A Machine-Learning Model to Predict Mortality and its Causes using the National Health Insurance Service National Sample Cohort

Chungsoo Kim, PharmD1, Seng Chan You, MD, MS2, Rae Woong Park MD, PhD1,2,3

- ¹ Dept of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea;
- ² Dept of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea;
- ³ FEEDER-NET(Federated E-Health Big Data for Evidence Renovation Network)

Introduction

Death, Cause of death

Death

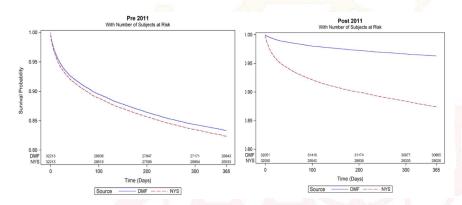
- Death is clearly of tremendous important for each individual and also important value in clinical research
- Poorly providing due to privacy concerns and the possibility of social abuse

Cause of death

- All-cause mortality is less sensitive to each disease condition and highly affected by underlying disease
- It can be used for various studies like Global Burden of Disease Study of WHO, Sustainable Development Goals (SDGs)

Alive or dead: Validity of the Social Security Administration Death Master File after 2011

Matthew A. Levin MD^{1,2} | Hung-Mo Lin ScD³ | Gautham Prabhakar BA⁴ | Patrick J. McCormick MD MEng⁵ | Natalia N. Egorova PhD³



Attempt to predict death in OHDSI

https://doi.org/10.1007/s40264-019-00827-0

ORIGINAL RESEARCH ARTICLE

Identifying the DEAD: Development and Validation of a Patient-Level Model to Predict Death Status in Population-Level Claims Data

Jenna M. Reps¹ · Peter R. Rijnbeek² · Patrick B. Ryan¹

© The Author(s) 2019

Abstract

Introduction US claims data contain medical data on large heterogeneous po cal research. Some claims data do not contain complete death records, limiting studies. A model to predict whether a patient died at the end of the follow-up needed to enable mortality-related studies.

Objective The objective of this study was to develop a patient-level model to due to death in US claims data.

Methods We used a claims dataset with full death records, Optum[©] De-Identifi of Death mapped to the Observational Medical Outcome Partnership commo fies the end of observations into death or non-death. A regularized logistic re (recorded within the prior 365 or 30 days) and externally validated by applying Results Approximately 25 in 1000 end of observations in Optum are due to dea Alive and Dead (DEAD) model obtained an area under the receiver operating

death as a predicted risk of > 0.5, only 2% of the end of observations were predict a sensitivity of 62% and a positive predictive value of 74.8%. The external validation showed the model was transportable,

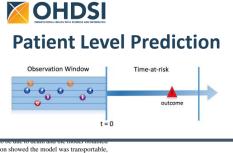
with area under the receiver operating characteristic curves ranging between 0.951 and 0.995 across the US claims databases, Conclusions US claims data often lack complete death records. The DEAD model can sensitivity, specificity, or positive predictive values depending on the use of the mode applied to any observational healthcare database mapped to the Observational Medical

1 Introduction

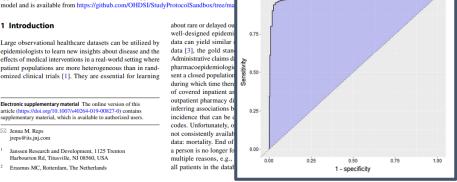
Large observational healthcare datasets can be utilized by epidemiologists to learn new insights about disease and the effects of medical interventions in a real-world setting where patient populations are more heterogeneous than in randomized clinical trials [1]. They are essential for learning

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s40264-019-00827-0) contains supplementary material, which is available to authorized users

- jreps@its.jnj.com
- Janssen Research and Development, 1125 Trenton Harbourton Rd, Titusville, NJ 08560, USA
- Erasmus MC, Rotterdam, The Netherlands



- A study to predict the death by using machine learning
- A machine learning model was developed using a Patient-level prediction package provided by OHDSI and external validation was performed
- The machine learning model based on OMOP CDM has transferable characteristics that can be easily applied to other institutions.
- AUROC: 0.989



Purpose of this study

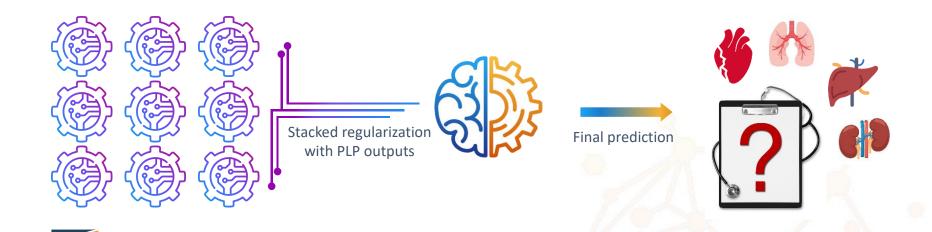
The purpose of this study is
to develop a machine learning model
that can predict patient's death and its cause
by using common data model database
of National Sample Cohort in South Korea.

Method

Overall Concept

Patient Level

Prediction models



Ensemble model

Predict patient death

and its cause

Data Sources

For model develop and internal validation

National Health Insurance Services National Sample Cohort (NHIS-NSC)

- OMOP CDM
- National Claim database
- No. of patients: 1 millions (Sample)

For External validation

Ajou University School of Medicine (AUSOM)

- OMOP CDM
- Tertiary hospital EMR data
- No. of patients: 3 millions

Population/outcome settings, Feature extraction

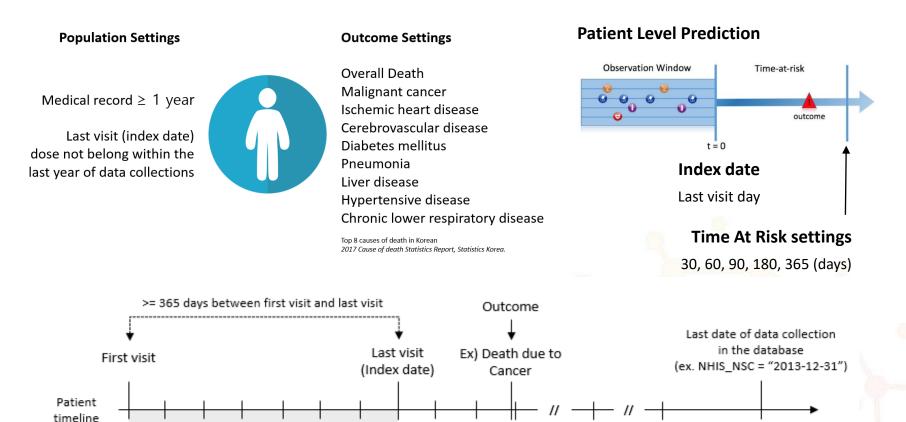


Figure 1. Population settings, outcome settings, a schematic view of a patient data extraction

Feature Extraction

(ex. Demographics, Drug, Condition, etc)

180

>= 365 days between last visit and last date of data collection

365

(Days)

Applying patient level prediction

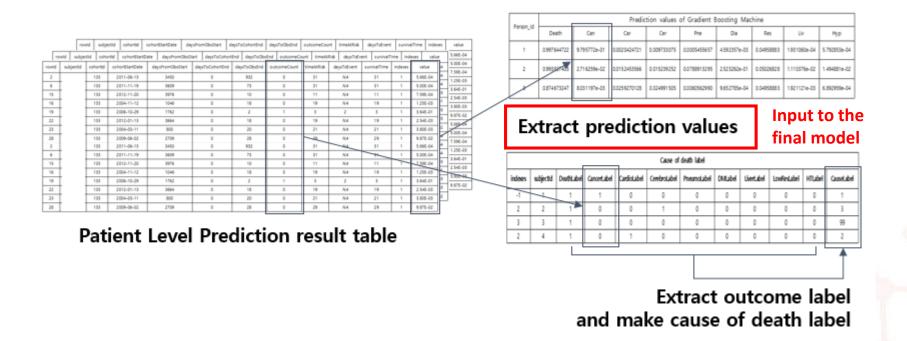


Figure 2. Extracting prediction values and outcome labels in patient level prediction package result file.

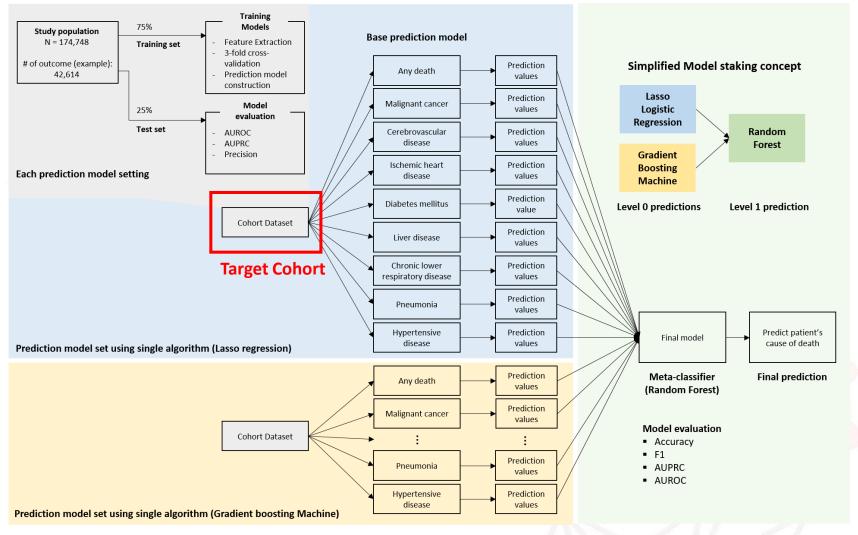


Figure 3. Overall prediction model development process

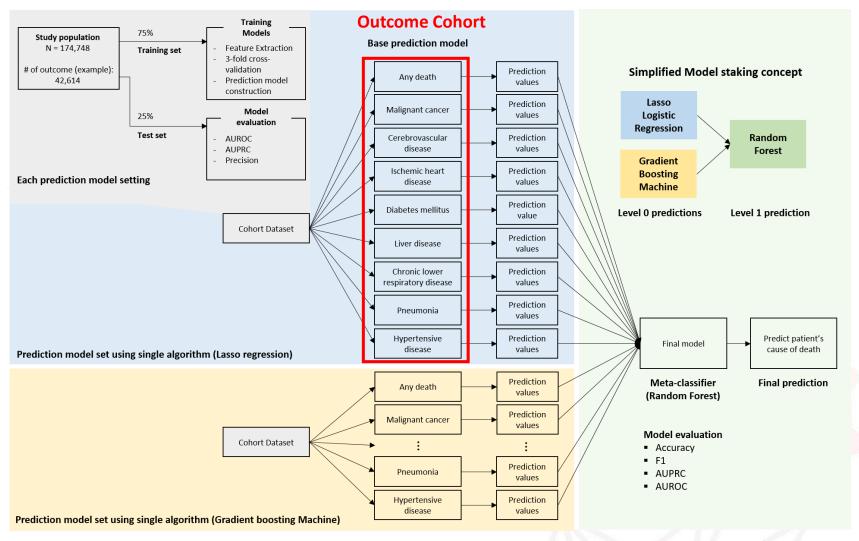


Figure 3. Overall prediction model development process

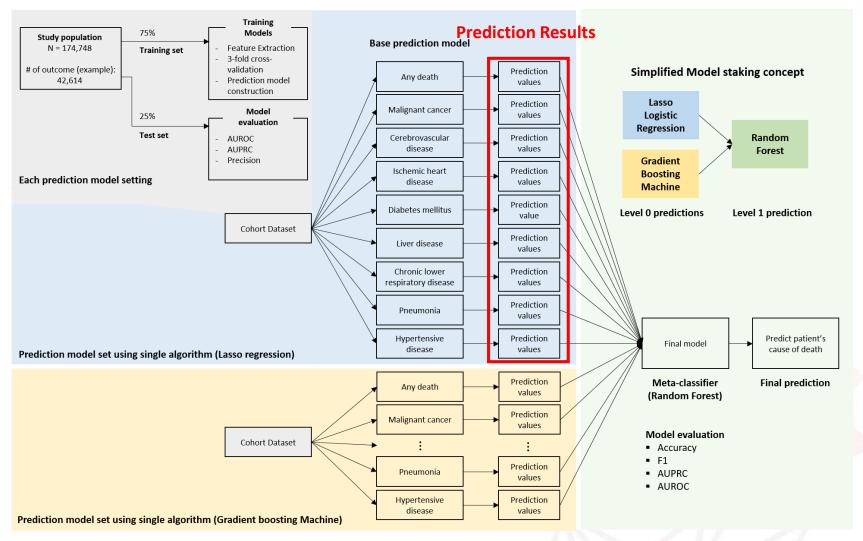


Figure 3. Overall prediction model development process

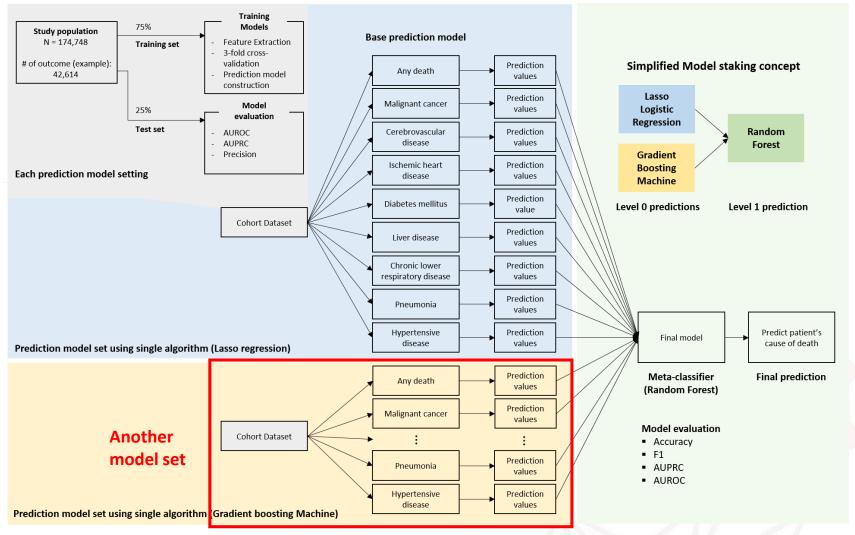


Figure 3. Overall prediction model development process

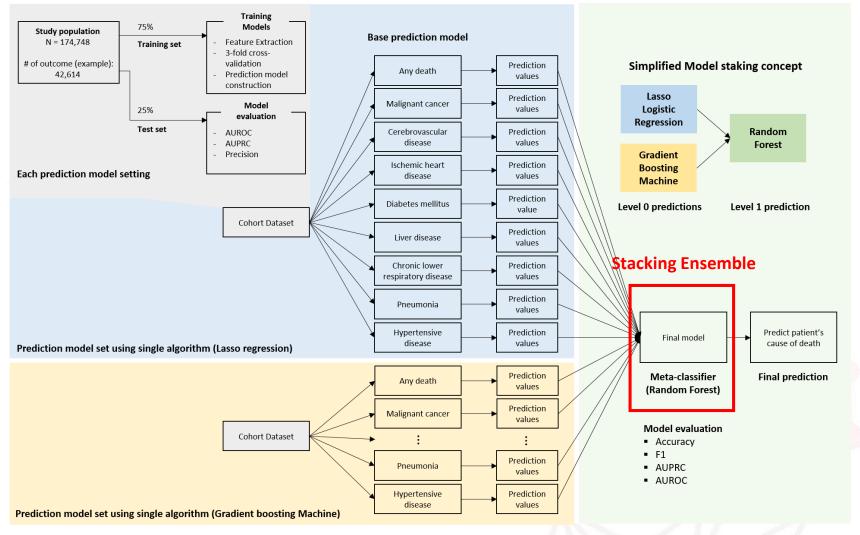


Figure 3. Overall prediction model development process

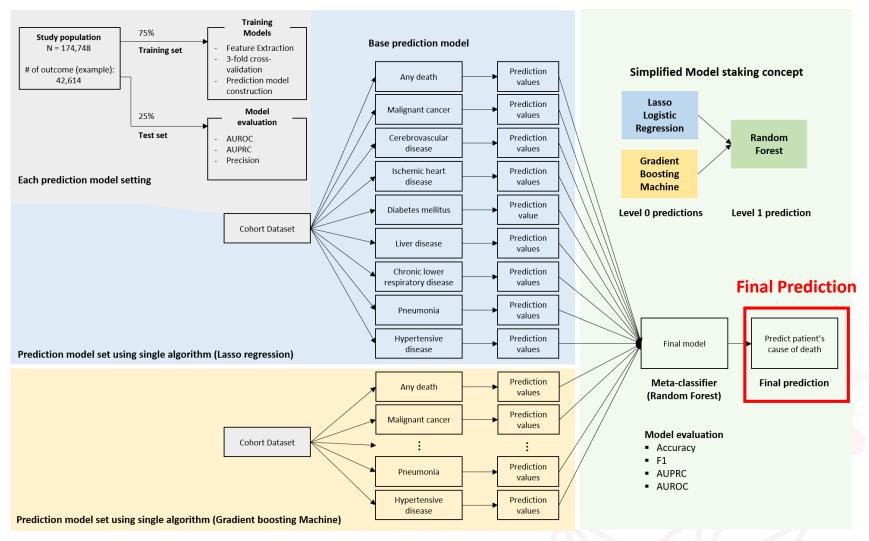


Figure 3. Overall prediction model development process

Models / covariate settings

Model settings

- Stacking ensemble model
- level 0 : Lasso regression
 Gradient boosting machine
- level 1: Random Forest
- Training : Test = 75 : 25
- 3-fold cross validation

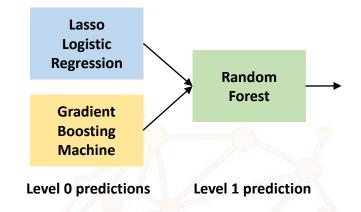


Figure 4. Simplified model stacking concept

Covariate Settings

- 39 covariates
- Demographics, Condition, Drug, Procedure Observation, Visit Count etc

Result

Model development

Flowchart

Characteristics

Individual prediction

Stacked model

External validation

Database: NHIS- NSC (1M)

Target cohort: 174,748

Outcome cohort (causes of death)

Any death: 42,614

Malignant cancer: 12,506

- Cerebrovascular disease: 4,731

- Ischemic heart disease: 2,282

Diabetes mellitus: 1,904

Liver disease: 1,440

Chronic lower respiratory disease: 1,235

- Pneumonia: 967

Hypertensive disease: 834

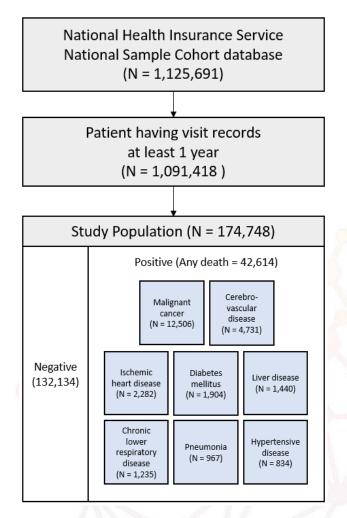


Figure 5. The flowchart of study population

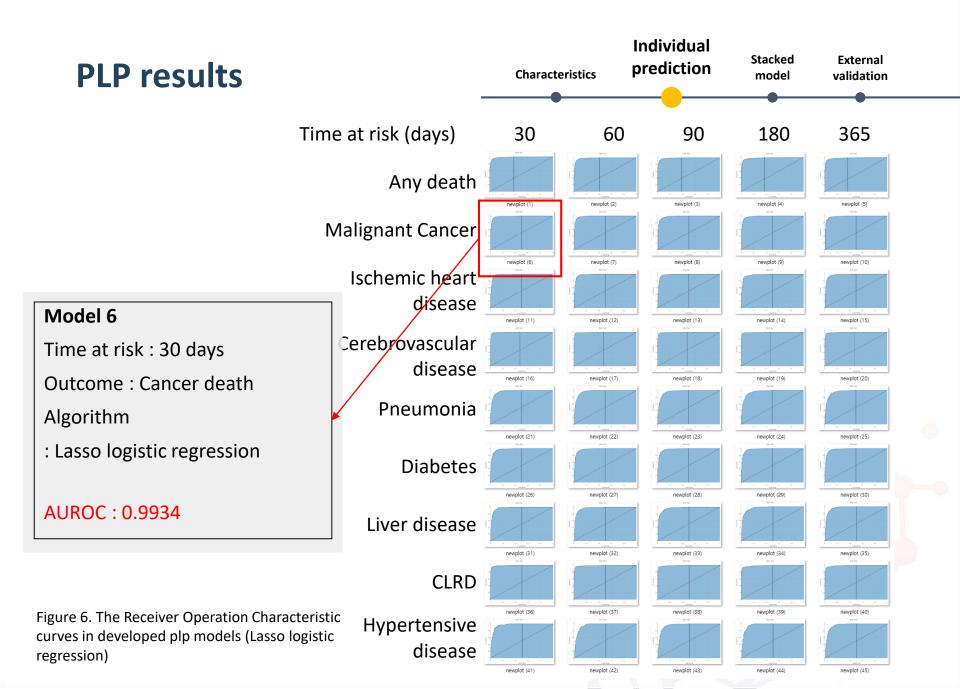
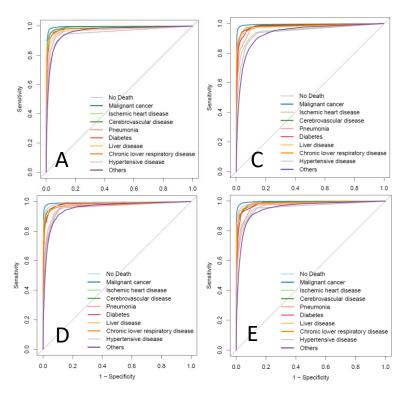


Table 1. The area under the receiver operating curve in the prediction models (test set)

	Lasso logistic regression model				Gradient Boosting Machine model					
Time at risk (days)	30	60	90	180	365	30	60	90	180	365
Causes of death										
Any death	0.9846	0.9862	0.9850	0.9819	0.9810	0.9862	0.9882	0.9867	0.9854	0.9835
Malignant cancer	0.9934	0.9951	0.9951	0.9951	0.9947	0.9941	0.9956	0.9958	0.9947	0.9951
Cerebrovascular disease	0.9804	0.9815	0.9825	0.9805	0.9798	0.9847	0.9838	0.9835	0.9834	0.9795
Ischemic Heart Disease	0.9690	0.9672	0.9655	0.9588	0.9589	0.9710	0.9698	0.9656	0.9636	0.9640
Pneumonia	0.9765	0.9762	0.9666	0.9710	0.9597	0.9718	0.9747	0.9704	0.9721	0.9690
Diabetes Mellitus	0.9822	0.9810	0.9835	0.9817	0.9829	0.9846	0.9855	0.9852	0.9813	0.9822
Liver disease death	0.9919	0.9860	0.9789	0.9784	0.9821	0.9898	0.9861	0.9804	0.9795	0.9792
Chronic lower respiratory disease	0.9895	0.9852	0.9875	0.9868	0.9865	0.9888	0.9868	0.9856	0.9819	0.9852
Hypertensive disease	0.9664	0.9573	0.9590	0.9484	0.9557	0.9546	0.9635	0.9633	0.9597	0.9607



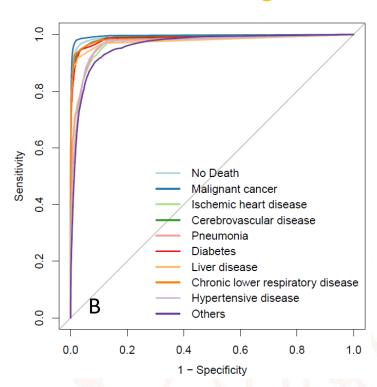


Table 2. The performance of final classifier by time at risk window

190911. revised

	•				****
Graph	TAR (days)	Accuracy	Macro F1	Mean AUPRC	Mean AUROC
Α	30	0.9421	0.6407	0.9736	0.9286
В	60	0.9389	0.6811	0.9920	0.9347
С	90	0.9225	0.6394	0.9771	0.9209
D	180	0.9320	0.6465	0.9810	0.9276
E	365	0.9265	0.6491	0.9840	0.9294

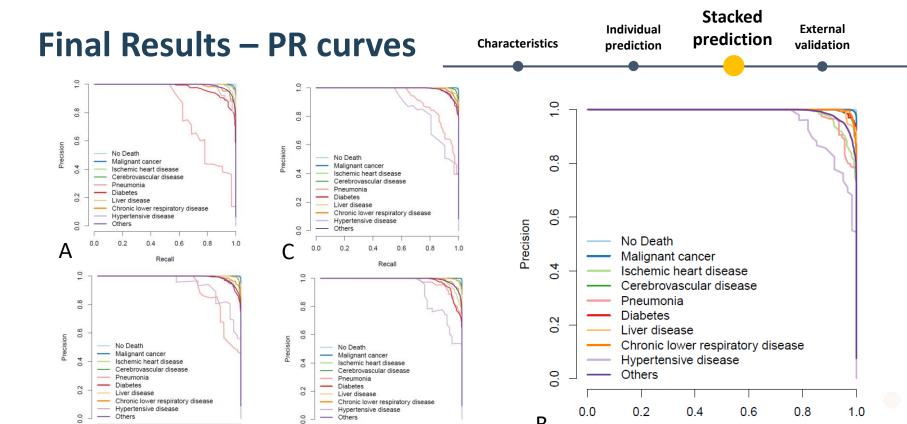


Table2. The performance of final classifier by time at risk window

0.2

0.2

0.4

0.6

190911. revised

Recall

	•				****
Graph	TAR (days)	Accuracy	Macro F1	Mean AUPRC	Mean AUROC
Α	30	0.9421	0.6407	0.9736	0.9286
В	60	0.9389	0.6811	0.9920	0.9347
С	90	0.9225	0.6394	0.9771	0.9209
D	180	0.9320	0.6465	0.9810	0.9276
E	365	0.9265	0.6491	0.9840	0.9294

0.8

Result

External validation

Validation Flowchart

Database: AUSOM (3M)

Target cohort: 986,416

Outcome cohort (causes of death)

- Any death: 11,083

Malignant cancer: 3,064

- Cerebrovascular disease: 110

Ischemic heart disease: 205

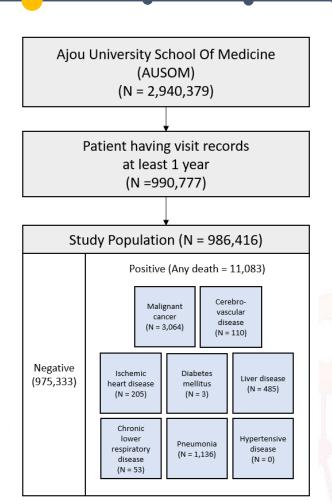
- Liver disease: 485

Chronic lower respiratory disease : 55

- Pneumonia: 1169

- Diabetes mellitus: 3

- Hypertensive disease: 0



Individual

prediction

Characteristics

Stacked

model

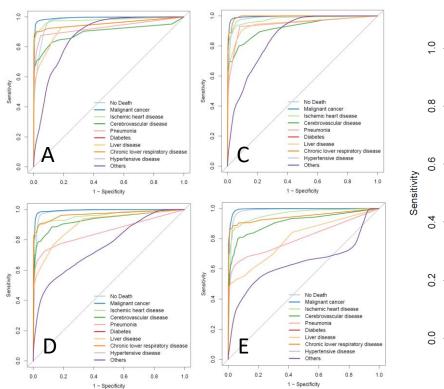
External

validation

Figure 7. The flowchart of study population in validation dataset

Table 3. The area under the receiver operating curve with external validation set.

	Lasso logistic regression model				Gradient Boosting Machine model					
Time at risk (days)	30	60	90	180	365	30	60	90	180	365
Causes of death										
Any death	0.9892	0.9896	0.9891	0.9899	0.9889	0.9875	0.9889	0.9895	0.9897	0.9907
Malignant cancer	0.9922	0.9934	0.9894	0.9924	0.9933	0.9943	0.9929	0.9931	0.9925	0.9913
Cerebrovascular disease	0.9189	0.8934	0.9225	0.8999	0.8669	0.9734	0.9739	0.9665	0.9582	0.9361
Ischemic Heart Disease	0.9891	0.9795	0.9854	0.9607	0.9852	0.9897	0.9864	0.9827	0.9802	0.9757
Pneumonia	0.9539	0.9350	0.9241	0.9345	0.9349	0.9833	0.9777	0.9667	0.9605	0.9409
Chronic lower respiratory disease	0.9835	0.9849	0.9872	0.9821	0.9828	0.9974	0.9976	0.9977	0.9979	0.9944
Liver disease death	0.9401	0.8819	0.8895	0.8974	0.8805	0.9937	0.9950	0.9914	0.9877	0.9654
Diabetes Mellitus	-	-	-	-	-	-	-	-	-	-
Hypertensive disease	-	-	-	-	-	-	-	-	-	-



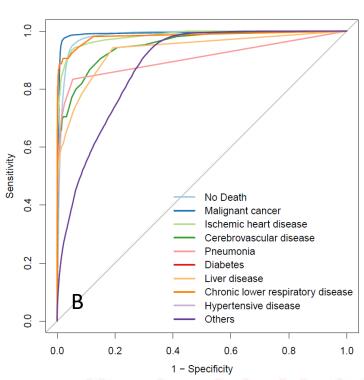


Table 4. The performance of final classifier by time at risk window

190911. revised

	-		-		
Graph	TAR (days)	Accuracy	Macro F1	Mean AUPRC	Mean AUROC
Α	30	0.9373	0.3380	0.6440	0.8409
В	60	0.9235	0.3360	0.6682	0.8601
С	90	0.9237	0.3020	0.6685	0.8520
D	180	0.9177	0.3065	0.6202	0.8409
E	365	0.8299	0.2870	0.7066	0.8299

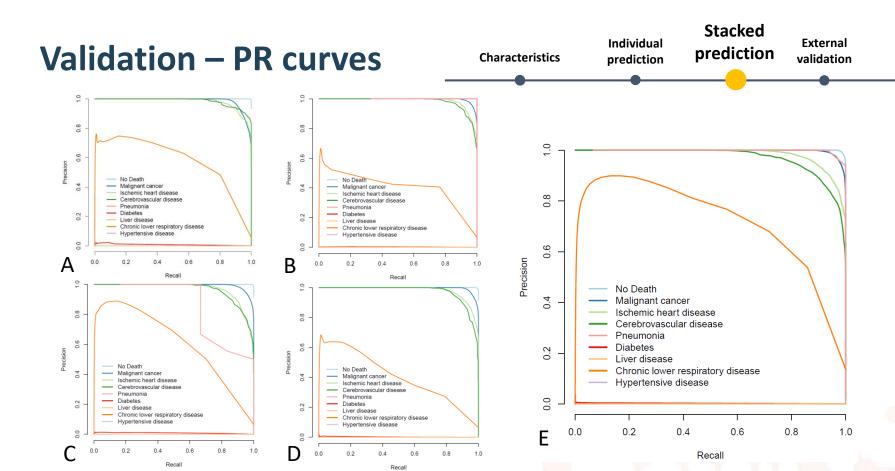


Table 4. The performance of final classifier by time at risk window

190911, revised

	-		-		
Graph	TAR (days)	Accuracy	Macro F1	Mean AUPRC	Mean AUROC
Α	30	0.9373	0.3380	0.6440	0.8409
В	60	0.9235	0.3360	0.6682	0.8601
С	90	0.9237	0.3020	0.6685	0.8520
D	180	0.9177	0.3065	0.6202	0.8409
E	365	0.8299	0.2870	0.7066	0.8299

Discussion

- Construction an accurate prediction model through a stacking ensemble method.
- Indicators such as AUPRC and F1 score because mortality is unbalanced data on outcomes.
- First attempt to develop a **cause of death predictive models** using claim data linked to the cause of death database.
- Proposal for a new method in that a stacked model constructed using OHDSI's Patient-Level Prediction package.
- We look forward to offering an alternative to data that lacks the cause of death.

Discussion

Developed model evaluation

- All mortality prediction models showed high AUROC greater than 0.9. There was no difference in model performance between the Lasso regression and GBM, between TARs, and between causes of death.
- The performance of the **final classifier** was highest for most indicators when the time at risk window was 60 days.

External validation

- Most death prediction models showed high performance above AUC 0.9
- External validations of death from diabetes and hypertensive diseases were not possible due to the lack of the number of patients.
- The AUROC was highest when the time at risk window was 60 days (0.8601), and the AUPRC value was highest when the time at risk window was 365 days (0.7066).

Conclusions

- Using the existing cause of death data, a machine learning model was developed to predict the cause of death.
- Further study
 - Another external validation (Please Contact)
 - Expand model including other causes of death
 - Model fine tuning
 - Final model selection (other algorithm like GBM, xgboost etc)
 - Death records (Death, Death date, Cause of death) imputation

Thank you

Corresponding Author:

Rae Woong Park, M.D, Ph.D Ajou University School of Medicine

Email: veritas@ajou.ac.kr

