A Docker based workflow for building machine learning model datasets utilizing the OHDSI common data model Janos G. Hajagos, Ph.D.

Department of Biomedical Informatics

Objective:

The goal of this work is to build a reproducible and deployable pipeline for making OHDSI CDM data available to data scientists. Building machine learning models on EHR data is a challenge due to the large number of features and temporal variation in underlying measurements. The end products of the pipeline are HDF5 (Hierarchical Data Format version 5) files which can be used for training neural networks.

Key Concepts:

OHDSI Common Data Model allows healthcare data from various sources to be stored in a single schema with a standardized vocabulary. It grew out of the work to rigorously evaluate methods and data sets for detecting adverse drug events.

HDF5 is a flexible file container for storing arrays in an organized structure. The concept of groups which is similar to file paths allows the data to be stored in a hierarchy. It supports a range of data types and compression methods. It has been used for storing and analyzing the data for the LIGO experiment to detect gravitational waves, see: (https://losc.ligo.org/s/events/LVT151012/LOSC_Event_tutorial_LVT151012.html).

Docker containerization system for automating the deployment and use of complex software with multiple dependencies.

Health Facts is a de-identified database of EHR (Electronic Health Record) and administrative data from multiple institutions. The database is maintained by Cerner.

HealtheIntent: is a Cerner population health platform that creates a single population health record from multiple EHRs. It maps data elements to a common set of standard vocabularies.

Keras an API for building and training deep neural networks. Tensorflow uses Keras as the API for specifying model structure.

LSTM (Long Short-Term model) is a form of an RNN (Recurrent Neural Network) that allows feedback to be utilized in the learning process.

Methods:

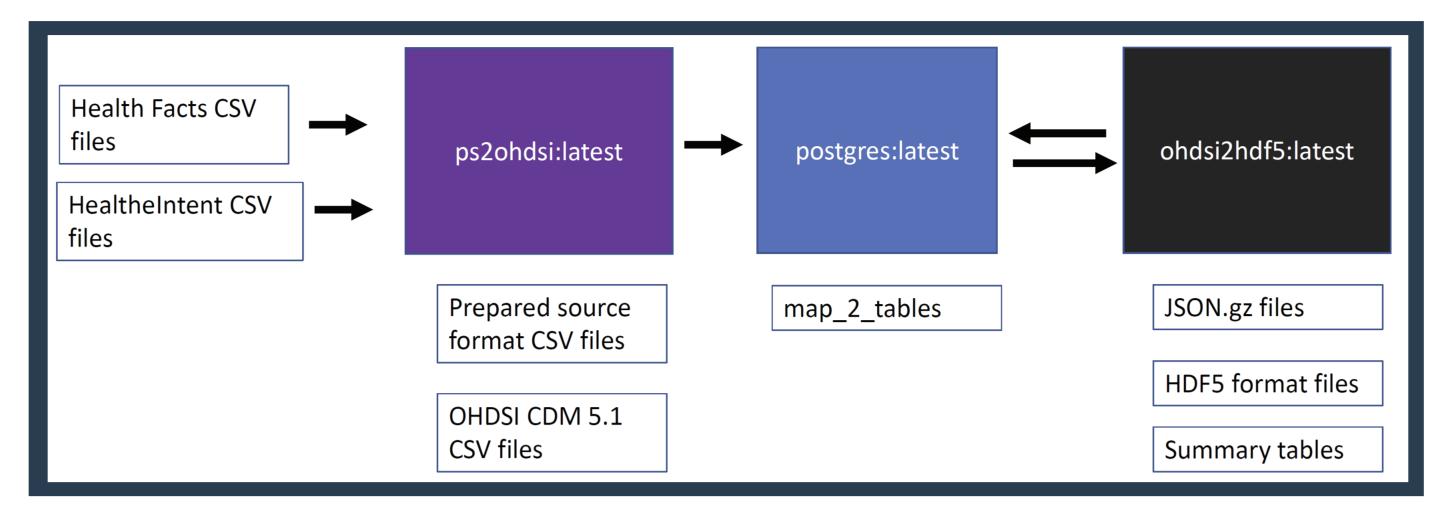
Abstract:

Data was extracted from the Cerner's Health Facts de-identified database for adult (18+ years) inpatient visits with discharges occurring over a two-year period (2016-2017). Five separates facilities with the largest inpatient volume were included in the extraction. Data for a three-year period (2016-2018) were extracted from Stony Brook Medicine acute care facilities for adult patients from Cerner's HealtheIntent platform.

Both datasets were mapped to the OHDSI CDM (Version 5.3) using a workflow orchestrated with a Docker server running on a RedHat Enterprise Linux on-premise virtual machine. The code for all Docker machines is at: https://github.com/jhajagos/Dockers4Health-CareDB2HDF52ML. This involves first mapping each source to a standardized intermediary format. The intermediary format is then mapped to the OHDSI CDM. OHDSI mapped data was then loaded into a PostgreSQL database server. Data in a PostgreSQL server was then extracted and mapped to HDF5 matrix format. HDF5 files were used by a data science team to build predictive models for coded diagnoses in Python using scikit-learn and Keras librar-

There are two potential types of HDF5 files that are built with the dockerized workflow. The first type automatically encodes using dummy variables all coded diagnoses, drug exposures, and coded measurement and observation results (e.g., high blood creatinine). For numeric results, such as, blood glucose the mean, median, max, min, first, and last result are calculated for each inpatient visit. Each inpatient visit is represented as a single row vector. The second type of HDF5 file is built using sequential data such as the change in recorded blood glucose during an inpatient visit. Each visit is represented as a matrix where each row in the matrix is a temporal change in measurement values or exposure to a specific drug.

Docker based workflow



https://github.com/jhajagos/Dockers4HealthCareDB2HDF52ML

Mapping Results:

		Health Facts 5 i	nstitutions	Institutional HealtheIntent		
CDM Table HDF5 Group		Number of records in table	Number of columns in matrix	Number of records in table	Number of columns in matrix	
Person	sit_occurrence /ohdsi/visit_occurrence/		13	66,096	30	
visit_occurrence			72	102,028	121	
condition_occurrence			9,358	2,678,585	7,695	
procedure_occurrence	/ohdsi/procedure_occurrence/	149,996	4,038	419,445	9,921	
measurement	/ohdsi/measurement/count/	141,359,529	994	101,338,048	2,209	
observation	tion /ohdsi/observation/count/		708	31,890,686	666	
drug_exposure	drug_exposure /ohdsi/drug_exposure/count/		1,343	5,861,098	7,654	

Institutional HealtheIntent

c1	▼ c2	▼ c3	▼ c4 ▼	non-zero 🔻	to_include 🍜	fraction non-zero	unique 🔻	fraction_unique 🔻
	4113006 Assisted	Ability to perform activities of everyday life	categorica	17,594	1	0.511	14,301	0.550
	4113006 Dependent	Ability to perform activities of everyday life	categorica	5,428	1	0.158	4,390	0.169
	4113006 Independent	Ability to perform activities of everyday life	categorica	14,447	1	0.419	12,274	0.472
	4121059 Assisted	Eating, feeding and drinking abilities	categorica	8,713	1	0.253	6,912	0.266
	4121059 Dependent	Eating, feeding and drinking abilities	categorical	3,279	1	0.095	2,716	0.105
	4121059 Edentulous	Eating, feeding and drinking abilities	categorica	460	1	0.013	436	0.017
	4121059 Independent	Eating, feeding and drinking abilities	categorical	26,832	1	0.779	21,040	0.810
	4121059 Nil by mouth	Eating, feeding and drinking abilities	categorical	8,981	1	0.261	7,644	0.294
	4121059 None	Eating, feeding and drinking abilities	categorical	26,246	1	0.762	20,639	0.794
	4137801 Continuous	Coughing	categorical	602	1	0.017	573	0.022
	4137801 None	Coughing	categorical	27,569	1	0.800	21,223	0.817
	4137801 Occasional	Coughing	categorical	7,114	1	0.206	5,804	0.223
	4137801 Weak	Coughing	categorical	1,044	1	0.030	994	0.038
	4139528 Active Durable Power of A	Attorne Active advance directive	categorical	785	1	0.023	746	0.029
	4139528 Active living will	Active advance directive	categorica	1,377	1	0.040	1,285	0.049
	4173786 Adequate	Antenatal care	categorical	2,785	1	0.081	2,682	0.103
	4186106 None	Anticoagulation contraindicated	categorical	21,935	1	0.636	17,510	0.674
	4222407 Condom	Urinary catheterization status	categorical	360	1	0.010	328	0.013
	4222407 Discontinued	Urinary catheterization status	categorical	8,228	1	0.239	7,622	0.293
	4222407 Evaluation procedure	Urinary catheterization status	categorical	9,420	1	0.273	8,387	0.323
	4222407 Insert	Urinary catheterization status	categorical	7,514	1	0.218	6,786	0.261
	4222862 Doppler device	Posterior tibial pulse	categorical	371	1	0.011	349	0.013
	4222862 Normal	Posterior tibial pulse	categorical	1,470	1	0.043	1,434	0.055
	4222862 Thready pulse	Posterior tibial pulse	categorical	528	1	0.015	505	0.019
	4224770 None	Social support status	categorical	439	1	0.013	416	0.016
	4224770 Parent	Social support status	categorica	2,192	1	0.064	1,744	0.067
	4224770 Partner in relationship	Social support status	categorica	1,237	1	0.036	1,065	0.041
	4224770 Sibling	Social support status	categorica	2,180	1	0.063	1,767	0.068
	4224770 Spouse	Social support status	categorica	7,664	1	0.222	5,951	0.229

Health Facts 5 institutions

Docker Pipelines: https://github.com/jhajagos/Dockers4HealthCareDB2HDF52ML

TimeWeaver (sequential data mapping): https://github.com/jhajagos/TimeWeaver

TransformDBtoHDF5ML (map DB to HDF5): https://github.com/jhajagos/TransformDBtoHDF5ML

MappingOHDSI2HDF5 (OHDSI templates): https://github.com/SBU-BMI/MappingOHDSI2HDF5

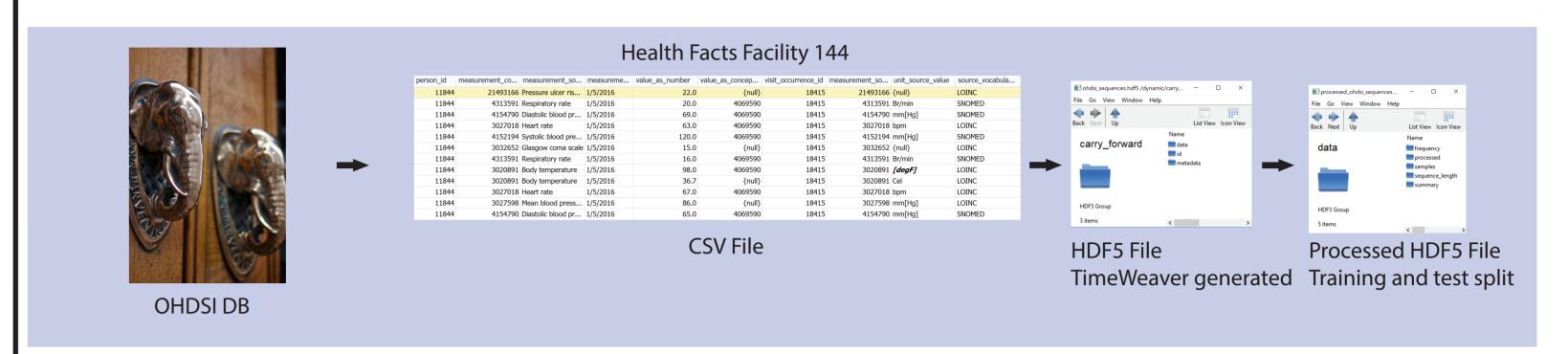
c1	▼ c2	-	c3	fraction non-zero	unique 🔻	fraction_unique 🔻
	3023599 Within reference range		MCV [Entitic volume] by Automated count	0.510	97,625	0.522
	3024128 High		Total Bilirubin serum/plasma	0.037	7,704	0.041
	3024128 Within reference range		Total Bilirubin serum/plasma	0.127	25,377	0.136
	3024354 Other		Oxygen [Partial pressure] in Venous blood	0.033	7,859	0.042
	3024561 Low		Albumin serum/plasma	0.078	15,327	0.082
	3024561 Within reference range		Albumin serum/plasma	0.105	22,303	0.119
	3024928 Other		Oxygen saturation in Venous blood	0.031	7,520	0.040
	3024929 High		Platelets [#/volume] in Blood by Automated count	0.093	18,776	0.100
	3024929 Low		Platelets [#/volume] in Blood by Automated count	0.170	33,772	0.180
	3024929 Within reference range		Platelets [#/volume] in Blood by Automated count	0.518	101,002	0.540
	3026023 Low		Comprehensive metabolic panel serum/plasma	0.021	4,582	0.024
	3026023 Normal		Comprehensive metabolic panel serum/plasma	0.112	19,959	0.107
	3026782 Within reference range		Osmolality of Urine	0.013	3,403	0.018
	3027008 Other		Opiates [Presence] in Urine	0.014	3,330	0.018
	3027018 High		Heart rate	0.184	35,901	0.192
	3027018 Low		Heart rate	0.071	16,217	0.087
	3027018 Normal		Heart rate	0.421	82,243	0.439
	3027114 High		Cholesterol [Mass/volume] in Serum or Plasma	0.019	5,044	0.027
	3027114 Within reference range		Cholesterol [Mass/volume] in Serum or Plasma	0.078	18,657	0.100
	3027219 High		Urea nitrogen [Mass/volume] in Venous blood	0.013	2,920	0.016
	3027219 Within reference range		Urea nitrogen [Mass/volume] in Venous blood	0.011	2,879	0.015
	3027245 Within reference range		Hepatitis A virus IgM Ab [Units/volume] in Serum by Immunoassay	0.016	4,199	0.022
	3027273 Other		Bicarbonate [Moles/volume] in Venous blood	0.033	7,858	0.042
	3027388 High		Alanine aminotransferase [Enzymatic activity/volume] in Serum or	0.041	9,253	0.049
	3027388 Within reference range		Alanine aminotransferase [Enzymatic activity/volume] in Serum or	0.121	24,016	0.128
	3027484 Low		Hemoglobin [Mass/volume] in Blood by calculation	0.014	3,335	0.018

A Docker based pipeline was developed to map data from EHRs (electronic health records) in OHDSI CDM (common data model) to multiple HDF5 formats. Two real world inpatient datasets were mapped to HDF5: a large de-identified EHR database for 5 institutions and an institutional EHR database for 3 years of adult inpatient stays. The HDF5 datasets were then used by a data science team to build predictive models for coded conditions.

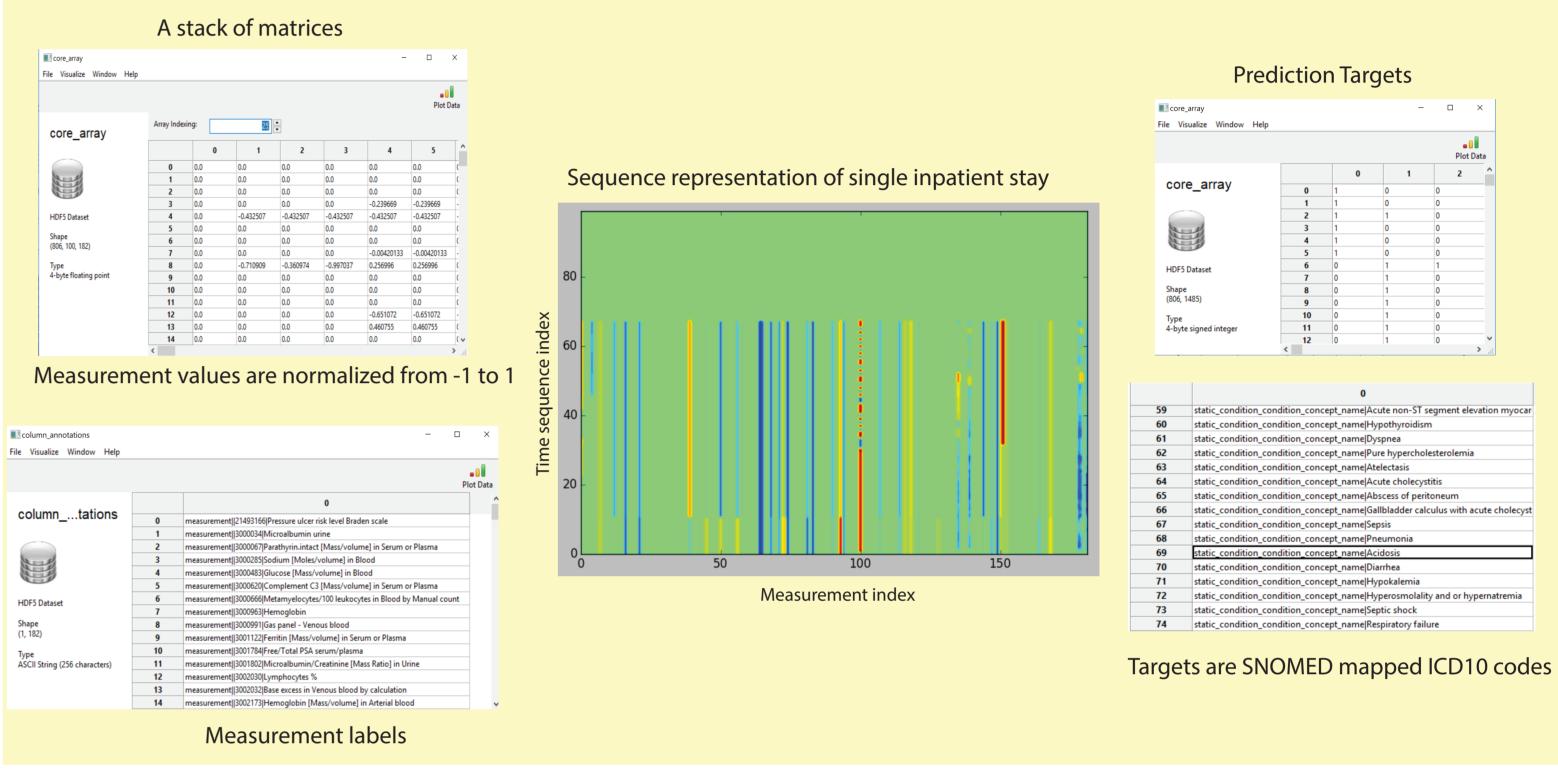
Links:

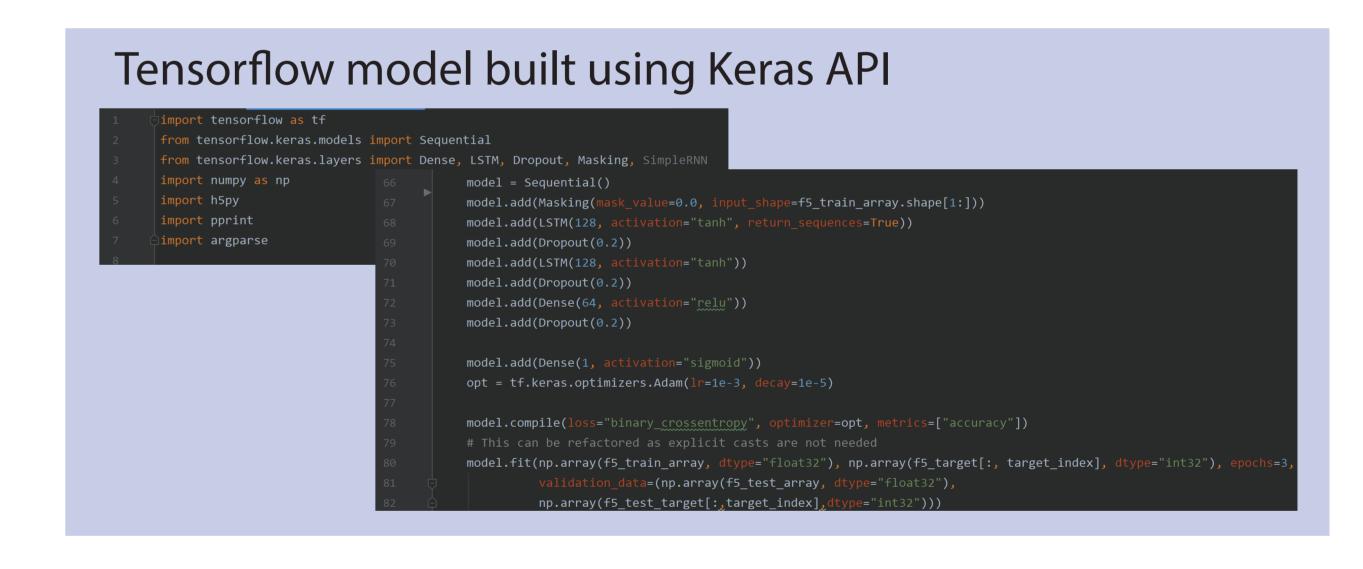
Presented at the 2019 OHDSI Symposium (September 16th)

Training an LSTM model to predict SNOMED conditions

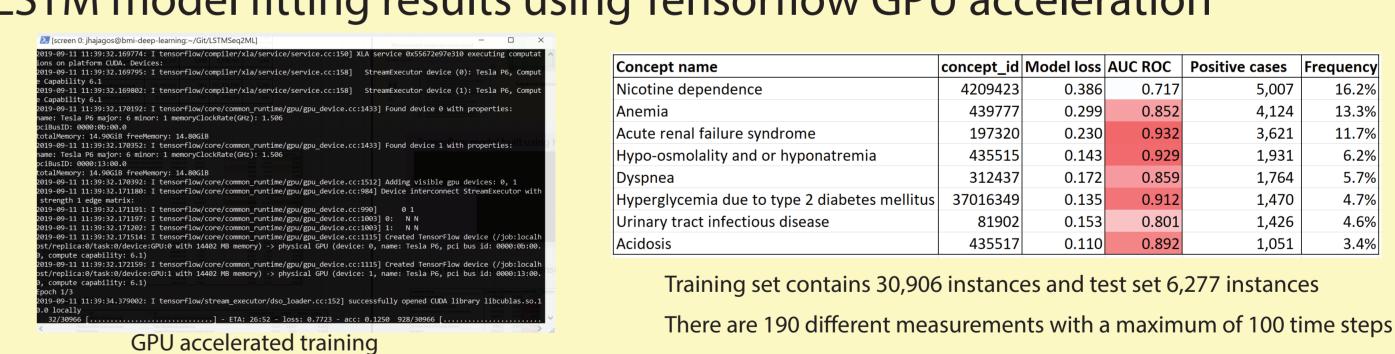


HDF5 matrix sequence generation





LSTM model fitting results using Tensorflow GPU acceleration



Conclusion:

This work demonstrates the feasibility of mapping real world inpatient EHR datasets with large number of clinical measurements into a usable format for machine learning. The OHDSI CDM provides a robust data model to represent clinical data. Once clinical data has been transformed into the OHDSI CDM the mapping process can be run using a Docker based workflow. While Docker does not solve all deployment issues it simplifies the use of complex scientific software and dependencies. The HDF5 files make it easy to build and train complex models on OHDSI data such as LSTMs.

References:

- 1. Miotto, R, Li, L., Kidd, BA, & Dudley, J. T. (2016). Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health
- 2. Neill, D. B. (2013). Using Artificial Intelligence to Improve Hospital Inpatient Care. IEEE Intelligent Systems, 92–95. 3. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Ma-
- chine Learning Research, 12, 2825–2830. 4. Chollet, F. (2015) Keras, GitHub. https://github.com/fchollet/keras