

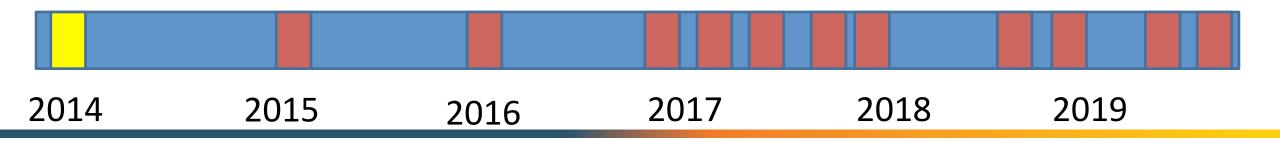
#### **Expanding OHDSI into Asia**

Mui Van Zandt, Hua Xu, PhD, Hui Lu PhD, Rae Woong Park, MD, PhD, Seng Chan You, MD, MS, Hee Hwang, MD, Sooyoung Yoo, PhD, Won Chul Cha. MD, Dong Kyung Chang, Tatsuo Hiramatsu, MD, PhD, Mengling Feng, PhD, Liu Lei PhD, Haoyan Cai



## Joining the Journey

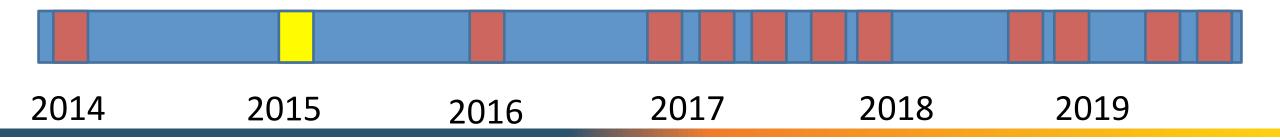





#### **OHDSI** Korea



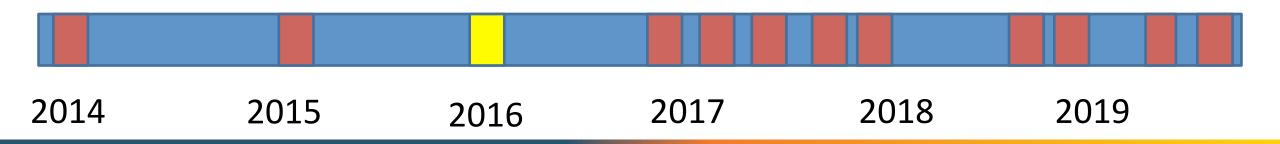
### CDM conversion of Ajou University EHR







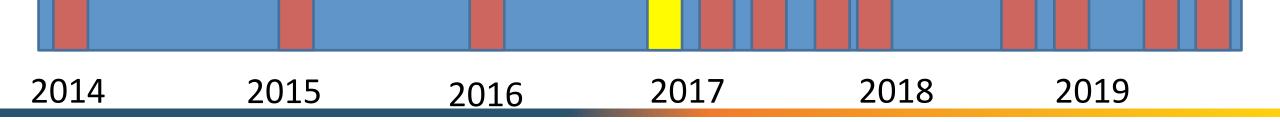

## CDM conversion of Gacheon University EHR







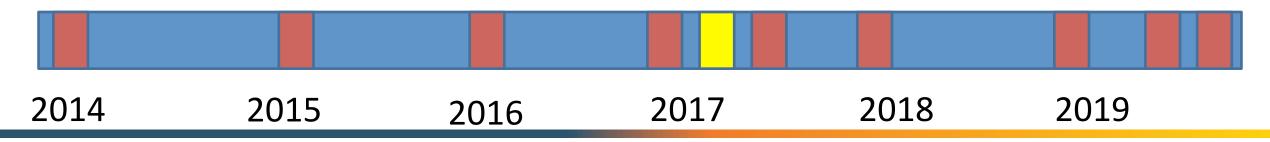

# CDM conversion of National Health Insurance Service (NHIS) data








### International Korea Symposium







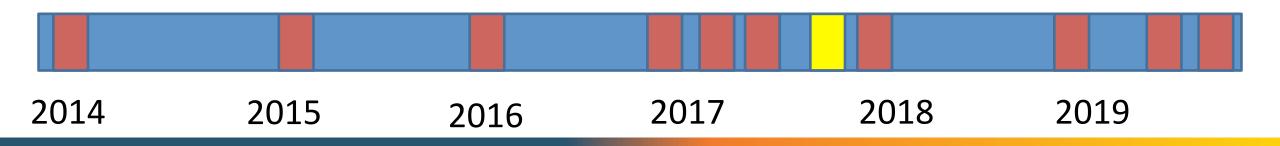

## 1st OHDSI Data Governance Leadership Meeting





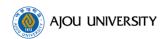


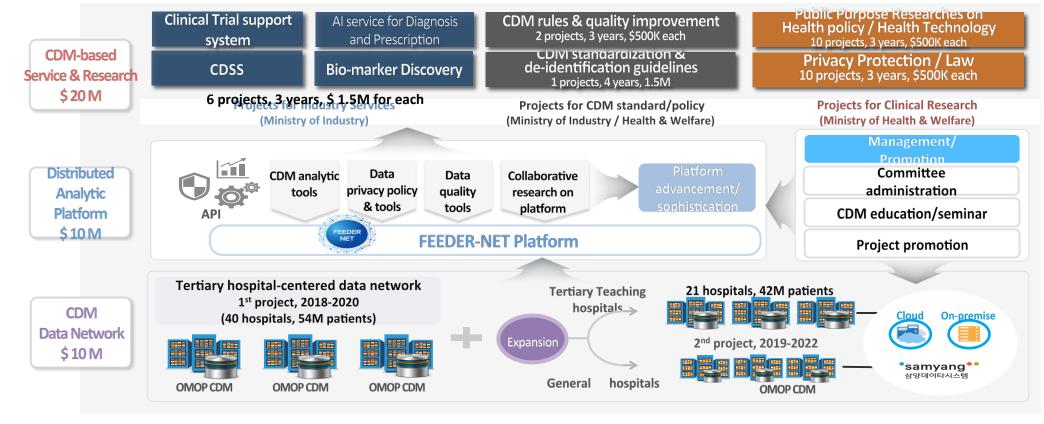
# CDM conversion of Health Insurance Review & Assessment Service (HIRA)









# CDM conversion of Seoul National University Bundang Hospital



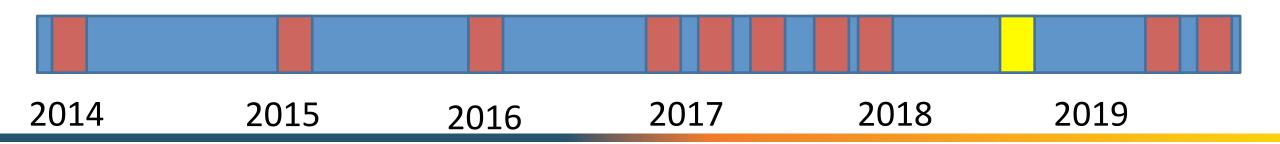





## FEEDER-NET project launched





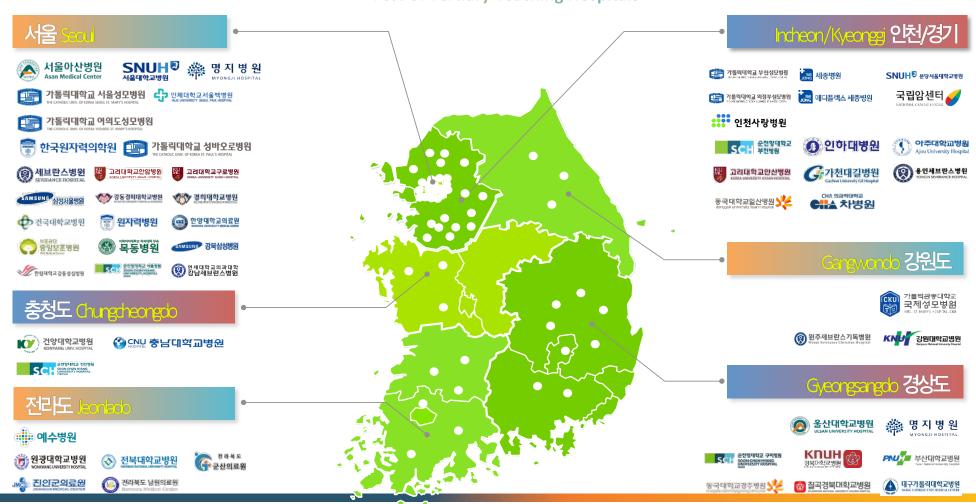

2014 2015 2016 2017 2018 2019

FEEDER-NET: Federated E-health big Data for Evidence Renovation Network



#### CDM conversion of Samsung Medical University








#### FEEDER-NET Data Network in Korea

Data Network of 60+ Hospitals, 98M Patients

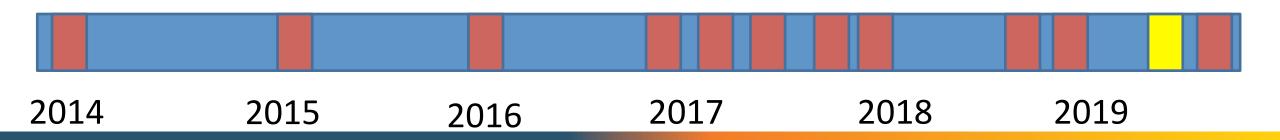
#### **70% of Tertiary Teaching Hospitals**





#### Ajou University Datathon August 2019







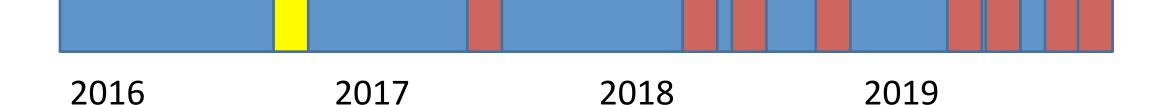

#### **Upcoming OHDSI Events**

- OHDSI OMOP Tutorial
  - 2 days in October

- OHDSI Korea Symposium
  - December 12th 14th

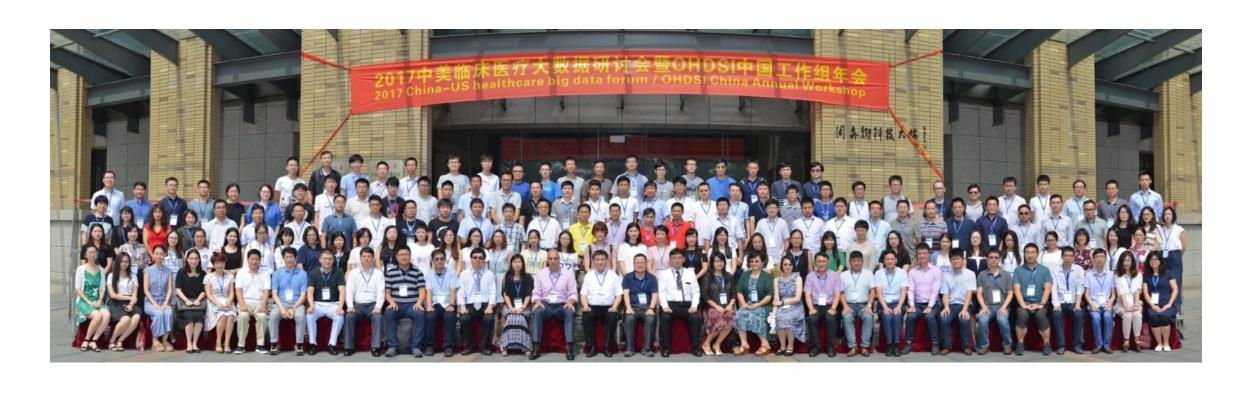





#### **OHDS China**



#### **OHDSI China Established**




https://ohdsichina.org





#### OHDSI China Symposium 2017





## Shanghai Hackathon





## 2018 Symposium

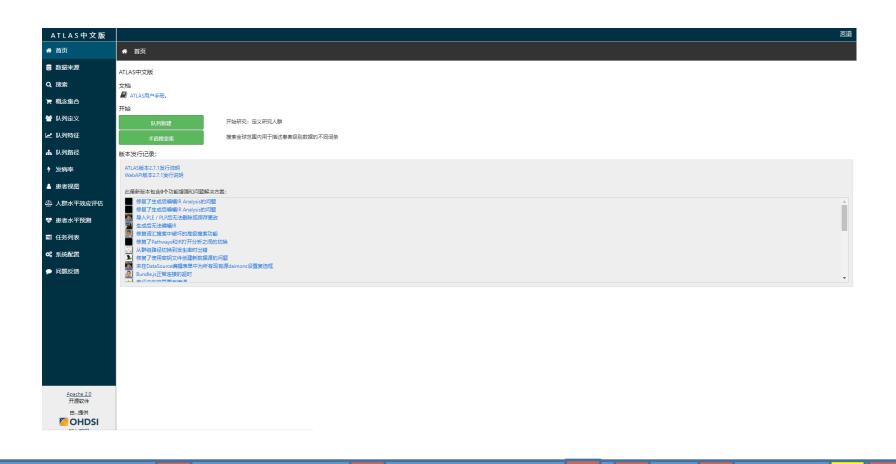


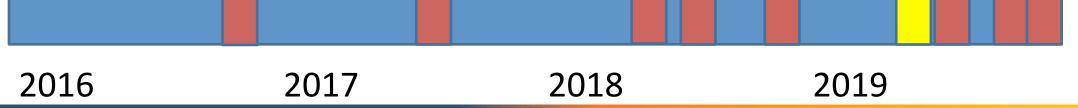




## Beijing Hackathon





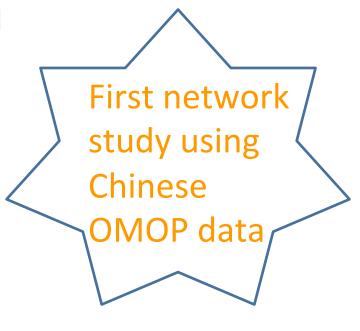


#### 2019 Symposium





#### Chinese Atlas








## OMOP Conversion - Beijing-Tianjin-Hebei Psychiatry Alliance



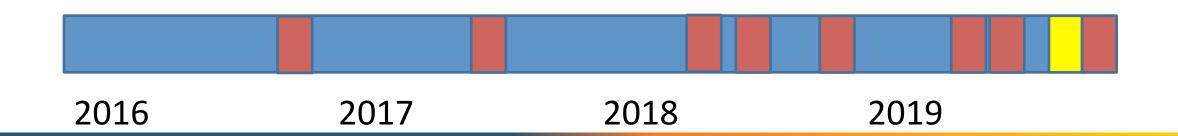
| Id 🔷 | Name                                                                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| 1134 | [China Study] Bipolar with antidepressant + antipsychotics/mood stabilizers + hospitalization - 365d prior and year 2013 after |
| 1126 | [China Study] Bipolar with antidepressant only and hospitalization - 365d prior and year 2013 after                            |
| 1130 | COPY OF: [China Study] Bipolar - 365d prior                                                                                    |
| 1128 | COPY OF: COPY OF: [China Study] Bipolar with antipsychotic or mood stabilizer - 365d prior and year 2013 after                 |
| 1127 | COPY OF: [China Study] Bipolar with antipsychotic or mood stabilizer - 365d prior and year 2013 after                          |
| 1117 | [China Study] Bipolar with antipsychotic or mood stabilizer - 365d prior and year 2013 after                                   |
| 1118 | [China Study] Bipolar with antidepressant + antipsychotics/mood stabilizers - 365d prior and year 2013 after                   |
| 1116 | [China Study] Bipolar with antidepressant only - 365d prior and year 2013 after                                                |
| 1112 | [China Study] Bipolar - 365d prior and year 2013 after, no exposure group                                                      |
| 1125 | [China Study] Bipolar with Prior Antidepressant - 365d prior and year 2013 after                                               |
| 1124 | [China Study] Bipolar - 365d prior and year 2013 after without exit strategy for cohort pathways                               |
| 1080 | [China Study] Bipolar - 365d prior and year 2013 after                                                                         |
| 1082 | [China Study] Bipolar with antidepressant - 365d prior and year 2013 after                                                     |
| 1113 | [China Study] antipsychotic use hms after bipolar diagnosis                                                                    |
| 1114 | COPY OF: [China Study] antipsychotic use hms after bipolar diagnosis                                                           |





### Fudan Tutorial August 2019








#### **Upcoming OHDSI Events**

- OHDSI OMOP Tutorial
  - October 16<sup>th</sup> 17<sup>th</sup> in Guangzhou

- OHDSI OMOP Half Day Tutorial
  - November 24<sup>th</sup> in Guangzhou





#### **OHDS Japan**



### OHDSI Japan Initial Meeting





2019 2020



### OHDSI Japan 2nd Meeting



2019 2020



#### OHDSI Japan Working Groups

- OMOP CDM/ETL
- OMOP Vocabulary
- OHDSI Japan Promotions and Communications
- OHDSI Japan Forum



#### **Upcoming OHDSI Events**

- ETL Q&A workshop
  - TBD

- OHDSI Tutorials
  - TBD



### **OHDS Singapore**



#### National University of Singapore

Clinical and survey data for type-2 diabetes cohort from Khoo Teck Puat Hospital, 5187 patients, 13th May 2019

Saw Swee Hock School of Public Health, type-2 diabetes cohort, 14,017 patients, 1st July 2019





# OMOP CDM Oncology Module at Work

Rimma Belenkaya, Michael Gurley, Christian Reich, Dmitry Dymshyts, Jeremy Warner, Robert Miller, Andrew Williams, RuiJun Chen



## **OHDSI Oncology WG**



Northwestern University

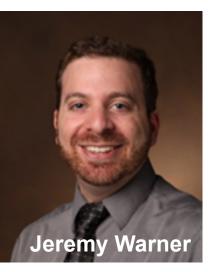


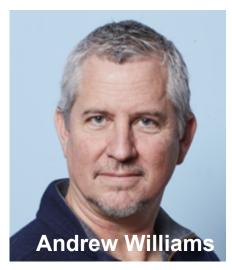






Tufts Clinical and Translational Science Institute





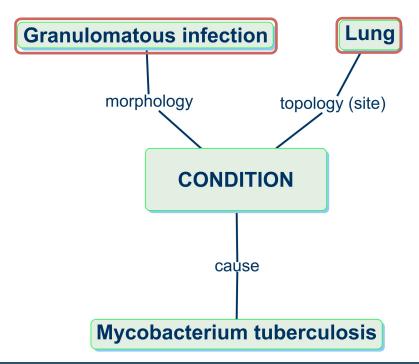






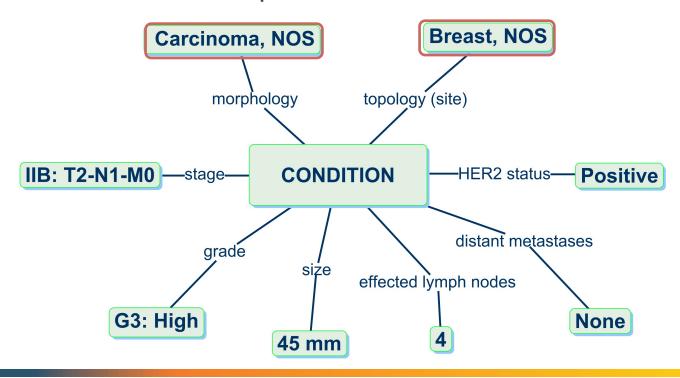






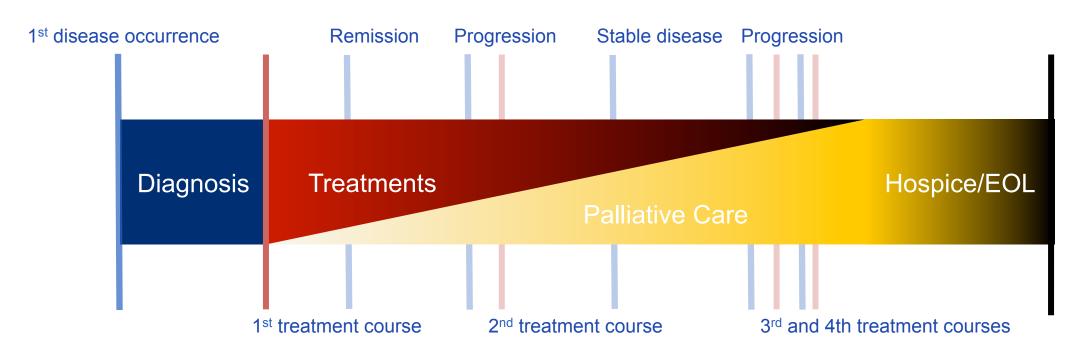

## **Challenges: Granularity**


#### **Normal Condition**

Most normal conditions are defined by three main dimensions implicitly, plus some extra attributes



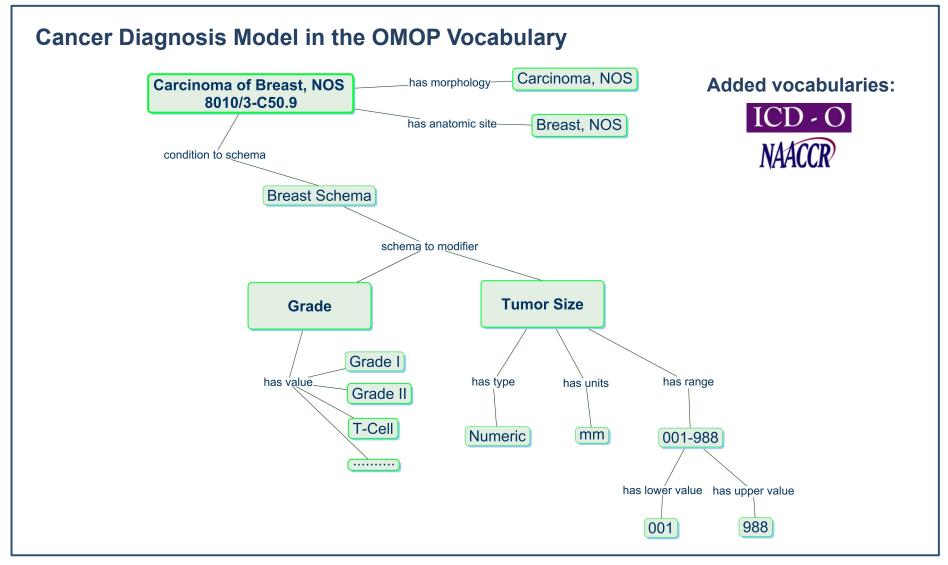
#### Cancer


- •Cause is not known, but morphology and topology are detailed and explicit
- •The many tumor attributes (modifiers) are also explicit and well defined





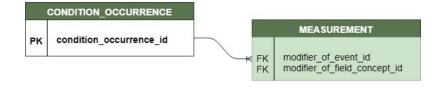
## **Challenges: Abstraction**


 Clinically and analytically relevant representation of cancer diagnoses, treatments, and outcomes requires data abstraction



- Not readily available in the source data
- Traditionally not supported in OMOP CDM



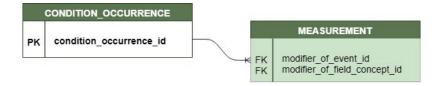

# Solving Granularity Challenge





# Solving Granularity Challenge

#### **Cancer diagnosis representation in the OMOP CDM**




- Precoordinated concept of cancer
   Morphology + Site is stored in
   Condition\_Occurrence
- Diagnostic modifiers are stored in Measurement and linked to the Condition\_Occurrence record



# Solving Granularity Challenge

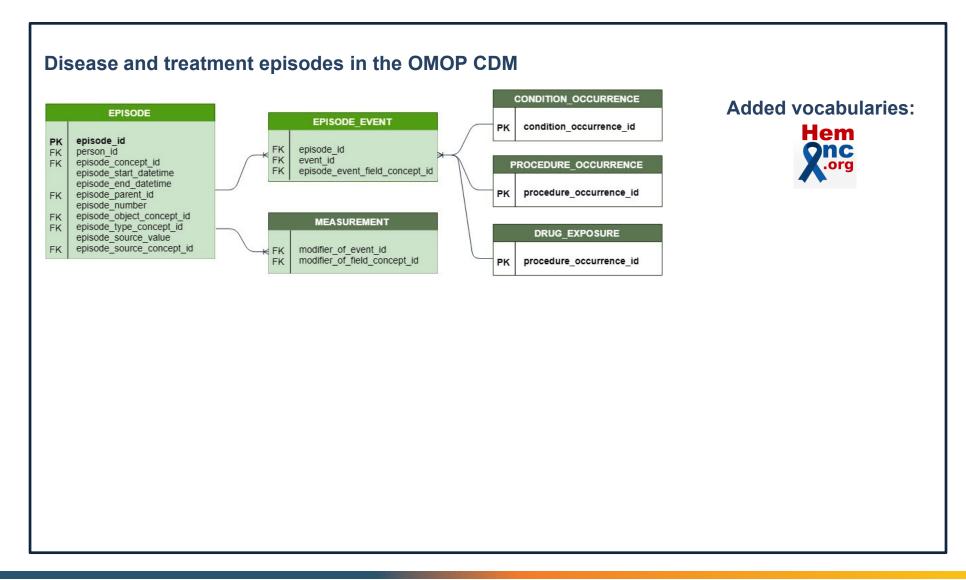
#### **Cancer diagnosis representation in the OMOP CDM**



#### **Example of cancer diagnosis in the OMOP CDM**

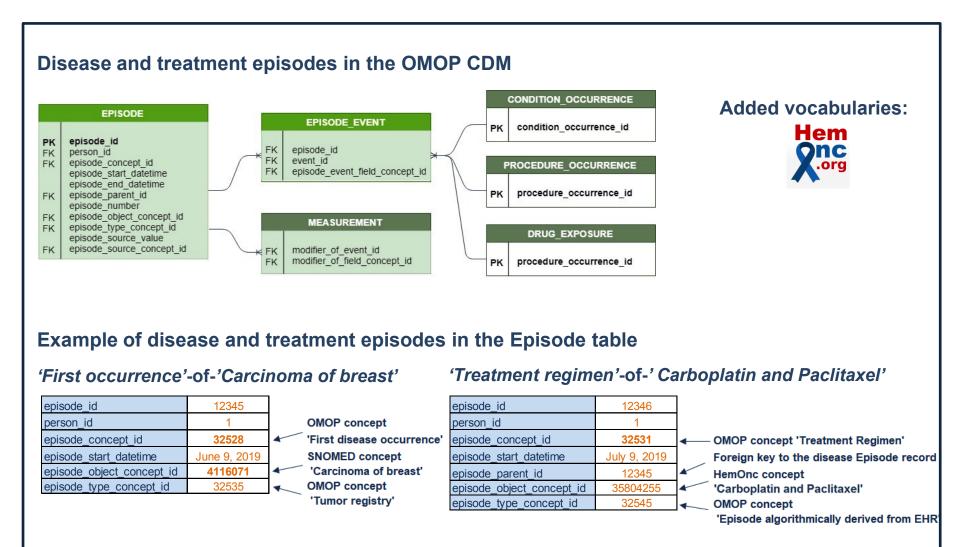
*Histology+Site* diagnosis in Condition\_Occurrence

- Precoordinated concept of cancer
   Morphology + Site is stored in
   Condition\_Occurrence
- Diagnostic modifiers are stored in Measurement and linked to the Condition\_Occurrence record


|  | condition_occurrence_id     | 123456789    |                                                    |
|--|-----------------------------|--------------|----------------------------------------------------|
|  | person_id                   | 1            |                                                    |
|  | condition_concept_id        | 4116071      | ← SNOMED concept 'Carcinoma of breast'             |
|  | condition_start_datetime    | June 9, 2019 |                                                    |
|  | condition_type_concept_id   | 32535        |                                                    |
|  | condition_source_value      | 8010/3-C50.9 | ◆ Precoordinated concept of ICD-O Histology & Site |
|  | condition_source_concept_id | 44505310     |                                                    |

#### **Grade** modifier in **Measurement**

| measurement_id                | 567890        |                                                                                              |
|-------------------------------|---------------|----------------------------------------------------------------------------------------------|
| person_id                     | 1             |                                                                                              |
| measurement_datetime          | June 9, 2019  |                                                                                              |
| measurement_concept_id        | 35918640      | ◆ NAACCR concept 'Grade Pathological'                                                        |
| measurement_date              | June 9, 2019  |                                                                                              |
| value_as_concept_id           | 35922509      | ◆ NAACCR concept 'G3: High combined histologic grade (unfavorable); SBR score of 8-9 points' |
| measurement_type_concept_id   | 32534         | ◆ OMOP concept 'Tumor registry'                                                              |
| measurement_source_value      | 3844          | ◆ NAACCR code for 'Grade Pathological'                                                       |
| measurement_source_concept_id | 35918640      | ◆ NAACCR concept 'Grade Pathological'                                                        |
| value_source_value            | breast@3844@3 | NAACCR code for 'G3: High combined histologic grade (unfavorable); SBR score of 8-9 points'  |
| modifier_of_event_id          | 123456789     | ◆ Value of the respective condition record condition_occurrence_id                           |
| modifier field concept id     | 1147127       | Concept for 'condition_occurrence.condition_occurrence_id'                                   |




# Solving Abstraction Challenge

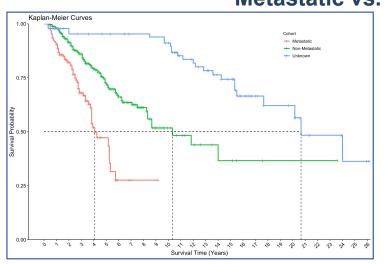


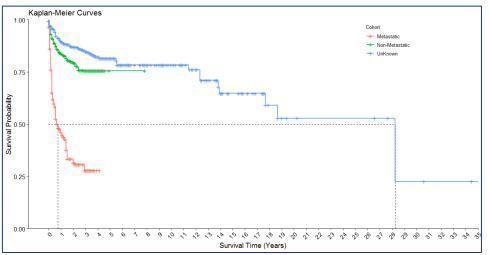


# Solving Abstraction Challenge

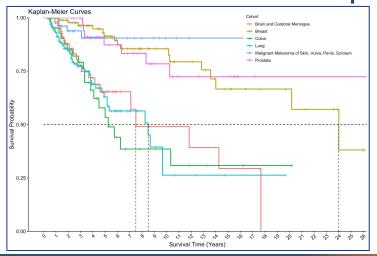


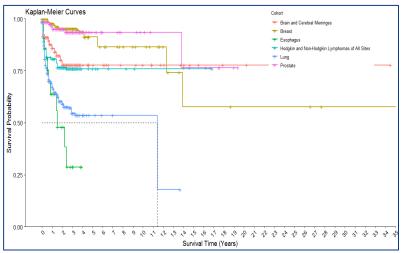



## **Testing**


- Developed vocabulary-driven ETL for data conversion from Tumor Registry
- Converted EHR and Tumor Registry data from four participating institutions
- Tested clinical characterization use cases
  - Survival from initial diagnosis
  - Time from diagnosis to treatment
  - High-level treatment course for 1<sup>st</sup> cancer occurrence
  - Derivation of chemotherapy regimens from atomic drugs




# Survival from diagnosis


#### Metastatic vs. Non-metastatic cancers





#### Six most prevalent cancers







### Join the Effort!

- CDM and Vocabulary Work
  - Adding domains for genomics, imaging and outcomes
  - Improving ICD-O-3 to SNOMED mapping precision
  - Mapping of NAACCR data dictionary to SNOMED
- Oncology-specific THEMIS conventions
- ETL
  - Validation
  - Conventions and algorithms for fusing tumor registry and EHR data on the same patient
- Use-case-driven algorithms for
  - identifying & characterizing cancer populations
  - identifying treatment pathways and disease progression
  - predicting disease progression

<u>belenkar@mskcc.org</u> <u>m-gurley@northwestern.edu</u>



### Many thanks to

Charles Bailey, Children's Hospital of Philadelphia, US Scott Campbell, University of Nebraska, US Rachel Chee, IQVIA, Great Britain Mark Danese, Outcome Insights, US Asieh Golozar, Regeneron, US George Hripcsak, Columbia University, US Ben May, Columbia University, US **Maxim Moinat**, The Hyve, Netherlands Anna Ostropolets, Columbia University, US Meera Patel, MSK, US Joseph Plasek, Aurora, US **Gurvaneet Randhawa**, NCI, US Donna Rivera, NIH, US Mitra Rocca, FDA, US **Anastasios Siapos**, IQVIA, Great Britain Firas Wehbe, Northwestern University, US **Seng Chan You**, Ajou University School of Medicine, Korea



Thank you!



Thank you!

# FAIR Phenotyping with APHRODITE

Juan M. Banda<sup>1</sup>, Andrew Williams<sup>2</sup>, Mehr Kashyap<sup>3</sup>, Martin G. Seneviratne<sup>3</sup>, Aaron Potvien<sup>4</sup>, Jon Duke<sup>4</sup>, Nigam H. Shah<sup>3</sup>

<sup>1</sup>Department of Computer Science, Georgia State University, Atlanta GA 30303 <sup>2</sup>Tufts Medical Center, Boston MA 02111

<sup>3</sup>Center for Biomedical Informatics Research, Stanford University, Stanford CA 94305 <sup>4</sup>Georgia Tech Research Institute, Atlanta GA 30308



### The Need

- The common failure to reproduce published results has created an atmosphere of crisis even in disciplines where precise measurement and tight experimental control are the norm
- There is even more reason for vigilance in disciplines that must manage lower degrees of measurement accuracy and experimental control
- One response to this crisis has been the emergence of open science principles that publicly expose the process of defining hypotheses, data selection and development, study design and analytic choices

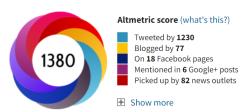


#### SCIENTIFIC DATA

Comment | OPEN | Published: 15 March 2016

# The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A.C 't Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao & Barend Mons ► Show fewer authors


### The solution

Last updated: Mon, 9 Sep 2019 14:18:07 GMT

#### **Total citations**



#### Online attention



#### This Altmetric score means that the article is:

- in the 99<sup>th</sup> percentile (ranked 76<sup>th</sup>) of the 264,573 tracked articles of a similar age in all journals
- in the 1<sup>st</sup> percentile (ranked 1<sup>st</sup>) of the 1 tracked articles of a similar age in Scientific Data



### Rapid adoption of principles:



### What does it mean to be FAIR?

#### What is FAIR DATA?

- FAIR
- Findable,
- Accessible,
- Interoperable,
- Reusable.



Data and supplementary materials have sufficiently rich metadata and a unique and persistent identifier.

#### **FINDABLE**



Metadata use a formal, accessible, shared, and broadly applicable language for knowledge representation.

#### INTEROPERABLE



Metadata and data are understandable to humans and machines. Data is deposited in a trusted repository.

#### **ACCESSIBLE**



Data and collections have a clear usage licenses and provide accurate information on provenance.

#### **REUSABLE**



# What are we proposing?

Anatomy of an APHRODITE FAIR phenotype definition



### A phenotype definition will be Findable

 To address the need to have a persistent global unique resource identifier (URI) for each phenotype definition version, we have utilized GitHub unique commit hash value to identify each individual phenotype definition version

 The OHDSI Gold Standard Phenotype Library workgroup has defined and created an additional abstraction layer over the phenotype definitions available as a R Shiny App



### A phenotype definition will be Accessible

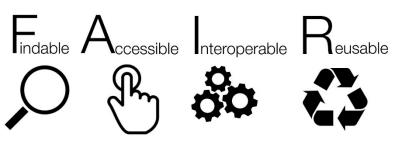
 The phenotype definition, generation script, and metadata will be retrievable by their identifier using any regular web browser or the application layer of the phenotype library

 By using a publicly and freely available resource such as GitHub, we offer better accessibility than placing the definitions on an institutional server



### A phenotype definition will be Interoperable

- We will leverage the OMOP CDM and associated vocabularies to solve the major obstacle to interoperability across sites. Our phenotype definitions' metadata will use JSON for knowledge representation and ease of machine readability
- When developing phenotyping definitions based on prior publications, or when a publication is generated from a definition generated from our pipeline, we will include all proper URI's to the publications in question




### A phenotype definition will be Re-usable

- Currently APHRODITE definitions are easily shareable and re-usable for other sites. We have added meta-data elements related to software, CDM, and vocabulary versions, as well as a plurality of accurate and relevant attributes to guarantee re-usability
- All the publicly available phenotypes will be released under relevant open source licenses, details of which will be attached to the definition's meta-data
- Site and researcher information will be recorded as well as relevant publications in allowing fully traceable provenance for each definition



### Questions?



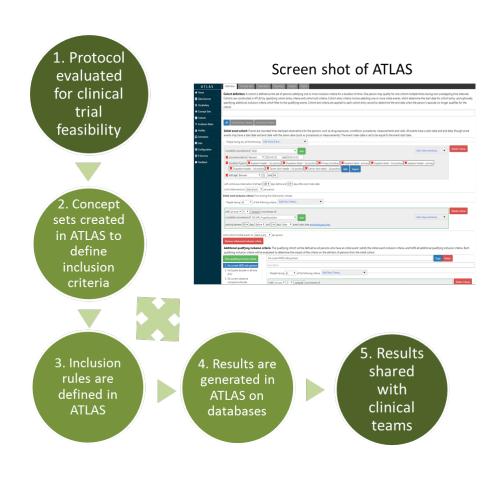
Improving the FAIRness of digital resources will increase their quality and their potential for reuse

@micheldumontier::RDA:2018-01-31

Want to help? reach out: @drjmbanda or jbanda@gsu.edu



OHDSI-enabled distributed network analysis for clinical trial feasibility: a collaborative case study to inform a pediatrics randomized trial.


Rupa Makadia, PhD, MS<sup>1,2</sup>, Hanieh Razzaghi, MPH<sup>2,4</sup>, Patrick B. Ryan, PhD<sup>1-3</sup>, L. Charles Bailey, MD, PhD<sup>2,4</sup>

<sup>1</sup>Janssen Research and Development, Titusville, NJ; <sup>2</sup>Observational Health Data Sciences and Informatics (OHDSI), New York, NY; <sup>3</sup>Columbia University, New York, NY; <sup>4</sup> Children's Hospital of Philadelphia, Philadelphia, PA



### Clinical trial feasibility, what is it and why is this important?

Clinical trial feasibility analyses address operational questions, provide insight in overall population eligibility, impact protocol design, and can potentially avoid protocol amendments for a clinical trial.





### **Case study: Pediatric patients with Type II diabetes**

This study presents a two-site (U.S. claims networks and hospital network) analysis using the OHDSI toolset (OMOP common data model (CDM) and ATLAS) to conduct clinical trial feasibility based on the protocol for an ongoing phase III randomized study to investigate the efficacy and safety of canagliflozin in a type II diabetic pediatric population.

# Conducting feasibility with de-identified claims data in ATLAS

1. Find appropriate databases

Databases: IBM MarketScan® Commercial Database (CCAE), IBM MarketScan® Multi-State Medicaid Database (MDCD) and Optum© De-Identified Clinformatics® Data Mart Database – Socio-Economic Status (SES) (Optum SES)

2. Set index criteria

Patients aged 10-17 with a Type II diabetes diagnosis; with at least 365 days of enrollment time; an additional Type II diabetes diagnosis prior to index and limited evidence of Type I diabetes.

### Conducting feasibility with de-identified claims data

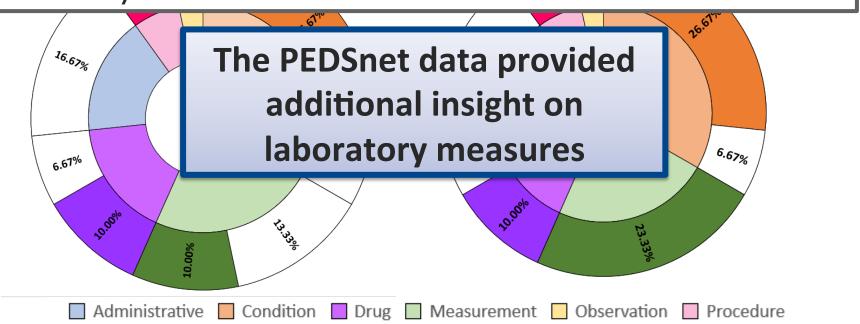
3. Define inclusion and exclusion criteria

Protocol specified 31 eligibility criteria from various data domains (10 conditions, 7 measurements, 5 drug, 5 administrative, 2 procedures, 1 observation, 1 demographic). Of the 31 criteria, 18 could be evaluated in the US claims databases

4. Analyze results

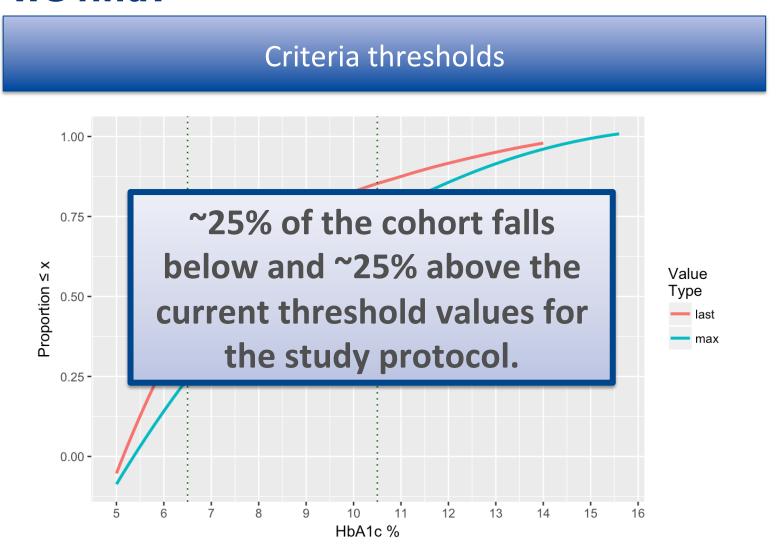
709 patients satisfy the index criteria with 487 patients (68.69%) matching all criteria implemented in CCAE

#### **Collaboration with PEDSnet**

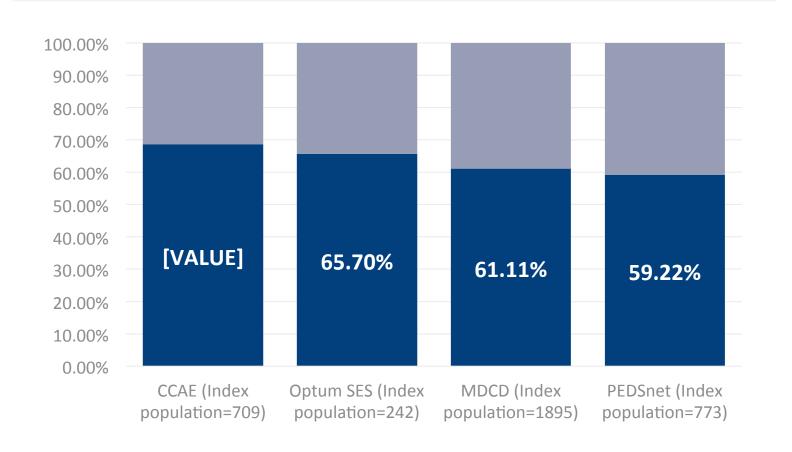

PEDSnet contains electronic health records from 7 of the nation's largest pediatric health systems, covering outpatient and inpatient care. Data has been transformed to the CDM, and can be addressed using ATLAS.



We spent a day together and were able to solely use ATLAS and share JSON to start the process of conducting similar feasibility—without sharing patient level data, or reentering code sets!


#### Measurable criteria

Conditions, procedures, observations are measured similarly from both the claims dataset and PEDSnet




#### Measurable criteria

- No single criteria affected the protocol more than 10% of the population in either dataset (IBM CCAE & PEDSnet).
- The biggest drop-off in patients was with criteria in regarding anti-convulsant medications, prior history of type I diabetes, severe hypoglycemia or seizure or loss of consciousness 6 months prior to and including index and prior diagnosis of diabetic ketoacidosis.







### **Feasibility to patient recruitment**

- By utilizing the OHDSI framework and ATLAS we are able to conduct multi-site feasibility in real-time with real world evidence that can meaningfully inform clinical trial design and aid in recruitment and enrollment of eligible populations.
- Clinical trial inclusion criteria can often, but not always, be evaluated in observational data and by the extension of including a pediatric network that contain possible sites for enrollment we can further validate the exercise of feasibility and its role in clinical development and patient recruitment.
- By assessing the impact of protocol implementation on the proportion of patients from a clinical trial with the OHDSI framework provides an avenue to understand feasibility of a population as well as a path to recruit patients from data networks.

### **Acknowledgements**

### Thank you to all of our collaborators

Hanieh Razzaghi & Dr. Charlie Bailey and PEDSNET Patrick Ryan and Janssen





# Comparing 102 psychotropic drug regimens for diabetes mellitus risk

Anastasiya Nestsiarovich, MD, PhD
Postdoctoral Fellow

University of New Mexico Health Sciences Center

Department of Internal Medicine

Center for Global Health

September 16, 2019

## Research team:

- University of New Mexico
  - Christophe Lambert, PhD Center for Global Health, DoIM; Translational Informatics
  - Annette Crisanti, PhD Dept. of Psychiatry and Behavioral Sciences
  - Mauricio Tohen, MD, DrPH, MBA Chair, Dept. of Psychiatry and Behavioral Sciences
  - **Stuart Nelson**, MD Health Sciences Library; Translational Informatics; DoIM
  - Yiliang Zhu, PhD Epidemiology, Biostatistics, and Preventive Medicine; DoIM
  - Tudor Oprea, MD, PhD Division Chief, Translational Informatics; DoIM
  - Mark Unruh, MD Chair, DolM
  - Douglas Perkins, PhD Director, Center for Global Health; DoIM

#### UCLA

- Berit Kerner, MD
- New Mexico Behavioral Health Institute
  - Nathaniel Hurwitz, MD
- TwoFoldChange consulting
  - Aurélien Mazurie, PhD
- Iterative Consulting
  - Daniel Cannon

### **Data source**

- IBM MarketScan® administrative claims database (2003-2015)
  - Commercially insured patients
  - De-identified information on 932,815 US patients with ≥2 BD diagnoses
  - Visits, diagnoses, procedures, medications, lab orders
  - Data transformed to OMOP Common Data Model
- Data hosted by UNM HSC CTSC on high-performance server

## **Manuscripts:**

#### Published:

- A Nestsiarovich, B Kerner, A J Mazurie, D C Cannon, N G Hurwitz, Y Zhu, S J Nelson, T I Oprea, M L Unruh, AS Crisanti, M Tohen, DJ Perkins, CG Lambert. Comparison of 71 bipolar disorder pharmacotherapies for kidney disorder risk: The potential hazards of polypharmacy. Journal of Affective disorders. 2019 Jan; 252:201-2011.
- Nestsiarovich A, Mazurie AJ, Hurwitz NG, Kerner B, Nelson SJ, Crisanti AS, Tohen M, Krall RL, Perkins DJ, Lambert CG. Comprehensive comparison of monotherapies for psychiatric hospitalization risk in bipolar disorders. Bipolar Disord. 2018 Dec;20(8):761-771.

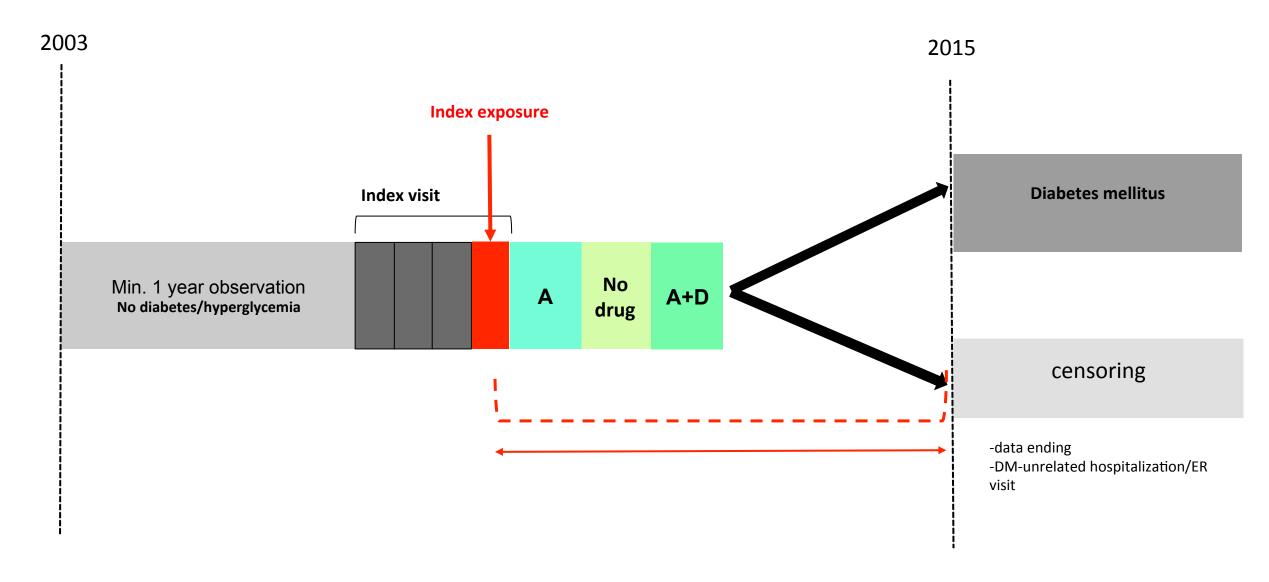
#### Accepted for publication:

Praveen Kumar, Anastasiya Nestsiarovich, Stuart J. Nelson, Berit Kerner, Douglas J. Perkins, Christophe G. Lambert.
 Imputation and characterization of uncoded self-harm in major mental illness using machine learning. JAMIA journal (accepted 05 Sept. 2019).

#### Under review:

Anastasiya Nestsiarovich, Berit Kerner, Aurélien J. Mazurie, Daniel C. Cannon, Nathaniel G. Hurwitz, Yiliang Zhu, Stuart J. Nelson, Tudor I. Oprea, Annette S. Crisanti, Mauricio Tohen, Douglas J. Perkins, Christophe G. Lambert, Ph.D. Diabetes mellitus risk for 102 drugs and drug combinations used in patients with bipolar disorder. Psychoneuropharmacology (submitted 27 Aug 2019).

## Design and analysis:


#### • Inclusion criteria:

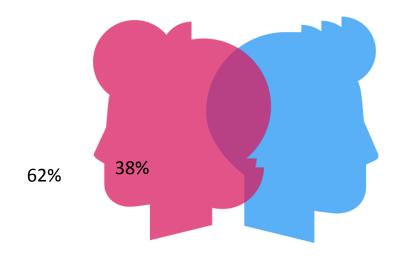
- Age 18-64 years
- ≥2 ICD codes for BD (296.[0-1]\*, 296.[4-8]\*, F30\*, F31\*) during 2003-2015.
- Received BD medication(s) at least once following the index visit

#### Exclusion criteria:

- Diagnosis of schizophrenia, schizoaffective disorder, chronic delusional disorders, intellectual disabilities, autism
  spectrum disorders, mental illness of organic origin, or Parkinson's disease at any time during the observation period
- Received anti-dementia drugs at any time point
- Received insulin or were diagnosed with any glucose metabolism-related disorder, including DM and pancreatic disorders, prior to index exposure

## Design:




## Design and analysis:

- Drug regimen: ≥ 1000 treatment intervals, ≥5 DM outcomes.
  - 659 regimens →19 monotherapies + 83 combinations
  - Individual therapies: lithium, MSAs, SGAs, TGA
  - Classes: FGAs, antidepressants
  - Multi-class polypharmacies: 2, 3, and 4+ classes

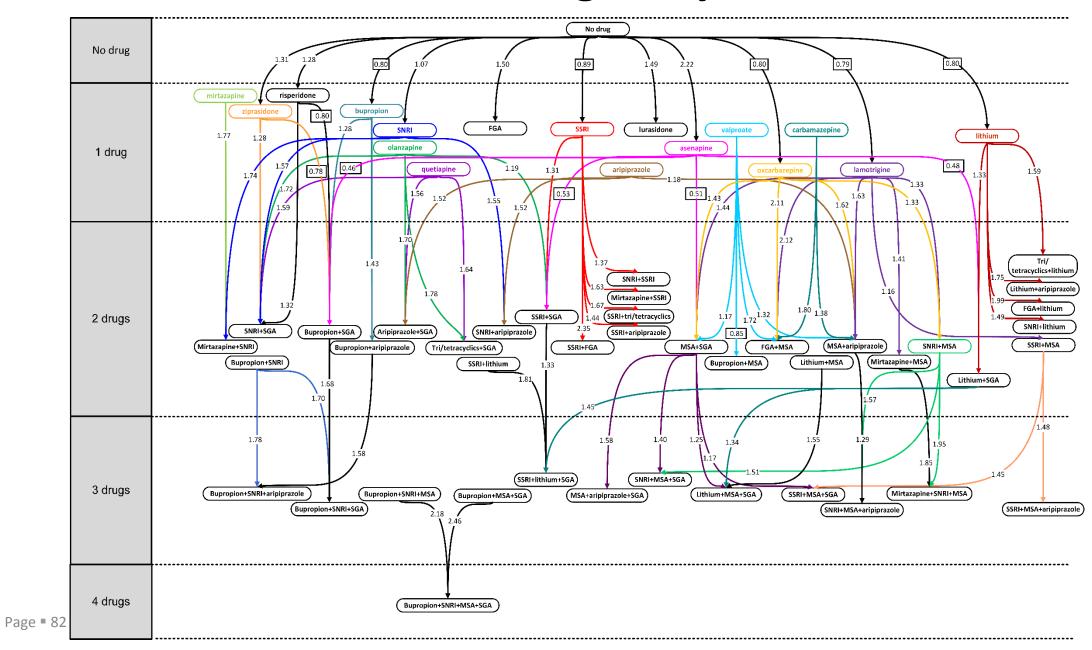
- Cox regression model with time-varying covariates
  - 102 regimens with "no drug" as a reference
  - 85 pre-treatment covariates

## Diabetes mellitus (DM) study: results

- Total: 565,253 adults fit criteria
- 4.1% had a new DM (N=22,951).
- Annual incidence of new-onset DM 3.09% (general US population 0.32-0.88%)
  - mean of 342.7 days (median 136) after the index visit
  - 741,573 years of observation under the drug regimens studied



## Diabetes mellitus regression analysis


39 regimens had HR>1 with p<0.05

| Covariate              | HR p-value |                         | Lower limit | <b>Upper limit</b> | N-       | N-        |  |  |  |
|------------------------|------------|-------------------------|-------------|--------------------|----------|-----------|--|--|--|
| Covariate              | пк         | p-value                 | 95%CI       | 95%CI              | patients | intervals |  |  |  |
|                        |            | Drug regimens           |             |                    |          |           |  |  |  |
| NDRI+SNRI+MSA+SGA      | 2.37       | 5.38 x10 <sup>-6</sup>  | 1.62        | 3.46               | 941      | 1,533     |  |  |  |
| Uncommon monotherapy   | 2.32       | 2.47 x10 <sup>-3</sup>  | 1.33        | 4.04               | 521      | 876       |  |  |  |
| asenapine monotherapy  | 2.22       | 2.70 x10 <sup>-4</sup>  | 1.43        | 3.43               | 1,579    | 2,385     |  |  |  |
| SSRI+MSA+TGA+SGA       | 2.18       | 3.64 x10 <sup>-3</sup>  | 1.27        | 3.72               | 809      | 1,151     |  |  |  |
| SSRI+FGA               | 2.09       | 3.42 x10 <sup>-5</sup>  | 1.46        | 2.97               | 1,073    | 1,601     |  |  |  |
| SNRI+SSRI+TGA          | 2.08       | 6.16 x10 <sup>-3</sup>  | 1.22        | 3.56               | 736      | 1,012     |  |  |  |
| NASSA+SNRI+MSA         | 2.07       | 3.74 x10 <sup>-3</sup>  | 1.25        | 3.41               | 716      | 1,032     |  |  |  |
| NASSA+SNRI             | 1.86       | 3.05 x10 <sup>-3</sup>  | 1.22        | 2.82               | 1,396    | 1,972     |  |  |  |
| MSA+TGA+SGA            | 1.81       | 4.04 x10 <sup>-4</sup>  | 1.29        | 2.52               | 2,339    | 3,693     |  |  |  |
| NDRI+SNRI+TGA          | 1.79       | 1.46 x10 <sup>-3</sup>  | 1.24        | 2.58               | 1,187    | 2,007     |  |  |  |
| multiSGA               | 1.77       | 2.04 x10 <sup>-4</sup>  | 1.30        | 2.40               | 3,368    | 4,733     |  |  |  |
| SNRI+SSRI+MSA+SGA      | 1.74       | 4.65 x10 <sup>-2</sup>  | 1.00        | 3.03               | 889      | 1,293     |  |  |  |
| Tri/tetracyclics+SGA   | 1.73       | 1.66 x10 <sup>-2</sup>  | 1.09        | 2.75               | 1,113    | 1,655     |  |  |  |
| NDRI+SNRI+SGA          | 1.71       | 1.15 x10 <sup>-3</sup>  | 1.23        | 2.38               | 1,722    | 2,812     |  |  |  |
| FGA+MSA                | 1.68       | 2.44 x10 <sup>-4</sup>  | 1.27        | 2.24               | 1,869    | 3,056     |  |  |  |
| SNRI+SGA               | 1.68       | 6.12 x10 <sup>-24</sup> | 1.52        | 1.86               | 18,655   | 31,326    |  |  |  |
| SNRI+lithium+TGA       | 1.68       | 8.55 x10 <sup>-2</sup>  | 0.92        | 3.07               | 715      | 1,095     |  |  |  |
| SNRI+MSA+TGA           | 1.66       | 6.85 x10 <sup>-7</sup>  | 1.35        | 2.03               | 4,374    | 7,432     |  |  |  |
| SNRI+TGA               | 1.66       | 3.51 x10 <sup>-12</sup> | 1.43        | 1.91               | 10,089   | 16,880    |  |  |  |
| TGA+SGA                | 1.66       | 1.48 x10 <sup>-3</sup>  | 1.21        | 2.27               | 3,535    | 5,148     |  |  |  |
| Polypharmacy2          | 1.60       | 6.67 x10 <sup>-5</sup>  | 1.27        | 2.03               | 3,832    | 6,516     |  |  |  |
| SNRI+MSA+SGA           | 1.59       | 2.33 x10 <sup>-11</sup> | 1.39        | 1.83               | 9,670    | 16,562    |  |  |  |
| FGA+lithium            | 1.59       | 1.96 x10 <sup>-3</sup>  | 1.18        | 2.15               | 1,015    | 1,865     |  |  |  |
| SSRI+lithium+SGA       | 1.55       | 6.08 x10 <sup>-5</sup>  | 1.25        | 1.93               | 4,729    | 7,989     |  |  |  |
| FGA mono-class therapy | 1.50       | 4.20 x10 <sup>-4</sup>  | 1.19        | 1.89               | 3,817    | 6,337     |  |  |  |
|                        |            |                         |             |                    |          |           |  |  |  |

## Diabetes mellitus regression analysis (cont.)

| Covariate                         | HR   | p-value                | Lower limit<br>95%CI | Upper limit<br>95%Cl | N-<br>patients |
|-----------------------------------|------|------------------------|----------------------|----------------------|----------------|
| SSRI+MSA                          | 0.92 | 1.67 x10 <sup>-2</sup> | 0.85                 | 0.99                 | 68,565         |
| NASSA+TGA                         | 0.90 | 8.13 x10 <sup>-1</sup> | 0.37                 | 2.20                 | 750            |
| SSRI mono-class therapy           | 0.89 | 2.12 x10 <sup>-5</sup> | 0.84                 | 0.94                 | 144,353        |
| NDRI+lithium+MSA                  | 0.88 | 5.83 x10 <sup>-1</sup> | 0.56                 | 1.38                 | 1,929          |
| NDRI+SSRI+MSA                     | 0.88 | 2.08 x10 <sup>-1</sup> | 0.72                 | 1.08                 | 8,300          |
| NDRI+lithium                      | 0.86 | 2.14 x10 <sup>-1</sup> | 0.68                 | 1.09                 | 5,769          |
| SSRI+lithium                      | 0.86 | 3.31 x10 <sup>-2</sup> | 0.74                 | 0.99                 | 15,068         |
| NDRI+lithium+SGA                  | 0.84 | 4.59 x10 <sup>-1</sup> | 0.52                 | 1.35                 | 1,714          |
| NDRI+MSA                          | 0.83 | 1.36 x10 <sup>-3</sup> | 0.75                 | 0.93                 | 27,347         |
| NDRI+SSRI                         | 0.83 | 2.05 x10 <sup>-2</sup> | 0.70                 | 0.97                 | 15,861         |
| lithium monotherapy               | 0.80 | 2.39 x10 <sup>-9</sup> | 0.74                 | 0.86                 | 54,944         |
| NDRI (bupropion only) monotherapy | 0.80 | 4.29 x10 <sup>-6</sup> | Ø.72                 | 0.88                 | 50,277         |
| oxcarbazepine monotherapy         | 0.80 | 6.89 x10 <sup>-3</sup> | 0.67                 | 0.94                 | 18,009         |
| lamotrigine monotherapy           | 0.79 | 1.16 x10 <sup>-3</sup> | 0.75                 | 0.85                 | 121,730        |
| NDRI+SSRI+lithium                 | 0.77 | 3.05 x10 <sup>-1</sup> | 0.46                 | 1.29                 | 1,533          |
| NASSA+NDRI                        | 0.73 | 4.77 x10 1             | 0.30                 | 1.78                 | 759            |
| NDR!+lithium+MSA+SGA              | 0.66 | 3.05 x10 <sup>-1</sup> | 0.29                 | 1.49                 | 706            |
| NASSA+MSA+SGA                     | 0.57 | 1.63 x10 <sup>-1</sup> | 0.25                 | 1.28                 | 1,021          |

## Multi-drug analysis



## **Conclusions:**

- 1. DM risk varied 3-fold among different regimens.
- 2. Lower DM risk for lithium, lamotrigine, oxcarbazepine, and bupropion monotherapies, SSRI mono-class therapy, and bupropion- and SSRI-containing drug combinations.
- 3. Psychotropic polypharmacy was often associated with higher risk of DM compared to monotherapies.
- 4. The majority of antipsychotic-containing regimens were associated with a significantly higher risk of DM versus "No drug".

## Limitations of the study:

- Non-randomized assignment of patients to treatment groups,
- No data were available prior to insurance enrollment data or 2003 (baseline risk for DM could differ)
- Unmeasured indication or other biases could remain that distort drug risk estimates for DM (family history, ethnicity, lifestyle).
- No correction was made for the number of drugs of interest used prior, current drug dosage, route of administration, or release mechanism.
- "No drug" chosen as a comparator indication bias can exist

## Poster #77











## Global collaborative research through OHDSI network:

Net Clinical Benefit of Ticagrelor compared to Clopidogrel in patients with Acute Coronary Syndrome following Percutaneous Coronary Intervention

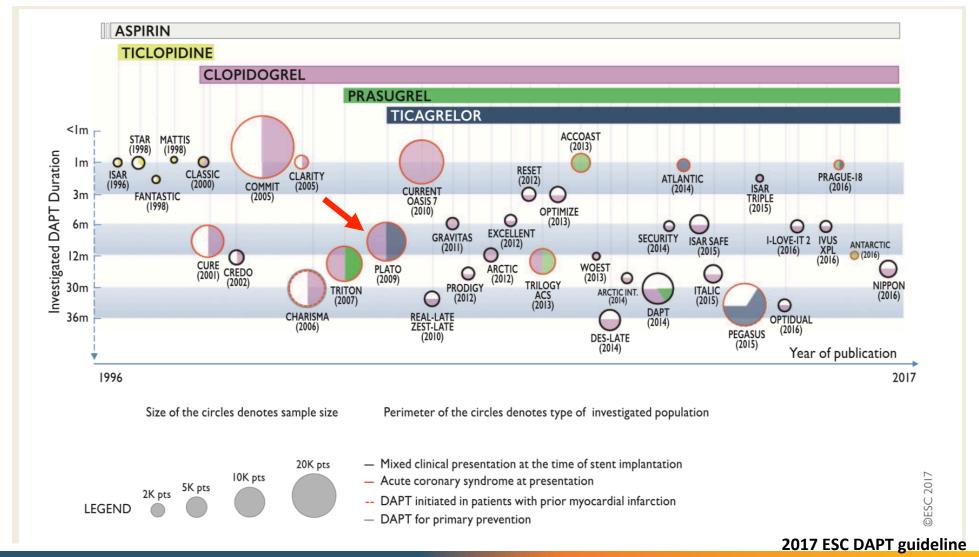
Seng Chan You<sup>1</sup>; Yeunsook Rho<sup>2</sup>; Jiwoo Kim2; Anastasios Siapos<sup>3</sup>; Ajit Londhe<sup>4</sup>; Jaehyeong Cho<sup>5</sup>; Jimyung Park<sup>5</sup>; Martijn Schuemie<sup>4</sup>; Marc A Suchard, MD, PhD<sup>6,7</sup>; David Madigan PhD8; George Hripcsak MD<sup>9</sup>; Christian G. Reich3; Patrick B. Ryan<sup>4</sup>; Rae Woong Park, MD, PhD<sup>1,5</sup>; Harlan M. Krumholz, MD<sup>10</sup>

<sup>1</sup>Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; <sup>2</sup>Health Insurance Review and Assessment Service, Wonju, Korea; <sup>3</sup>IQVIA, Durham, USA; <sup>4</sup>Janssen Research and Development, Titusville, USA; <sup>5</sup>Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; <sup>6</sup>Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA; <sup>7</sup>Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA; <sup>8</sup>Department of Statistics, Columbia University, New York, NY, USA; <sup>9</sup>Medical Informatics Services, New York-Presbyterian Hospital, New York, NY, USA; <sup>10</sup>Yale University School of Medicine, USA



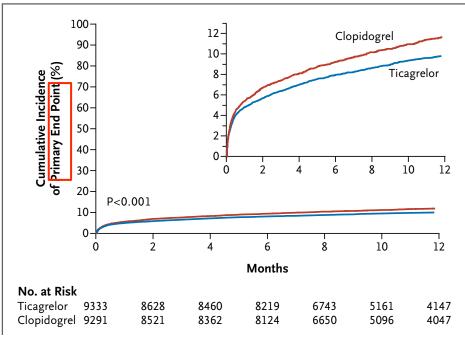
## Disclosures

### Potential Conflict of interests


 Dr. Ryan, Dr. Schuemie, and Ajit Londhe are employees of Janssen Research & Development, a subsidiary of Johnson & Johnson. Dr. Reich and Mr. Siapos are employees of IQVIA. Neither Janssen nor IQVIA had input in the design, execution, interpretation of results or decision to publish.

## Source of Funding

— This work was supported by the Bio Industrial Strategic Technology Development Program (20001234) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea [grant number: HI16C0992]




## History of **D**ual **A**nti**P**latelet **T**herapy (DAPT) in patients with coronary artery disease



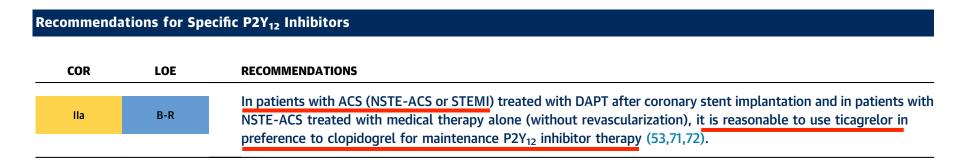


## **PLAT**elet inhibition and patient **O**utcomes (PLATO) Trial



| 1                                                  |                     |                      |                                                           |         |
|----------------------------------------------------|---------------------|----------------------|-----------------------------------------------------------|---------|
| End Point                                          | Ticagrelor<br>Group | Clopidogrel<br>Group | Hazard or Odds<br>Ratio for Ticagrelor<br>Group (95% CI)† | P Value |
| Primary safety end points — no./total no. (%)      |                     |                      |                                                           |         |
| Major bleeding, study criteria                     | 961/9235 (11.6)     | 929/9186 (11.2)      | 1.04 (0.95-1.13)                                          | 0.43    |
| Major bleeding, TIMI criteria‡                     | 657/9235 (7.9)      | 638/9186 (7.7)       | 1.03 (0.93-1.15)                                          | 0.57    |
| Bleeding requiring red-cell transfusion            | 818/9235 (8.9)      | 809/9186 (8.9)       | 1.00 (0.91-1.11)                                          | 0.96    |
| Life-threatening or fatal bleeding, study criteria | 491/9235 (5.8)      | 480/9186 (5.8)       | 1.03 (0.90-1.16)                                          | 0.70    |
| Fatal bleeding                                     | 20/9235 (0.3)       | 23/9186 (0.3)        | 0.87 (0.48-1.59)                                          | 0.66    |
| Nonintracranial fatal bleeding                     | 9/9235 (0.1)        | 21/9186 (0.3)        |                                                           | 0.03    |
| Intracranial bleeding                              | 26/9235 (0.3)       | 14/9186 (0.2)        | 1.87 (0.98-3.58)                                          | 0.06    |
| Fatal                                              | 11/9235 (0.1)       | 1/9186 (0.01)        |                                                           | 0.02    |
| Nonfatal                                           | 15/9235 (0.2)       | 13/9186 (0.2)        |                                                           | 0.69    |
| Secondary safety end points — no./total no. (%)    |                     |                      |                                                           |         |
| Non-CABG-related major bleeding, study criteria    | 362/9235 (4.5)      | 306/9186 (3.8)       | 1.19 (1.02-1.38)                                          | 0.03    |
| Non-CABG-related major bleeding, TIMI criteria     | 221/9235 (2.8)      | 177/9186 (2.2)       | 1.25 (1.03, 1.53)                                         | 0.03    |
| CABG-related major bleeding, study criteria        | 619/9235 (7.4)      | 654/9186 (7.9)       | 0.95 (0.85-1.06)                                          | 0.32    |
| CABG-related major bleeding, TIMI criteria         | 446/9235 (5.3)      | 476/9186 (5.8)       | 0.94 (0.82-1.07)                                          | 0.32    |
| Major or minor bleeding, study criteria            | 1339/9235 (16.1)    | 1215/9186 (14.6)     | 1.11 (1.03-1.20)                                          | 0.008   |
| Major or minor bleeding, TIMI criteria‡            | 946/9235 (11.4)     | 906/9186 (10.9)      | 1.05 (0.96-1.15)                                          | 0.33    |
| Dyspnea — no /total no (%)                         |                     |                      |                                                           |         |
| Any                                                | 1270/9235 (13.8)    | 721/9186 (7.8)       | 1.84 (1.68–2.02)                                          | <0.00]  |
| Requiring discontinuation of study treatment       | 79/9235 (0.9)       | 13/9186 (0.1)        | 6.12 (3.41-11.01)                                         | < 0.00  |
|                                                    |                     |                      |                                                           |         |

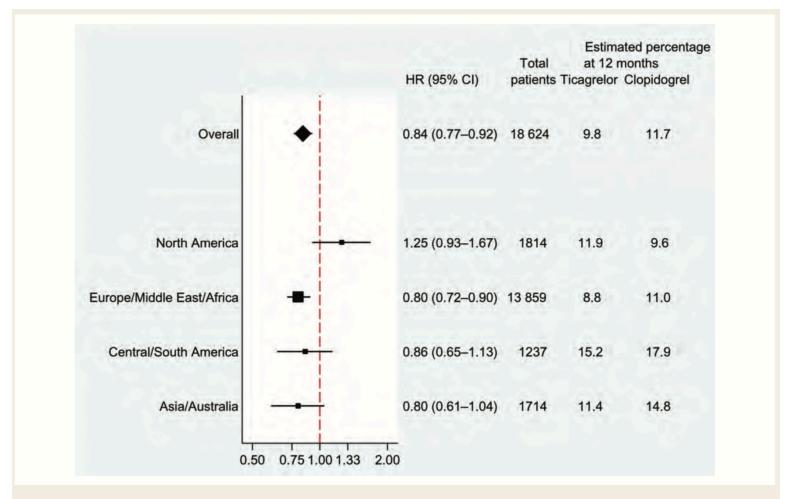
Primary End Point: Vascular death, myocardial infarction and stroke


Wallentin et al., NEJM, 2009



## Current clinical guideline for DAPT in ACS solely based on PLATO trial

| Recommendations                                                                                                                                                                                                                                                                                                                  | Class <sup>a</sup> | Level <sup>b</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| In patients with ACS, ticagrelor (180 mg loading dose, 90 mg twice daily) on top of aspirin <sup>c</sup> is recommended, regardless of initial treatment strategy, including patients pre-treated with clopidogrel (which should be discontinued when ticagrelor is commenced) unless there are contraindications. <sup>20</sup> | 1                  | В                  |


2017 ESC/EACTS DAPT guideline



2016 ACC/AHA DAPT guideline



## PLATO trial did not demonstrate superiority of Ticagrelor in North America and Asia



**Figure I** Estimated treatment effects by geographic region for the primary endpoint (CV death, MI, or stroke) of the PLATO trial (hazard ratios with 95% CIs, interaction *P*-value 0.05).



## Objectives

 Compare risk of net adverse clinical event (NACE) between ticagrelor and clopidogrel in patients with Acute Coronary Syndrome (ACS) following percutaneous coronary intervention (PCI) through OHDSI network.



## Method: Study Population

- Inclusion Criteria
  - Adults (>=20 yrs) who initiated ticagrelor or clopidogrel due to acute coronary syndrome (ACS) and undertook percutaneous coronary intervention (PCI)
- Exclusion Criteria
  - Prior history of stroke or gastrointestinal bleeding
  - Use of prasugrel or opposing drug within previous 30 days from index date



## Method: Outcome

### **Primary endpoint: Net Adverse Clinical Event (NACE)**

 Composite of recurrent myocardial infarction, any revascularization, ischemic stroke, intracranial hemorrhage, or gastrointestinal bleeding

### **Secondary endpoint**

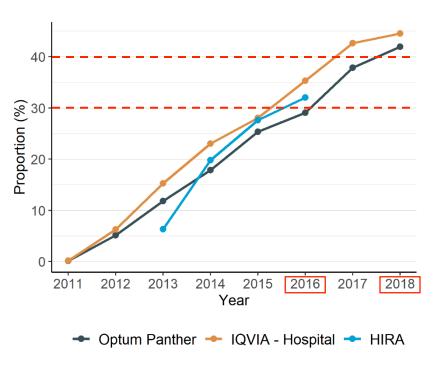
- Ischemic Event
  - Recurrent myocardial infarction
  - Any revascularization (PCI + CABG)
  - Ischemic stroke
- Hemorrhagic Event (major bleeding)
  - Intracranial hemorrhage
  - Gastrointestinal bleeding
- Overall death
- Dyspnea (Positive control)



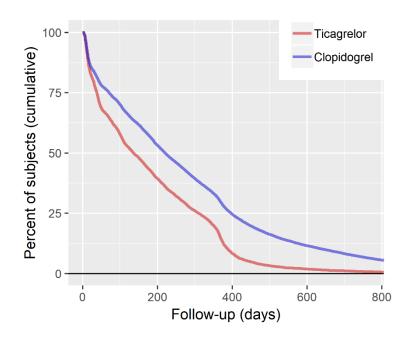
## Method: Statistical Analysis

- Primary analysis
  - Time windows: From 1 day to 365 days after the index date
  - Unconditioned Cox regression after 1-to-1 PS matching
- Sensitivity analyses
  - Time windows
    - On-treatment
    - 5-year
  - Statistical analysis
    - 1-to-1 PS matching with blanking period of outcome (28 days)
    - Variable-ratio PS matching
    - PS stratification
- Assessment of systemic errors
  - 96 Negative controls




## Method

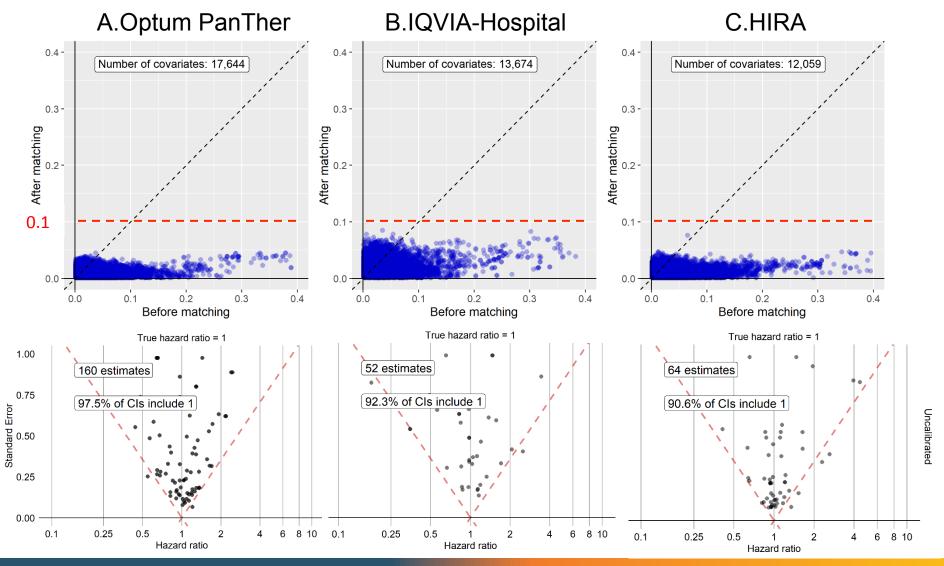
- Data source
  - Optum Pan-Therapeutics (PanTher): USA, EHR (86M)
  - IQVIA's Hospital data: USA, EHR (85M)
  - HIRA: South Korea, Nationwide Claim for patients undertaking PCI (0.4M)




## Proportion of ticagrelor across years and drug adherence in Korea

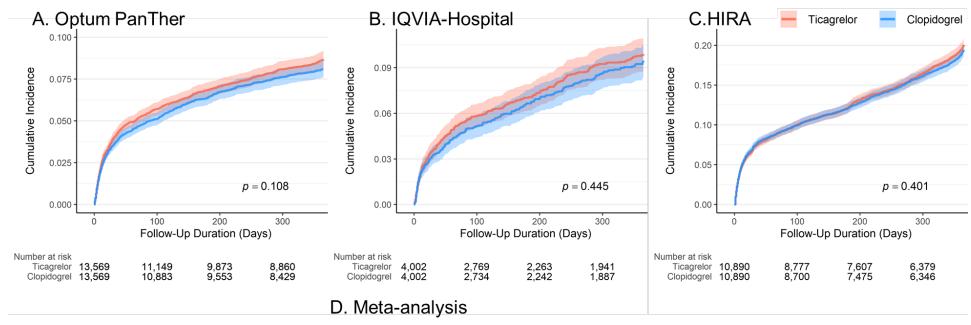
## **Proportion of Ticagrelor user** among whole study population

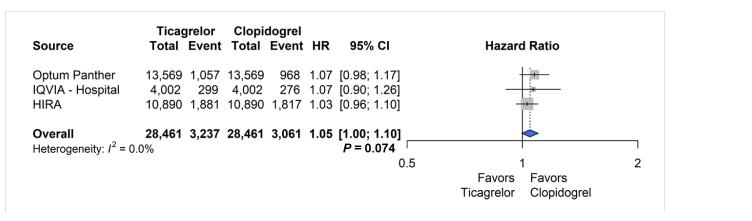



## Days of continuation of ticagrelor and clopidogrel



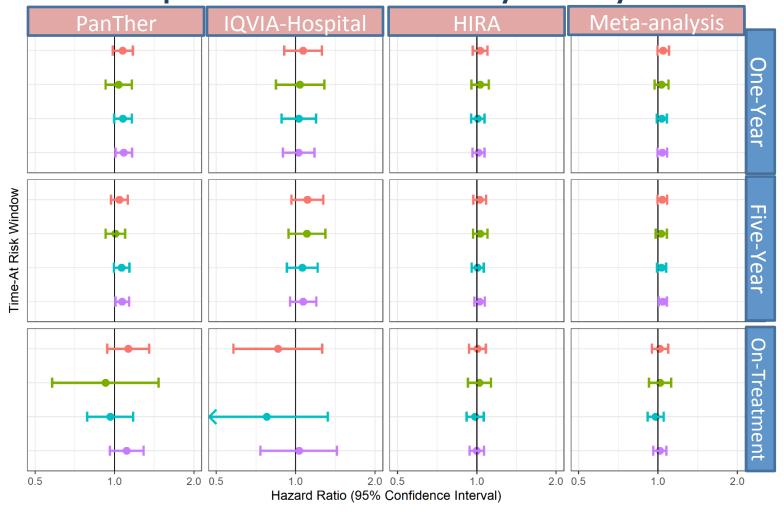
| Days of Drug<br>Continuation | 1Q | Median | 3Q  |  |
|------------------------------|----|--------|-----|--|
| Ticagrelor                   | 38 | 132    | 363 |  |
| Clopidogrel                  | 78 | 232    | 566 |  |





## Balance before and after PS matching and Systematic error control






## Primary endpoint: 1-year NACE







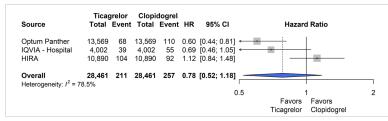
Consistency in the results of the primary endpoint in sensitivity analyses



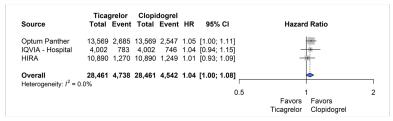


1-to-1 PS matching with blanking period

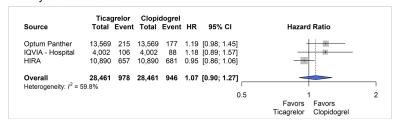
Variable-ratio PS matching


PS stratification

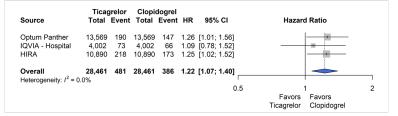



#### A. Ischemic event

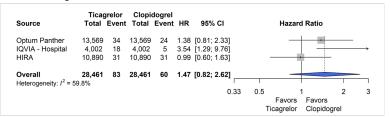
| Source                     |        | grelor<br>Event | Clopi<br>Total | dogrel<br>Event | HR   | 95% CI       | Hazard Ratio           |   |
|----------------------------|--------|-----------------|----------------|-----------------|------|--------------|------------------------|---|
| Optum Panther              | 13,569 | 919             | 13,569         | 859             | 1.05 | [0.96; 1.16] | <del>-   is</del>      |   |
| IQVIA - Hospital           | 4,002  |                 |                |                 |      | [0.88; 1.27] |                        |   |
| HIRA                       |        |                 |                |                 |      | [0.96; 1.09] | <del>*</del>           |   |
| Overall                    | 28,461 | 2,924           | 28,461         | 2,797           | 1.03 | [0.98; 1.09] | <u> </u>               |   |
| Heterogeneity: $I^2 = 0$ . | 0%     |                 |                |                 |      |              |                        |   |
|                            |        |                 |                |                 |      | 0.           | 0.5 1                  | 2 |
|                            |        |                 |                |                 |      |              | Favors Favors          |   |
|                            |        |                 |                |                 |      |              | Ticagrelor Clopidogrel |   |


#### B. Ischemic stroke

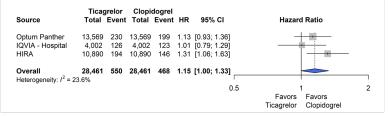



#### C. Recurrent acute MI

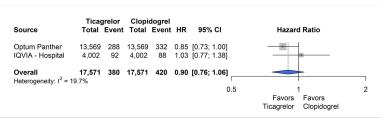



#### D. Any revascularization

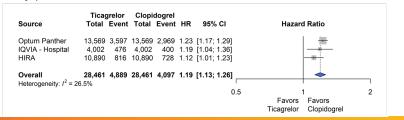



#### E. Hemorrhagic event



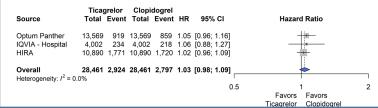

#### F. Hemorrhagic stroke




#### G. GI bleeding

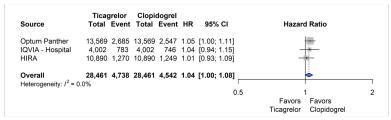


#### H. Overall death

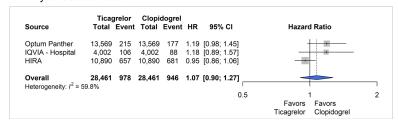



#### I. Dyspnea



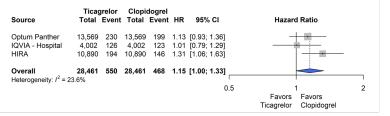



#### A. Ischemic event

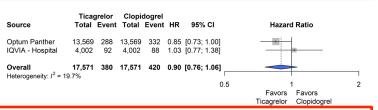



#### B. Ischemic stroke Ticagrelor Clopidogrel Total Event Total Event HR 95% CI **Hazard Ratio** Source 13,569 68 13,569 110 0.60 [0.44; 0.81] Optum Panther 4,002 39 4,002 55 0.69 [0.46; 1.05] IQVIA - Hospital HIRA 10,890 104 10,890 92 1.12 [0.84; 1.48] Overall 28.461 211 28.461 257 0.78 [0.52; 1.18] Heterogeneity: $I^2 = 78.5\%$ 0.5 2 Favors Favors Ticagrelor Clopidogrel

#### C. Recurrent acute MI




#### D. Any revascularization





#### E. Hemorrhagic event Ticagrelor Clopidogrel Total Event Total Event HR 95% CI Hazard Ratio Source Optum Panther 13,569 190 13,569 147 1.26 [1.01; 1.56] IQVIA - Hospital 4.002 73 4.002 66 1.09 [0.78: 1.52] HIRA 10,890 218 10,890 173 1.25 [1.02; 1.52] 28,461 481 28,461 386 1.22 [1.07; 1.40] Overall Heterogeneity: $I^2 = 0.0\%$ Favors Favors Ticagrelor Clopidogrel F. Hemorrhagic stroke Ticagrelor Clopidogrel Total Event Total Event HR 95% CI **Hazard Ratio** Source 13,569 34 13,569 24 1.38 [0.81; 2.33] Optum Panther IQVIA - Hospital 4,002 18 4,002 5 3.54 [1.29; 9.76] 10,890 31 10,890 31 0.99 [0.60; 1.63] Overall 28.461 83 28.461 60 1.47 [0.82; 2.62] Heterogeneity: $I^2 = 59.8\%$ 0.33 0.5 Favors Favors Ticagrelor Clopidogrel

#### G. GI bleeding



#### H. Overall death







## Summary

- There appears to be no significant difference in 1-year NACE risk between ticagrelor and clopidogrel users with ACS following PCI
- The findings for primary endpoint were consistent across sensitivity analyses
- Ticagrelor is associated with higher risk of hemorrhagic events and dyspnea.





# Delivering on-demand evidence via an informatics consultation service

Alison Callahan PhD
Research Scientist, Stanford University School of Medicine
OHDSI Symposium 2019

## Acknowledgements

### **Informatics Consult team**



Saurabh Gombar



Alison Callahan



Vladimir Polony



Ken Jung



Nigam Shah



Robert Harrington



Rob Tibshirani



**Trevor Hastie** 

### **Stanford Health Care partners**



**David Entwistle** 




Tip Kim

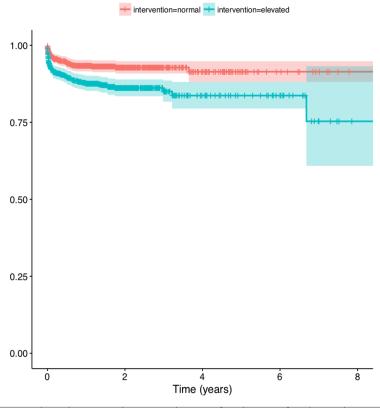


**Christopher Sharp** 

Funding: NLM, NIGMS, Stanford School of Medicine, Department of Medicine, Department of Biomedical Data Science, Center for Population Health Sciences, an anonymous donor

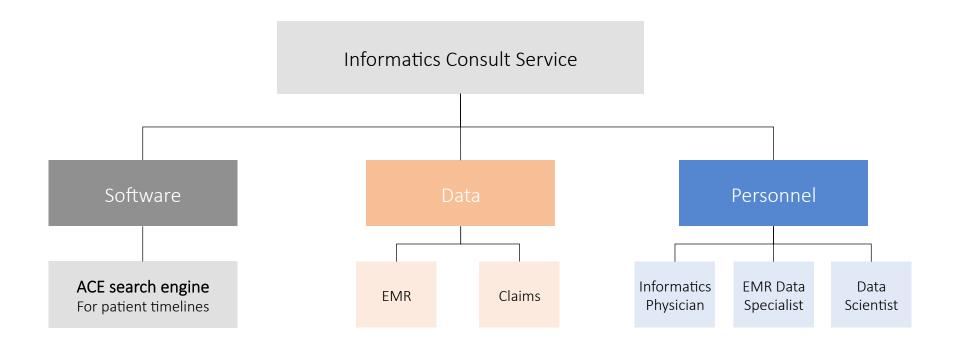
## The Green Button Service



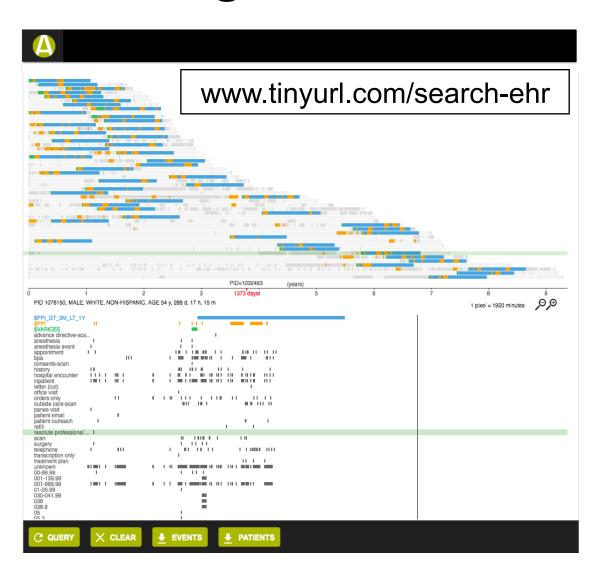

Given a specific case, provides a report summarizing similar patients in Stanford's clinical data warehouse, the common treatment choices made, and the observed outcomes.

An institutional review board approved study (IRB # 39709).

http://greenbutton.stanford.edu


## An example report

## Mildly elevated serum free light chains and subsequent malignancy




|          | N   | Observed | Expected | $(O-E)^2/E$ | $(O-E)^2/V$ | chisq | pvalue   |
|----------|-----|----------|----------|-------------|-------------|-------|----------|
| normal   | 760 | 49       | 73.365   | 8.092       | 16.413      | 16.4  | 5.09e-05 |
| elevated | 760 | 96       | 71.635   | 8.287       | 16.413      | 16.4  | 5.09e-05 |

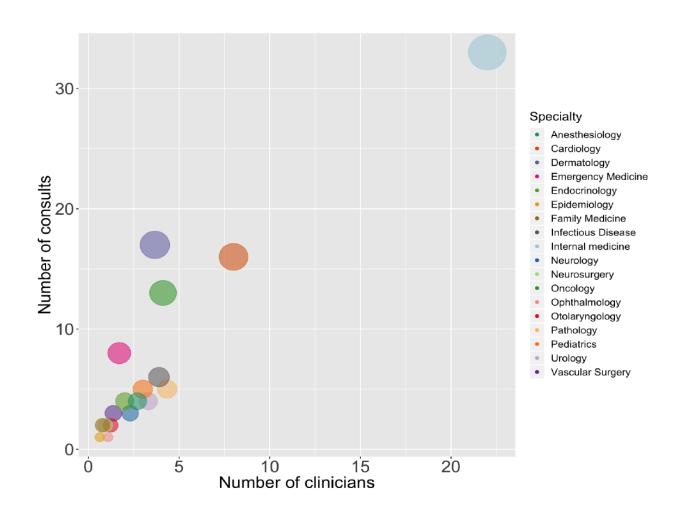
## Service = software, data, and personnel

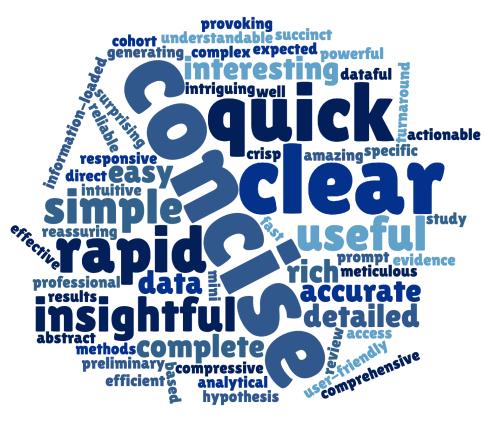



## The ACE search engine



## The process


#### 24 to 72 hours




## What we do to not be wrong

- Use CohortMethod's data diagnostics
- Use negative controls for empirical calibration
- E-values to quantify the degree of confounding that can produce the observed effect
- Ask the question using multiple datasets
- Schedule an in-person debrief

## Learning from the first 150 consults





## Deploying the service at your site

### THE STANFORD INFORMATICS CONSULT SERVICE HANDBOOK

A guide to provide informatics consults as a clinical and research service

1. Executive Summary

What is an ICS?

Need case for an ICS?

What does a successful ICS for clinical care look like?

What does a successful ICS for quality/operations look like?

How is an ICS able to rapidly generate insight from the EMR?

What are the costs associated with creating and maintaining an ICS at an AMS

#### 2. Core ICS Components

Service Logistics

Personnel requirements

Informatics Clinician

**EMR Data Specialist** 

**Data Scientist** 

**Data Requirements** 

Extracting, transforming, and loading EMR data for use in the ICS

Database administration and integrity

ATLAS Search Engine

Analysis capabilities

Quality Assurance

Training

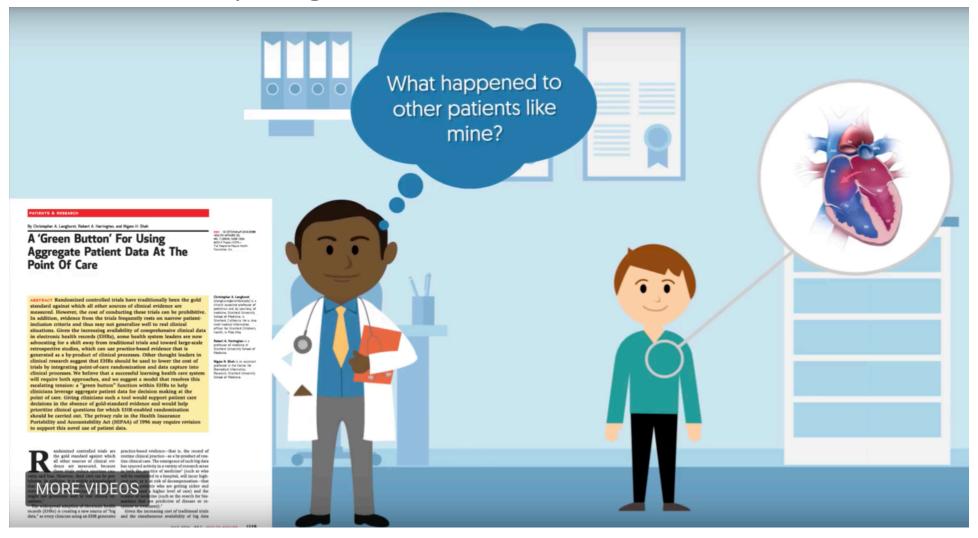
#### 3. Resource Requirements

Capital Expenditures

Operating Costs (estimated at ~ \$550 per consult)

#### References

Appendix A: The ATLAS database schema


Appendix B: The ATLAS data model

Appendix C: Consult intake script

Appendix D: Consult Debrief script

- Data in OHDSI CDM
- Institutional support
- Data science expertise
- Marketing
- A process to sanity-check the data and consult findings

## http://greenbutton.stanford.edu



Ask me about the next phase of our study on measuring utility, and deploying the Green Button at Stanford Health