OHDSI Gold Standard Phenotype Library Working Group

Community Call
Progress Update

Aaron Potvien
April 2, 2019
Gold Standard Phenotype Library (GSPL)

(Talked about why we need the GSPL on January 15th)

Objective:

To enable members of the OHDSI community to find, evaluate, and utilize community-validated cohort definitions for research and other activities.
FAIR Principles

- GSPL development is being guided by FAIR Principles

- Reference: The FAIR Guiding Principles for scientific data management and stewardship by Wilkinson et al. (2016)
Box 2 | The FAIR Guiding Principles

To be Findable:
- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:
- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
 - A1.1 the protocol is open, free, and universally implementable
 - A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

To be Interoperable:
- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (meta)data use vocabularies that follow FAIR principles
- I3. (meta)data include qualified references to other (meta)data

To be Reusable:
- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
 - R1.1. (meta)data are released with a clear and accessible data usage license
 - R1.2. (meta)data are associated with detailed provenance
 - R1.3. (meta)data meet domain-relevant community standards
Library Architecture Formulation

End User

Librarians

Authors

Validators
“Gold Standard” you say?

• What it **isn’t:**
 - Imposing rules to make sure phenotypes have “good enough” metrics.

• What it **is:**
 - Librarians making sure that certain “**gold standard processes**” are being followed when a phenotype is submitted to the library and when a phenotype is validated.
Gold Standard Processes

Author Data Elements

• **Metadata:**
 • Title
 • Author(s) and Affiliations
 • Date of Submission
 • Modality (Rule-Based or Computable)
 • Links to implementation/config files on GitHub

• **Development:**
 • Purpose and Intended Use
 • Development Methodology
 • Flowchart

• **Identify CDM Dependencies:**
 • Conditions
 • Drug Exposures
 • Labs
 • Measurements
 • Notes NLP
 • Observations
 • Procedures
 • Visits

• **Provenance:**
 • Other phenotype definitions this phenotype was derived from or inspired by
Gold Standard Processes

Validator Data Elements

- **Metadata:**
 - Title
 - Author(s) and Affiliations
 - Date of Submission
 - Hash of phenotype evaluated
 - Validation procedure

- **Metrics:**
 - Sample Size
 - True Positives/Negatives
 - False Positives/Negatives
 - Was a THEMIS-certified dataset used?
Hash-based Linkage

- A Phenotype is identified by a hash of its implementation file

Phenotypes

Validation Sets

7245cf0ee90b52deb5b9965f42a5f32cff585d29

Set 1
Set 2
Set 3
Hash-based Linkage

- A Phenotype is identified by a hash of its implementation file

![Diagram showing hash-based linkage with Phenotypes and Validation Sets]
Data for the library will be stored on GitHub.

A companion Shiny application will exist to help with searching through this data, compare and contrast phenotypes, etc.
Shiny App Viewer

data.ohdsi.org/PhenotypeLibraryViewer/

Author Submission Template (Example)

Summary

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotype Title</td>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>Author(s) and Affiliations</td>
<td>Jane Doe, Example University</td>
</tr>
<tr>
<td>Date of Submission</td>
<td>March 21, 2019</td>
</tr>
<tr>
<td>Modality</td>
<td>Computable</td>
</tr>
</tbody>
</table>

Source Data

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotype GitHub Page</td>
<td>https://www.github.com</td>
</tr>
<tr>
<td>Implementation File</td>
<td>https://www.github.com</td>
</tr>
<tr>
<td>Hash of implementation File</td>
<td>72435cfe9f0b52debf3b9a6f42aaf3c2ff3ff358f623</td>
</tr>
<tr>
<td>Configuration File</td>
<td>https://www.github.com</td>
</tr>
</tbody>
</table>

Development

Purpose and Intended Use

This definition is intended to capture patients with a first-observed diagnosis of chronic rheumatoid arthritis (RA), taking care to rule out patients with short-term joint pain or fibromyalgia. Please note this definition is intended to be used with US-only data.

Development Methodology
Combining OHDSI Toolsets

Aphrodite (Juan Banda)

https://github.com/OHDSI/Aphrodite

- **Can create phenotypes** probabilistically by learning good phenotypes from a set of noisy labels
- Built to interface with the OMOP CDM to automatically create and utilize features using all data in your CDM (or a subset, if you choose)
- Machine learning takes into account more features than what could be considered by hand, and labeling heuristic is less time consuming
- Performs internal validation and is easy to share (config file tracks how it was built; binary object output tracks the definition itself)
Combining OHDSI Toolsets
PheValuator (Joel Swerdel)
https://github.com/OHDSI/PheValuator

- **Can evaluate phenotypes** to see how well they perform, offering an alternative to low-powered and time-consuming clinical review.

- Uses a diagnostic predictive model to assign a large sample of people a predicted probability of having the condition.

- Assess “Truth” based on an extremely specific cohort (xSpec) or extremely sensitive cohort (xSens).

- Produces *all* metrics (not just PPV) for a complete understanding of phenotype definition performance.

- Like Aphrodite, will automatically output documentation needed for being a Gold Standard Process.
Combining OHDSI Toolsets

• Combining these tools can help to populate the library.

- Phenotype Made with Aphrodite
- Phenotype Library on GitHub
- Validation Sets Created with PheValuator
- Data Viewed with Shiny Application

• **Not required** to be “gold standard” but available to help facilitate the process and avoid pitfalls!
Feedback Welcomed!

Forum:
http://forums.ohdsi.org/t/requirements-development-for-the-ohdsi-gold-standard-phenotype-library/4876

Wiki:

Aphrodite:
https://github.com/OHDSI/Aphrodite/

PheValuator:
https://github.com/OHDSI/PheValuator/

Viewer Application:
http://data.ohdsi.org/PhenotypeLibraryViewer/

My e-mail:
Aaron.Potvien@gtri.gatech.edu

Thanks!