Feature Engineering to Power Machine Learning Phenotype Development

PRESENTER:

Xinzhuo Jiang, Krishna Kalluri, Chao Pang

INTRO:

In order to quickly discover new phenotypes, we leveraged state-of-the-art phenotype definitions as the gold standard to train ML models for predicting pairs of concepts that could potentially belong together to the same phenotype.

METHODS:

We created a training set (see **Table.1**) with positive and negative pairs of concepts extracted from the gold standard, then applied 3 distinct techniques to generate 21 features for a machine learning (ML) group to use for training. Our extensible feature engineering pipeline was designed to run on various data sources.

1. Lexical features

Measure the degree to which the two concepts are lexically similar, see Fig.1

2. Data-driven features

• co-occurrence matrix

Compute the relative frequency of two events

co-occurring within the specific time window,

see Fig.2

3. Knowledge-based features

• semantic similarity

Compute the likeness of their meaning or semantic content, see Fig.3

RESULTS:

- The high-throughput feature engineering approach provides ready-to-use features for similar ML problems. In addition, the feature pipeline can be run on OMOP directly or other data sources with minor tweaks.
- The feature importance scores show that knowledge representation is more significant than data driven and lexical features in terms of the prediction power for this specific ML problem.

A high-throughput feature engineering approach for phenotyping in OMOP

Table.1 Data source

435216	concept_name_1 Irritable bowel syndrome Rheumatoid arthritis	concept_name_2 Disorder due to type 1 diabetes mellitus Dementia associated with alcoholism	same_domain	is_ancestor 0	min_distance 9
			1	0	9
378726	Rheumatoid arthritis	Dementia associated with alcoholism	4		
		Defineritia associated with alcoholishi	1	0	6
439770	Pseudopolyposis of colon	Ketoacidosis in type 1 diabetes mellitus	1	0	9
26942	Felty's syndrome	Hemoglobin SS disease with crisis	1	0	6
1119155	Felty's syndrome	0.4 ML adalimumab 50 MG/ML Prefilled Syringe [Humira]	0	0	

Example

Concept_1: Acute systolic heart failure
Concept_2: Acute diastolic heart failure

Fig.1 Levenshtein_ratio

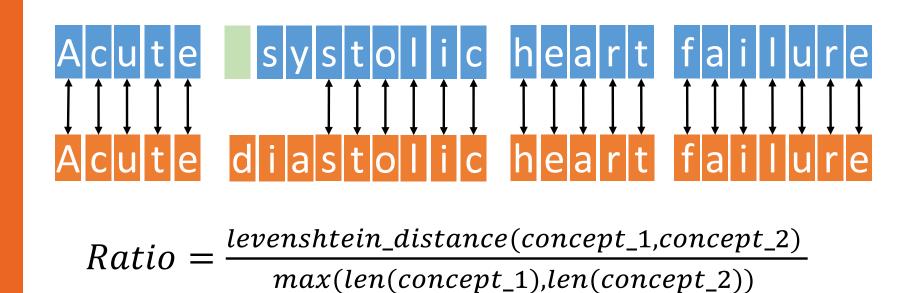


Fig.2 Co-occurrence matrix in 180 days

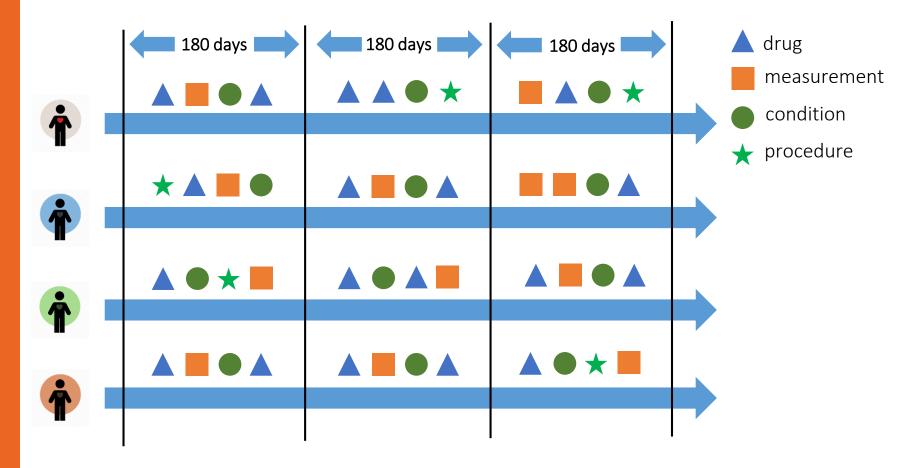
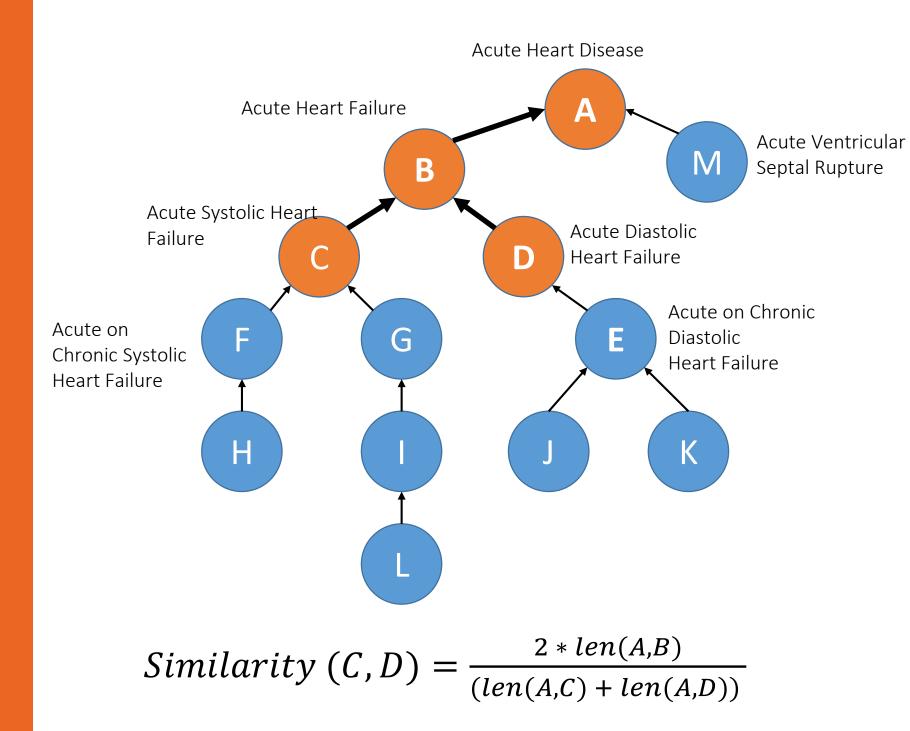



Fig.3 Semantic similarity

Table.2 Available features

Lexical Features	Data-driven Features	Knowledge-based Features	
levenshtein_distance	cooccurrence_visit	distance_indicator	
levenshtein_ratio	cooccurrence_60_days	information_content	
jaro	cooccurrence_180_days	semantic_similarity	
jaro_winkler	cooccurrence_360_days	lin_measure	
fuzz_partial_ratio	cooccurrence_lifetime	jiang_measure	
	lifetime_cooccur_embedding_cosine	relevance_measure	
	5_year_cooccur_embedding_cosine	information_coefficient	
	visit_cooccur_embedding_cosine	graph_ic_measure	

Linzhuo Jiang, Krishna Kalluri, Chao Pang, Kai Chen, Junghwan Lee, Cong Liu, Ruijun Chen, Patrick Ryan, Karthik Natarajan

