Study on Pathology Common Data Model Using Natural Language Processing Toward Implementation of Integrated Platform for Clinical and Omics Data

Borim Ryu, MS1, Eunsil Yoon, MS1, Seok Kim, MS3, Hyunyoung Baek, MS1, Sejoon Lee, PhD1, Rong-Min Baek, MD, PhD1, Sooyoung Yoo, PhD1

1 Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, KOREA

Background

Three types of Pathology report written as free-text stored CDM NOTE database in SNUBH.

- Natural Language Processing (NLP) is commonly used to analyze these text narratives, to recognize or extract clinically important entities.
- To convert EHR data source into OMOP CDM data, re-formulation and standardization of data should be performed in advance as well.
- In this study, we transformed the pathology report data, which is written as English and Korean, from Seoul National University Bundang Hospital (SNUBH) into CDM NOTE_NLP data.
- The main objective of this research is to extract clinically meaningful text entities from the reports, convert them into CDM structure, and store in both NOTE_NLP table, MEASUREMENT table, or CONDITION_OCCURRENCE table.

Methods

Pathology relevant major text entities were extracted and converted into OMOP CDM data structure.

1. Immunohistochemistry report

2. Molecular genetics report

3. Surgical pathology report

Results

Rules-based text processing based on regular expression was developed to extract major clinical entities of testing subject and its results information depending on the type of each report.

Conclusions

We aimed to prepare CDM data for research platform that can take advantage of all the omics clinical to patient data at SNUBH for colon cancer pathology.

- In this study, colorectal cancer related clinical entities were extracted from text data in the pathological examination report by Seoul National University Bundang Hospital for a research platform that can utilize both clinical and omics data, and CDM data was deployed through the term standardization.
- As a result, natural language processing and term standardization were conducted for 1,848 immunohistochemistry test reports, 3,890 molecular genetics test reports and 12,352 surgical pathology reports.
- The preparation of pathological data for cancer, genomic research, and the various elements of text data currently being recorded and managed have been able to derive problems for the CDM database, and further research on CDMs will ensure the utilization of a lot of data.

Acknowledgements

- This work was supported by the Bio & Medical Technology Development Program of the MRF funded by the Korean government, Ministry of Science and ICT (MEST) (W0774930, 4060468, 2110).
- Standard terminology was also mapped into ICD-O codes.