seizure	0.02	4	0.06	1.00	0.22	0.94	+0.17	-0.06	
PAD	0.05	4	0.18	0.98	0.91	0.91	+0.72	-0.07	
Adult onset obesity	0.36	4	0.20	1.00	0.29	0.91	+0.09	-0.09	
Glaucoma	0.01	4	0.08	1.00	0.22	0.88	+0.14	-0.12	
VTE	0.01	4	0.03	1.00	0.69	0.22	+0.66	-0.78	

- Classifiers retain **high precision + recall boost** relative to the labeling heuristic:
 - LEARNING ALGORITHM ABLE TO GENERALIZE SUCH THAT FINAL MODEL HAS HIGHER RECALL THAN ORIGINAL LABELING FUNCTION
 - SUITABLE for phenotyping tasks where precise cohorts required
- Real-world prevalence used
- Ten phenotype classifiers developed construction time ~1.5 hrs/phenotype
- This method **does not rely on textual data**

EXPERIMENT 2: PERFORMANCE ACROSS OHDSI NETWORK

Development site		Stanford		Columbia	SNUBH		Stanford		Columbia	SNUBH	
Validation site	Stanford	Columbia	SNUBH	Stanford	Stanford	Stanford	Columbia	SNUBH	Stanford	Stanford	
Phenotype			Recall	·		Precision					
Appendicitis	0.97	0.9	0.09	0.97	0.52	0.99	0.9	0.56	0.92	0.13	
T2DM	0.6	0.63	0.77	0.45	0.67	0.91	0.86	0.75	0.94	0.51	
Cataracts	0.63	0.45	0.84	0.2	0.35	0.93	0.79	0.85	0.96	0.42	
Heart Failure	0.99	0.97	0.8	0.01	0.71	0.56	0.67	0.75	1	0.11	
Abdominal Aortic Aneurysm	0.53	0.24	0.54	0.68	0.33	0.97	0.75	0.87	0.96	0.13	
Epileptic seizure	0.22	0.3	0.28	0.57	0.46	0.94	0.87	0.55	0.74	0.08	
PAD	0.91	0.89	0.57	0.89	0.46	0.91	0.87	0.68	0.91	0.24	
Adult onset obesity	0.29	0.33	0.07	0.04	0.39	0.91	0.93	0.73	0.9	0.68	
Glaucoma	0.22	0.18	0.11	0.65	0.22	0.88	0.78	0.65	0.66	0.06	
VTE	0.69	0.34	0.2	0.05	0.46	0.2	0.71	0.83	0.63	0.05	

- Models trained at Stanford work very well at Columbia and reasonably well at SNUBH
- Conversely, models trained at Columbia work well at Stanford
- However, models trained at SNUBH do not work well at Stanford

EXPERIMENT 3: COHORT DEMOGRAPHICS

Phenotype	Characteristic	Stanford	Columbia	SNUBH
Annondicitic	Male (%)	0.52	0.52	0.51
Appendicitis	Mean age	36.36	34.14	44.49
тэрм	Male (%)	0.53	0.44	0.56
I 2DIVI	Mean age	63.65	67.77	66.47
Cataraata	Male (%)	0.49	0.37	0.43
Cataracis	Mean age	67.02	75.54	68.22
Hoort Foilung	Male (%)	0.56	0.50	0.48
neart ranure	Mean age	65.58	70.69	72.9
Abdominal Aortic	Male (%)	0.75	0.68	0.79
Aneurysm	Mean age	76.60	78.24	77.41
Enilantia agimug	Male (%)	0.43	0.47	0.53
Ephepuc seizure	Mean age	43.83	45.57	32.27
DAD	Male (%)	0.54	0.48	0.69
rad	Mean age	70.29	73.29	66.22
A dult anget abasity	Male (%)	0.44	0.30	0.61
Adult onset obesity	Mean age	57.73	45.18	35.9
Clausama	Male (%)	0.50	0.40	0.58
Giaucoma	Mean age	67.96	80.10	62.97
VTE	Male (%)	0.53	0.39	0.51
VIE	Mean age	38.67	65.02	68.46
All potionts	Male (%)	0.45	0.45	0.48
An patients	Mean age	39.40	39.90	40.41

EXPERIMENT 3: DISCUSSION

- Phenotype **models with high precision identify similar patients** across different sites
- Comparing demographics of cases identified by classifiers across different sites may serve as a **proxy for model validation**
 - This could be useful in the absence of manually labeled or rule-based evaluation sets
- Unclear when variation in demographics simply represents underlying patient differences

- Classifiers built using precise training data retain high precision while improving recall relative to the labeling heuristic
 - $^{\odot}$ Classifiers are able to generalize such that final model has higher recall than original LABELING FUNCTION
- Classifiers generally perform well across OHDSI sites though this may be limited by regional discrepancies in mapping of EHR data
 - Should we be sharing "recipes" rather than completed models?
- In the absence of manually labeled or rule-based evaluation sets, comparing demographics of cases identified by classifiers may serve as a proxy for model validation

ACKNOWLEDGEMENTS

- MARTIN SENEVIRATNE
- JUAN BANDA
- ROHIT VASHISHT
- Ken Jung
- STEVEN BAGLEY
- STEPHEN PFOHL
- VIBHU AGARWAL
- NIGAM SHAH
- Shah lab members

OHDSI COLLABORATORS

- THOMAS FALCONER
- SOOYOUNG YOO
- BORIM RYU
- OHDSI COMMUNITY

CONTACT: MKASHYAP@STANFORD.EDU