Selecting comparators for drugs with multiple indications and complex treatment patterns:

Example selecting comparators for daratumumab in multiple myeloma

SUPPLEMENTAL INFORMATION FOR OHDSI SYMPOSIUM 2019

Laura L. Hester, Dina M. Gifkins, Patrick B. Ryan

Janssen Research and Development, LLC
Table of Contents
1 Background... 4

1.1 Selecting a comparator ... 4

1.2 Applying the comparator selection method for the multiple myeloma drug, daratumumab ... 6

2 Objectives .. 7

3 Methods ... 7

3.1 Databases... 7

3.2 Cohort Definitions ... 8

3.2.1 Daratumumab new users after January 2016 ... 8

3.2.2 Bortezomib new users after January 2016 .. 8

3.2.3 Lenalidomide new users after January 2016 ... 8

3.2.4 Carfilzomib new users after January 2016 ... 8

3.2.5 Pomalidomide new users after January 2016 .. 9

3.2.6 Bortezomib new users with prior lenalidomide after January 2016 9

3.2.7 Bortezomib new users with concurrent lenalidomide after January 2016 9

3.2.8 Lenalidomide new users with prior bortezomib after January 2016 9

3.2.9 Lenalidomide new users with prior proteasome inhibitor after Jan 2016 9

3.2.10 Carfilzomib new users with prior bortezomib after January 2016 10

3.2.11 Carfilzomib new users with prior lenalidomide after January 2016 10

3.2.12 Carfilzomib new users with concurrent lenalidomide after January 2016 10

3.2.13 Pomalidomide new users with prior bortezomib after January 2016 10

3.2.14 Pomalidomide new users with prior lenalidomide after January 2016 11

3.2.15 Pomalidomide new users with prior proteasome inhibitor after Jan 2016 11

3.3 Analysis.. 11

3.3.1 Analysis entry requirements .. 11

3.3.2 Comparisons ... 12

3.3.3 Comparison diagrams .. 12

3.3.4 Analysis Methods .. 13

4 Results – For Analysis 1 ... 15

4.1 Table of target comparator cohort sizes and metrics for covariate balance and equipoise .. 15

4.2 Diagnostic plots .. 16

4.2.1 Daratumumab new users vs. Bortezomib new users .. 17

4.2.2 Daratumumab new users vs. Lenalidomide new users .. 18

4.2.3 Daratumumab new users vs. Carfilzomib new users .. 19
4.2.4 Daratumumab new users vs. Pomalidomide new users .. 20
4.2.5 Daratumumab new users with concurrent bortezomib vs. Bortezomib new users 21
4.2.6 Daratumumab new users with prior lenalidomide vs Bortezomib new users with prior lenalidomide .. 23
4.2.7 Daratumumab new users with concurrent lenalidomide vs Bortezomib new users with concurrent lenalidomide .. 24
4.2.8 Daratumumab new users with concurrent lenalidomide vs Lenalidomide alone 25
4.2.9 Daratumumab new users with prior bortezomib vs. Lenalidomide new users with prior bortezomib .. 26
4.2.10 Daratumumab new users with prior proteasome inhibitor vs. Lenalidomide new users with prior proteasome inhibitor ... 27
4.2.11 Daratumumab new users with prior bortezomib vs. Carfilzomib new users with prior bortezomib .. 28
4.2.12 Daratumumab new users with prior lenalidomide vs. Carfilzomib new users with prior lenalidomide ... 29
4.2.13 Daratumumab new users with concurrent lenalidomide vs. Carfilzomib new users with concurrent lenalidomide ... 30
4.2.14 Daratumumab new users with prior bortezomib vs. Pomalidomide new users with prior bortezomib .. 31
4.2.15 Daratumumab new users with prior proteasome inhibitor vs. Pomalidomide new users with prior proteasome inhibitor ... 32
5 Discussion and Conclusions ... 33
6 Appendix 1 – Concepts excluded from PS model ... 34
6.1 Concepts removed from the propensity score that include administration methods specific to daratumumab or supportive care specifically given before or after daratumumab administration .. 34
7 Appendix 2 – Results for analysis 2 .. 34
7.1 Table of target comparator cohort sizes and metrics for covariate balance and equipoise ... 34
8 References .. 35
1 BACKGROUND

1.1 Selecting a comparator
To conduct a comparative study, an active comparator treatment/drug is selected to compare outcomes in patients receiving the target drug to those in a similar population. Comparator drugs should be recommended in guidelines for the same treatment line or populations with similar risks for the outcome as the target population to ensure that confounding by indication, confounding by severity, and channeling bias are controlled for appropriately.¹

Selecting comparator drugs for comparative studies can be a challenge when the target treatment is indicated for multiple treatment lines or subpopulations, when different combinations of treatment are given in the regimens with the target drug, when varying patterns of treatment could have been received prior to the patient receiving the target drug, and when different populations are indicated for the drug at different lines of treatment. In these complex treatment situations, researchers often try to select a comparator with the exact prior treatment lines and concurrent drugs in the regimen as are received in the target regimen. However, this can lead to extreme restriction in analytic population sizes, especially when the condition being treated is rare, when there are multiple options for each treatment line, and when analytical methods such as propensity score matching are used (Fig 1).

Instead of using restriction, comparator drugs can be selected by ensuring that the population receiving the comparator drug has a similar: (1) probability of receiving the
treatment based on prior characteristics and (2) prevalence of baseline characteristics as the population receiving the target drug of interest.

There are two potential ways of assessing whether the target and comparator drug new user populations look the same at the index date.

One tool for assessing the comparability of a target and comparator drug is by using preference scores. Preference scores are propensity scores (predicted values of a regression of all prior covariates on the choice of receiving the target or comparator drug) that are standardized by the treatment prevalence. This score attempts to diminish concerns about confounding by indication by balancing preferences of individual physicians across all physicians. When >50% of patients fall within preference scores in the range of 0.3-0.7, then the comparison of the target and comparator drugs are considered to be in clinical equipoise when there is a high degree of overlap in physician choice between two drugs. Equipoise represents a balance of opinion in the clinical community about the best treatment for patients.

Another method for ensuring that confounding by indication is at a minimum is by assessing the absolute standardized difference in the prevalence of prior covariates from patients who are new users of the target versus the comparator drug. If the difference is high (benchmark of 0.1 used in the literature), then the two groups do not have a similar balance in the prevalence of a covariate in the data, and that imbalance could lead to influential confounding of the treatment effect. Two ways to measure imbalance in baseline covariate balance are the maximum standardized difference and the percent of covariates that exceed the benchmark of 0.1.

A third factor that should be considered when selecting a comparator is the sample size. While small sample sizes don’t necessarily affect confounding, they do impact the precision of the treatment effect and the probability of identifying rare outcomes. Bias and precision should both be considered when identifying appropriate comparators.
1.2 Applying the comparator selection method for the multiple myeloma drug, daratumumab

Selecting comparators for cancer drugs can be particularly challenging given the complex treatment guidelines for these conditions. These guidelines usually have multiple regimens which contain different combinations of drugs recommended at different stages of disease. In particular, multiple myeloma (MM) has incredibly complex treatment guidelines that complicate selection of comparators to investigate drugs given for this disease.\(^5\)

![Figure 3. National Comprehensive Cancer Network guidelines for multiple myeloma treatment with daratumumab regimens outlined in red.](image-url)

One MM drug is daratumumab, which is an anti-CD38 monoclonal antibody. Daratumumab has 4 MM indications, including in first-line treatment regimens for MM patients ineligible for stem cell transplant, with bortezomib or lenalidomide and dexamethasone after >=1 prior MM treatment, with pomalidomide and dexamethasone after >=2 prior MM treatment, or as a mono-therapy >= 3 prior MM treatments.\(^3\) Selecting comparators for outcome studies of daratumumab is challenging given the drug’s numerous indications, which can result in populations too small for analysis. Comparator selection is also difficult given the complex patterns of other MM treatments received prior to or with daratumumab. Confounding may occur if comparators are selected from populations with different prior treatment patterns or current regimens but restricting to populations with similar treatment patterns can also result in small analytic study sizes. Instead of requiring comparator drugs to have the exact indication and prior/concurrent drugs as the daratumumab cohort, this study explored a step-wise approach that used propensity score matching on subsequently restrictive populations of 4 potential comparator drugs to identify appropriate comparators in claims data based on clinical equipoise, covariate balance, and sample size.

These metrics can be compared side-by-side to assess the degree of imbalance between the target and comparator drug that remains after propensity score adjustment. If the two cohorts are quite different, then comparisons between the target and comparator drugs may be too confounded to make a reasonable inferences of treatment effect. This information is
important for selecting reasonable comparators, especially in situations where the best comparator is not clear.

2 Objectives

The main objective of the present study is:

- To explore an approach for selecting comparator drugs using clinical equipoise, covariate balance, and sample size in a setting where treatment guidelines are complex.

A secondary objective is:

- To identify potential comparator drugs for daratumumab in a population of multiple myeloma patients.

3 Methods

3.1 Databases

<table>
<thead>
<tr>
<th>Optum De-Identified Clinformatics® Data Mart Database (Optum) - Socioeconomic Status (SES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM Version ID</td>
</tr>
<tr>
<td>Database Start Date</td>
</tr>
<tr>
<td>Database End Date</td>
</tr>
</tbody>
</table>

Database Description: De-Identified Clinformatics® Data Mart Database (OptumInsight, Eden Prairie, MN) is an adjudicated administrative health claims database for members with private health insurance, who are fully insured in commercial plans or in administrative services only (ASOs), Legacy Medicare Choice Lives (prior to January 2006), and Medicare Advantage (Medicare Advantage Prescription Drug coverage starting January 2006). The population is primarily representative of US commercial claims patients (0-65 years old) with some Medicare (65+ years old) however ages are capped at 90 years. It includes data captured from administrative claims processed from inpatient and outpatient medical services and prescriptions as dispensed, as well as results for outpatient lab tests processed by large national lab vendors. Optum SES provides socio-economic status for members with both medical and pharmacy coverage and location information for patients in the US Census Division.
Cohort Definitions

3.2.1 Daratumumab new users after January 2016

<table>
<thead>
<tr>
<th>Event Index</th>
<th>People having any of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a drug exposure of daratumumab</td>
</tr>
<tr>
<td></td>
<td>o for the first time in the person’s history</td>
</tr>
<tr>
<td></td>
<td>o occurrence start is on or after 2016-01-01</td>
</tr>
<tr>
<td></td>
<td>o with age ≥ 18</td>
</tr>
<tr>
<td></td>
<td>with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Having all of the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• at least 2 occurrences of a condition occurrence of [609] Multiple myeloma[^1] where event starts between 180 days Before and 0 days Before index start date</td>
</tr>
<tr>
<td></td>
<td>Limit cohort of initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

3.2.2 Bortezomib new users after January 2016

<table>
<thead>
<tr>
<th>Event Index</th>
<th>A drug exposure of bortezomib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o for the first time in the person's history</td>
</tr>
<tr>
<td></td>
<td>o occurrence start is on or after 2016-01-01</td>
</tr>
<tr>
<td></td>
<td>o with age ≥ 18</td>
</tr>
<tr>
<td></td>
<td>with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Having all of the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• at least 2 occurrences of a condition occurrence of [609] Multiple myeloma[^1] where event starts between 180 days Before and 0 days Before index start date</td>
</tr>
<tr>
<td></td>
<td>Limit cohort of initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

3.2.3 Lenalidomide new users after January 2016

<table>
<thead>
<tr>
<th>Event Index</th>
<th>A drug exposure of lenalidomide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o for the first time in the person's history</td>
</tr>
<tr>
<td></td>
<td>o occurrence start is on or after 2016-01-01</td>
</tr>
<tr>
<td></td>
<td>o with age ≥ 18</td>
</tr>
<tr>
<td></td>
<td>with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Having all of the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• at least 2 occurrences of a condition occurrence of [609] Multiple myeloma[^1] where event starts between 180 days Before and 0 days Before index start date</td>
</tr>
<tr>
<td></td>
<td>Limit cohort of initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

3.2.4 Carfilzomib new users after January 2016

<table>
<thead>
<tr>
<th>Event Index</th>
<th>A drug exposure of carfilzomib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o for the first time in the person's history</td>
</tr>
<tr>
<td></td>
<td>o occurrence start is on or after 2016-01-01</td>
</tr>
<tr>
<td></td>
<td>o with age ≥ 18</td>
</tr>
<tr>
<td></td>
<td>with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Having all of the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• at least 2 occurrences of a condition occurrence of [597] Multiple myeloma[^1] where event starts between 180 days Before and 0 days Before index start date</td>
</tr>
<tr>
<td></td>
<td>Limit cohort of initial events to: earliest event per person.</td>
</tr>
</tbody>
</table>
3.2.5 Pomalidomide new users after January 2016

Event Index
- A drug exposure of pomalidomide
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
 - with age >= 18

with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria
- Having all of the following criteria:
 - at least 2 occurrences of a condition occurrence of [597] Multiple myeloma
 where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.2.6 Bortezomib new users with prior lenalidomide after January 2016

Event Index
- A drug exposure of bortezomib
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
 - with age >= 18

with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria
- Having all of the following criteria:
 - at least 2 occurrences of a condition occurrence of [609] Multiple myeloma
 where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.2.7 Bortezomib new users with concurrent lenalidomide after January 2016

Event Index
- A drug exposure of bortezomib
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
 - with age >= 18

with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria
- Having all of the following criteria:
 - at least 2 occurrences of a condition occurrence of [609] Multiple myeloma
 where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.2.8 Lenalidomide new users with prior bortezomib after January 2016

Event Index
- A drug exposure of bortezomib
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
 - with age >= 18

with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria
- Having all of the following criteria:
 - at least 2 occurrences of a condition occurrence of [609] Multiple myeloma
 where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.2.9 Lenalidomide new users with prior proteasome inhibitor after Jan 2016

Event Index
- A drug exposure of bortezomib
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
Inclusion Criteria

3.2.10 Carfilzomib new users with prior bortezomib after January 2016

Event Index	A drug exposure of bortezomib
	o for the first time in the person's history
	o occurrence start is on or after 2016-01-01
	o with age >= 18
	with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria

Having all of the following criteria:
- at least 2 occurrences of a condition occurrence of [609] Multiple myeloma where event starts between 180 days Before and 0 days Before index start date
Limit cohort of initial events to: **earliest event per person.**

3.2.11 Carfilzomib new users with prior lenalidomide after January 2016

Event Index	A drug exposure of bortezomib
	o for the first time in the person's history
	o occurrence start is on or after 2016-01-01
	o with age >= 18
	with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria

Having all of the following criteria:
- at least 2 occurrences of a condition occurrence of [609] Multiple myeloma where event starts between 180 days Before and 0 days Before index start date
Limit cohort of initial events to: **earliest event per person.**

3.2.12 Carfilzomib new users with concurrent lenalidomide after January 2016

Event Index	A drug exposure of bortezomib
	o for the first time in the person's history
	o occurrence start is on or after 2016-01-01
	o with age >= 18
	with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria

Having all of the following criteria:
- at least 2 occurrences of a condition occurrence of [609] Multiple myeloma where event starts between 180 days Before and 0 days Before index start date
Limit cohort of initial events to: **earliest event per person.**

3.2.13 Pomalidomide new users with prior bortezomib after January 2016

Event Index	A drug exposure of bortezomib
	o for the first time in the person's history
	o occurrence start is on or after 2016-01-01
	o with age >= 18
	with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria

Having all of the following criteria:
• at least 2 occurrences of a condition occurrence of [609] Multiple myeloma\(^1\) where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.2.14 Pomalidomide new users with prior lenalidomide after January 2016

Event Index
- A drug exposure of bortezomib
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
 - with age >= 18

with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria
- at least 2 occurrences of a condition occurrence of [609] Multiple myeloma\(^1\) where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.2.15 Pomalidomide new users with prior proteasome inhibitor after Jan 2016

Event Index
- A drug exposure of bortezomib
 - for the first time in the person's history
 - occurrence start is on or after 2016-01-01
 - with age >= 18

with continuous observation of at least 365 days prior and 0 days after event index date, and limit initial events to: **earliest event per person.**

Inclusion Criteria
- at least 2 occurrences of a condition occurrence of [609] Multiple myeloma\(^1\) where event starts between 180 days Before and 0 days Before index start date

Limit cohort of initial events to: **earliest event per person.**

3.3 Analysis

3.3.1 Analysis entry requirements

- Analysis 1: Allow patients to enter both the target and comparator drug new user cohorts
- Analysis 2: Only allow patients to enter either the target or comparator drug new user cohorts
3.3.2 Comparisons

<table>
<thead>
<tr>
<th>Target</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daratumumab new users</td>
<td>Lenalidomide new users</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Bortezomib new users</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Carfilzomib new users</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Pomalidomide new users</td>
</tr>
<tr>
<td>Daratumumab new users – concurrent bortezomib</td>
<td>Bortezomib new users</td>
</tr>
<tr>
<td>Daratumumab new users – concurrent lenalidomide</td>
<td>Lenalidomide new users – prior bortezomib</td>
</tr>
<tr>
<td>Daratumumab new users – prior bortezomib</td>
<td>Carfilzomib new users – prior bortezomib</td>
</tr>
<tr>
<td>Daratumumab new users – prior lenalidomide</td>
<td>Pomalidomide new users – prior bortezomib</td>
</tr>
<tr>
<td>Daratumumab new users – prior lenalidomide</td>
<td>Bortezomib new users – prior lenalidomide</td>
</tr>
<tr>
<td>Daratumumab new users – concurrent lenalidomide</td>
<td>Carfilzomib new users – concurrent lenalidomide</td>
</tr>
<tr>
<td>Daratumumab new users – concurrent lenalidomide</td>
<td>Carfilzomib new users – concurrent lenalidomide</td>
</tr>
<tr>
<td>Daratumumab new users – prior proteasome inhibitor</td>
<td>Pomalidomide new users – prior proteasome inhibitor</td>
</tr>
<tr>
<td>Daratumumab new users – prior proteasome inhibitor</td>
<td>Lenalidomide new users – prior proteasome inhibitor</td>
</tr>
</tbody>
</table>

3.3.3 Comparison diagrams

Target new users vs. comparator new users

- Daratumumab New Use
- 365 days prior continuous enrollment
- 180 days prior => 2 MHD da

Target new users + prior other drug(s) vs. comparator new users + prior other drug(s)

- Daratumumab New Use
- 365 days prior continuous enrollment
- 180 days prior => 2 MHD da
- Other drug any time prior (up to 7 days before new use)
3.3.4 Analysis Methods

3.3.4.1 Analysis #1: Propensity score matching the target and comparator cohorts and comparison of exchangeability metrics where patients can enter both cohorts AND daratumumab-specific administration methods or pre-/post-supportive care removed from PS model

Methods
- Exposures restricted to the time both target and comparator cohorts are found. Patients can contribute to BOTH the target or comparator cohorts
- Remove all daratumumab-specific administration methods or pre/post-supportive care removed from PS model using clinical knowledge (List in Appendix 1)
- Set time at risk starting 1 day after cohort start date; 1 day minimum time at risk required.
- All drugs, conditions, procedures and measurements received in the 365 days before index date (inclusive) identified.
- Using baseline covariates, calculate propensity scores of target and comparator treatment receipt using a LASSO regularized logistic regression with LaPlace prior from 10 repetitions of 10-fold cross validation
- 1:1 matching on propensity score with a 0.2 of the standardized logit caliper for matching

Output
1) Preference score distributions for target and comparator cohorts and % in clinical equipoise
2) Standardized difference in prevalence of baseline covariates in PS model before and after PS matching
3) Top 10 covariates with the greatest difference in standardized difference between target and comparator cohorts before and after PS matching.
4) Table with target/comparator cohort size, % in equipoise, maximum standardized difference between covariates and proportion of covariates with a >0.1 standardized difference between target and comparator cohorts.
3.3.4.2 Analysis #2: Propensity score matching the target and comparator cohorts and comparison of exchangeability metrics where patients can only have a first exposure to one or the other drug AND daratumumab-specific administration methods or pre-/post-supportive care removed from PS model

| Methods | • Exposures restricted to the time both target and comparator cohorts are found. Patients can contribute to ONLY the target or comparator cohorts (whichever comes first)
• Remove all daratumumab-specific administration methods or pre/post-supportive care removed from PS model (List in Appendix 1)
• Set time at risk starting 1 day after cohort start date and 1 day minimum time at risk required
• Propensity score calculated for the target and comparator cohorts using a LASSO regularized logistic regression with LaPlace prior from 10 repetitions of 10-fold cross validation
• 1:1 matching on propensity score with a 0.2 of the standardized logit caliper for matching |

| Output | 1. Propensity score distributions for target and comparator cohorts
2. Scatterplot of prevalence of all covariates in PS model before and after PS matching
3. Top 10 covariates with the greatest difference in standardized difference between target and comparator cohorts before and after PS matching.
4. Table with target/comparator cohort size, % in equipoise, maximum standardized difference between covariates and proportion of covariates with a >0.1 standardized difference between target and comparator cohorts. |
4 Results – For Analysis 1

4.1 Table of target comparator cohort sizes and metrics for covariate balance and equipoise

Table 1. Size, percent in clinical equipoise, and maximum standardized difference (std diff) for daratumumab/comparator pairs for patients without pre-/post-treatment variables in the propensity score among patients allowed to enter bot the target and comparator cohorts

<table>
<thead>
<tr>
<th>Target</th>
<th>Comparator</th>
<th>Before Matching</th>
<th>After Matching</th>
<th>Equipoise %</th>
<th>Max Std Diff Covariate Prop</th>
<th>% covariates Std Diff >0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Target size</td>
<td>Comparator size</td>
<td>Target size</td>
<td>Comparator size</td>
<td></td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Bortezomib new users</td>
<td>1081</td>
<td>2881</td>
<td>323</td>
<td>323</td>
<td>20.9</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Lenalidomide new users</td>
<td>1081</td>
<td>2965</td>
<td>297</td>
<td>297</td>
<td>20.9</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Carfilzomib new users</td>
<td>1081</td>
<td>807</td>
<td>426</td>
<td>426</td>
<td>70.1</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Pomalidomide new users</td>
<td>1081</td>
<td>927</td>
<td>438</td>
<td>438</td>
<td>59.3</td>
</tr>
<tr>
<td>Daratumumab new users - concurrent bortezomib</td>
<td>Bortezomib new users</td>
<td>214</td>
<td>2881</td>
<td>154</td>
<td>154</td>
<td>40.3</td>
</tr>
<tr>
<td>Daratumumab new users - concurrent lenalidomide</td>
<td>Lenalidomide new users</td>
<td>115</td>
<td>2965</td>
<td>47</td>
<td>47</td>
<td>24.5</td>
</tr>
<tr>
<td>Daratumumab new users - prior bortezomib</td>
<td>Lenalidomide new users - prior bortezomib</td>
<td>549</td>
<td>362</td>
<td>75</td>
<td>75</td>
<td>30.3</td>
</tr>
<tr>
<td>Daratumumab new users - prior bortezomib</td>
<td>Carfilzomib new users - prior bortezomib</td>
<td>549</td>
<td>420</td>
<td>316</td>
<td>316</td>
<td>88.5</td>
</tr>
<tr>
<td>Daratumumab new users - prior bortezomib</td>
<td>Pomalidomide new users - prior bortezomib</td>
<td>549</td>
<td>395</td>
<td>259</td>
<td>259</td>
<td>73.3</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide</td>
<td>Bortezomib new users - prior lenalidomide</td>
<td>512</td>
<td>194</td>
<td>138</td>
<td>138</td>
<td>67.7</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide - concurrent lenalidomide</td>
<td>Bortezomib new users - concurrent lenalidomide</td>
<td>115</td>
<td>697</td>
<td>22</td>
<td>22</td>
<td>22.1</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide - concurrent lenalidomide</td>
<td>Carfilzomib new users - prior lenalidomide</td>
<td>512</td>
<td>267</td>
<td>214</td>
<td>214</td>
<td>82.2</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide - concurrent lenalidomide</td>
<td>Carfilzomib new users - concurrent lenalidomide</td>
<td>115</td>
<td>159</td>
<td>30</td>
<td>30</td>
<td>63.2</td>
</tr>
<tr>
<td>Daratumumab new users - prior proteasome inhibitor</td>
<td>Pomalidomide new users - prior proteasome inhibitor</td>
<td>865</td>
<td>531</td>
<td>363</td>
<td>363</td>
<td>70.5</td>
</tr>
<tr>
<td>Daratumumab new users - prior proteasome inhibitor</td>
<td>Lenalidomide new users - prior proteasome inhibitor</td>
<td>865</td>
<td>599</td>
<td>160</td>
<td>160</td>
<td>34.3</td>
</tr>
</tbody>
</table>

1 Results for Analysis 2 in Appendix 2. Diagnostic plots available upon request
4.2 Diagnostic plots

Proportion of covariates with a standardized difference in covariates prevalence between the target and comparator > 0.1; (B) Scatterplot of standardized differences in covariate prevalence before and after matching; (C) Top 10 imbalanced covariates after propensity score matching by variable class type [positive = greater prevalence in target]; (D) Preference score distribution with area of clinical equipoise noted between the dashed lines.
4.2.1 Daratumumab new users (Target) vs. Bortezomib new users (Comparator)
4.2.2 Daratumumab new users (Target) vs. Lenalidomide new users (Comparator)
4.2.3 Daratumumab new users (Target) vs. Carfilzomib new users (Comparator)
4.2.4 Daratumumab new users (Target) vs. Pomalidomide new users (Comparator)
4.2.5 Daratumumab new users with concurrent bortezomib (Target) vs. Bortezomib new users (Comparator)
4.2.6 Daratumumab new users with prior lenalidomide (Target) vs Bortezomib new users with prior lenalidomide (Comparator)
4.2.7 Daratumumab new users with concurrent lenalidomide (Target) vs Bortezomib new users with concurrent lenalidomide (Comparator)
4.2.8 Daratumumab new users with concurrent lenalidomide (Target) vs Lenalidomide new users (Comparator)
4.2.9 Daratumumab new users with prior bortezomib (Target) vs. Lenalidomide new users with prior bortezomib (Comparator)

A

B

C

D

Variables w/ Std Diff > 0.1

Infectious Disease of Abdomen
Infection of Digestive System
Dual-Energy x-Ray Absorptiometry (Dexa), Bone Density Study, 1 or more Site
Neoplasm Affecting Hematopoetic Structure
Mass of Lymphoreticular Structure
Hemato/lymphoid neoplasm
Foot Pain
Anti-epileptics
Immunotherapy for Cancer

Preferential Treatment

TREATMENT

Greator

Comparator

Target

Density

Preference Score

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Abs Standardized Difference - Before Matching

Abs Standardized Difference / After Matching

Variable Type

Condition

Drug

Procedure
4.2.10 Daratumumab new users with prior proteasome inhibitor (Target) vs. Lenalidomide new users with prior proteasome inhibitor (Comparator)
4.2.11 Daratumumab new users with prior bortezomib (Target) vs. Carfilzomib new users with prior bortezomib (Comaprator)
4.2.12 Daratumumab new users with prior lenalidomide (Target) vs. Carfilzomib new users with prior lenalidomide (Comparator)

A

B

C

D

Variable Type
- Condition
- Drug
- Procedure
- NA

Treatment
- Comparator
- Target
4.2.13 Daratumumab new users with concurrent lenalidomide (Target) vs. Carfilzomib new users with concurrent lenalidomide (Comparator)

A

B

C

D

Variables with Std. Diff. > 0.1

Variable Type
Condition
Drug
Procedure

- Antivirals
- Pneumonia
- Nucleosides and Nucleotides Excl. Reverse Transcriptase Inhibitors
- Direct Acting Antivirals
- Antibiotics for Dyspeptic Use
- Hypokalemia
- Dermatologicals
- Magnetic Resonance (Eg. Proton) Imaging, Spinal Canal and Contents, Without
- Intervertebral Disk Disorder
- Cartilage Disorder

D

Treatment
Comparator
Target

Preference Score

Density

0.25
0.50
0.75

0
1
2
3
4.2.14 Daratumumab new users with prior bortezomib (Target) vs. Pomalidomide new users with prior bortezomib (Comparator)

A

B

Variables

C

D

Treatment

Comparator

Target
4.2.15 Daratumumab new users with prior proteasome inhibitor (Target) vs. Pomalidomide new users with prior proteasome inhibitor (Comparator)
5 Discussion and Conclusions

Selecting the best comparator requires a balance of equipoise >50%, a low max standardized difference (preferably <0.1), a low percentage of covariates with a standardized difference <0.1, and a large enough sample size to identify rare outcomes and have adequate precision to estimate the effect. Given these requirements, analyses of outcomes for daratumumab in the Optum SES database, there are no strong comparators for daratumumab.

The following comparators should be explored in more depth to explore whether the variables with a standardized difference >0.1 would bias the estimate:

<table>
<thead>
<tr>
<th>Target</th>
<th>Comparator</th>
<th>Before Matching</th>
<th>After Matching</th>
<th>Equipoise %</th>
<th>Max Std Diff</th>
<th>Covariate Prop</th>
<th>% covariates Std Diff >=0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Target size</td>
<td>Comparator size</td>
<td>Target size</td>
<td>Comparator size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Carfilzomib new users</td>
<td>1081</td>
<td>807</td>
<td>426</td>
<td>426</td>
<td>70.1</td>
<td>0.24</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Pomalidomide new users</td>
<td>1081</td>
<td>927</td>
<td>438</td>
<td>438</td>
<td>59.3</td>
<td>0.24</td>
</tr>
<tr>
<td>Daratumumab new users - prior bortezomib</td>
<td>Carfilzomib new users prior bortezomib</td>
<td>549</td>
<td>420</td>
<td>316</td>
<td>316</td>
<td>88.5</td>
<td>0.27</td>
</tr>
<tr>
<td>Daratumumab new users - prior bortezomib</td>
<td>Pomalidomide new users - prior bortezomib</td>
<td>549</td>
<td>395</td>
<td>259</td>
<td>259</td>
<td>73.3</td>
<td>0.30</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide</td>
<td>Carfilzomib new users prior lenalidomide</td>
<td>512</td>
<td>267</td>
<td>214</td>
<td>214</td>
<td>82.2</td>
<td>0.33</td>
</tr>
<tr>
<td>Daratumumab new users - prior proteasome inhibitor</td>
<td>Pomalidomide new users - prior proteasome inhibitor</td>
<td>865</td>
<td>531</td>
<td>363</td>
<td>363</td>
<td>70.5</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Future analyses should explore how comparator benchmarks change when all patients are retained in a PS model using stratification for adjustment.
6 Appendix 1 - Concepts excluded from PS model

6.1 Concepts removed from the propensity score that include administration methods specific to daratumumab or supportive care specifically given before or after daratumumab administration

conceptset-8104.zip

7 Appendix 2 - Results for analysis 2

7.1 Table of target comparator cohort sizes and metrics for covariate balance and equipoise

Table A1. Size, percent in clinical equipoise, and maximum standardized difference (std diff) for daratumumab/comparator pairs for patients without pre-/post-treatment variables in the propensity score among patients entering only one cohort.

<table>
<thead>
<tr>
<th>Target</th>
<th>Comparator</th>
<th>Before Matching</th>
<th>After Matching</th>
<th>Equipoise %</th>
<th>Max Std Diff Covariates</th>
<th>% Covariates >0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daratumumab new users</td>
<td>Bortezomib new users</td>
<td>1081</td>
<td>2881</td>
<td>322</td>
<td>322</td>
<td>20.9</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Lenalidomide new users</td>
<td>1081</td>
<td>2965</td>
<td>292</td>
<td>292</td>
<td>20.6</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Carfilzomib new users</td>
<td>1081</td>
<td>807</td>
<td>430</td>
<td>430</td>
<td>71.1</td>
</tr>
<tr>
<td>Daratumumab new users</td>
<td>Pomalidomide new users</td>
<td>1081</td>
<td>927</td>
<td>435</td>
<td>435</td>
<td>59.0</td>
</tr>
<tr>
<td>Daratumumab new users concurrence bortezomib</td>
<td>Bortezomib new users</td>
<td>214</td>
<td>2881</td>
<td>154</td>
<td>154</td>
<td>40.3</td>
</tr>
<tr>
<td>Daratumumab new users concurrence lenalidomide</td>
<td>Lenalidomide new users</td>
<td>115</td>
<td>2965</td>
<td>50</td>
<td>50</td>
<td>20.9</td>
</tr>
<tr>
<td>Daratumumab new users concurrence lenalidomide</td>
<td>Lenalidomide new users - prior bortezomib</td>
<td>549</td>
<td>362</td>
<td>78</td>
<td>78</td>
<td>30.4</td>
</tr>
<tr>
<td>Daratumumab new users concurrence lenalidomide</td>
<td>Carfilzomib new users - prior bortezomib</td>
<td>549</td>
<td>420</td>
<td>316</td>
<td>316</td>
<td>89.4</td>
</tr>
<tr>
<td>Daratumumab new users - prior bortezomib</td>
<td>Pomalidomide new users prior bortezomib</td>
<td>549</td>
<td>395</td>
<td>256</td>
<td>256</td>
<td>73.6</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide</td>
<td>Bortezomib new users prior lenalidomide</td>
<td>512</td>
<td>194</td>
<td>139</td>
<td>139</td>
<td>68.5</td>
</tr>
<tr>
<td>Daratumumab new users - concurrent lenalidomide</td>
<td>Bortezomib new users concurrent lenalidomide</td>
<td>115</td>
<td>697</td>
<td>24</td>
<td>24</td>
<td>22.7</td>
</tr>
<tr>
<td>Daratumumab new users - prior lenalidomide</td>
<td>Carfilzomib new users prior lenalidomide</td>
<td>512</td>
<td>267</td>
<td>213</td>
<td>213</td>
<td>82.1</td>
</tr>
<tr>
<td>Daratumumab new users - concurrent lenalidomide</td>
<td>Carfilzomib new users concurrent lenalidomide</td>
<td>115</td>
<td>159</td>
<td>40</td>
<td>40</td>
<td>76.6</td>
</tr>
<tr>
<td>Daratumumab new users - prior proteasome inhibitor</td>
<td>Pomalidomide new users - prior proteasome inhibitor</td>
<td>865</td>
<td>531</td>
<td>362</td>
<td>362</td>
<td>70.5</td>
</tr>
<tr>
<td>Daratumumab new users - prior proteasome inhibitor</td>
<td>Lenalidomide new users - prior proteasome inhibitor</td>
<td>865</td>
<td>599</td>
<td>161</td>
<td>161</td>
<td>34.6</td>
</tr>
</tbody>
</table>

References