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A B S T R A C T

Background: The primary approach for defining disease in observational healthcare databases is to construct
phenotype algorithms (PAs), rule-based heuristics predicated on the presence, absence, and temporal logic of
clinical observations. However, a complete evaluation of PAs, i.e., determining sensitivity, specificity, and po-
sitive predictive value (PPV), is rarely performed. In this study, we propose a tool (PheValuator) to efficiently
estimate a complete PA evaluation.
Methods: We used 4 administrative claims datasets: OptumInsight’s de-identified Clinformatics™ Datamart (Eden
Prairie,MN); IBM MarketScan Multi-State Medicaid); IBM MarketScan Medicare Supplemental Beneficiaries; and
IBM MarketScan Commercial Claims and Encounters from 2000 to 2017. Using PheValuator involves (1)
creating a diagnostic predictive model for the phenotype, (2) applying the model to a large set of randomly
selected subjects, and (3) comparing each subject’s predicted probability for the phenotype to inclusion/ex-
clusion in PAs. We used the predictions as a ‘probabilistic gold standard’ measure to classify positive/negative
cases. We examined 4 phenotypes: myocardial infarction, cerebral infarction, chronic kidney disease, and atrial
fibrillation. We examined several PAs for each phenotype including 1-time (1X) occurrence of the diagnosis code
in the subject’s record and 1-time occurrence of the diagnosis in an inpatient setting with the diagnosis code as
the primary reason for admission (1X-IP-1stPos).
Results: Across phenotypes, the 1X PA showed the highest sensitivity/lowest PPV among all PAs. 1X-IP-1stPos
yielded the highest PPV/lowest sensitivity. Specificity was very high across algorithms. We found similar results
between algorithms across datasets.
Conclusion: PheValuator appears to show promise as a tool to estimate PA performance characteristics.

1. Introduction

In observational research, rule-based phenotype algorithms (PAs)
are one way to identify subjects in a dataset who may have a particular
health outcome. Empirical evidence for the validation of these PAs has
traditionally been performed using clinical adjudication of a patient’s
health record for a small subset of the subjects. In most cases the va-
lidation results provide an estimate of the positive predictive value
(PPV) for the PA but rarely estimate the remaining elements of the

validation, namely sensitivity and specificity [1–4]. The reason is often
due to the time, expense, and practicality of examining a large set of
records from both those with the phenotype and those without. This
incomplete validation does not provide researchers with all the neces-
sary information to ensure that they are using the correct approach to
finding the correct subjects for their studies. In this study, we propose a
method to estimate all the parameters of a PA validation using diag-
nostic predictive modeling.
Systematic reviews of PA validation studies provide examples of
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incomplete validation. Rubbo and colleagues performed a systematic
review of PA validation for acute myocardial infarction (AMI) [1]. In
their analysis of 33 validation studies, they found that, while all studies
provided estimates of PPV, only 11 also provided estimates for sensi-
tivity and 5 provided estimates for specificity. McCormick et al. ex-
amined 21 validation studies for acute stroke PAs where 15 determined
sensitivity and 3 determined specificity [2]. A systematic review of PAs
for atrial fibrillation (AF) found, that out of 10 studies examined, 4
studies provided estimates for sensitivity and 2 for specificity [5]. While
PPV is a useful measure, it is dependent on the prevalence of the phe-
notype in the sampled population [6]. Unless the data used in one’s
research has the same phenotype prevalence, the PPV from the vali-
dation study may not be applicable. In addition to the lack of key
measures of PA performance (e.g., sensitivity and specificity), Widdi-
field and colleagues found significant methodological differences in
validation efforts for rheumatic diseases [4]. For example, in the 23
studies included in their analysis, about two thirds used diagnostic
codes to determine cases and validated on medical records. The other
one third of the studies used the reverse method. They emphasize how
these differences may affect the validation results. Incomplete valida-
tion results and results from varying methodologies may significantly
affect the use of PAs within observational research.
In addition to the high cost for PA validation using traditional

methods, another challenge with reliance on source record validation is
the assumption that results from validation studies is applicable to the
data for the study of interest, whether that be a different dataset or a
different time period with the same dataset. Terris et al. presented ra-
tionale for potential sources of heterogeneity between databases based
on differences on the quality and quantity of data collected prior to
entry within the database [7]. They suggested that these possible
sources of bias be included in any presentation of results using sec-
ondary data. Madigan et al. found significant heterogeneity in their
results from comparative cohort studies [8]. Their results also suggest
that databases may have specific data collection methodologies and
different performance characteristics for phenotypes. Understanding
the performance characteristics of PAs within specific databases used in
research is critical to understanding potential sources of possible bias-
driven differences between studies using observational data.
In addition to the time and expense of performing clinical ad-

judication on medical records associated with observational data, ob-
taining permission to view the detailed records is difficult and may
produce results that are subject to selection bias. Kho and colleagues
examined 17 studies where consent was obtained to view detailed
medical records [9]. They found significant differences between the
patients whose records were obtained and those whose records were
not.
The objective of this research was to develop a method for vali-

dating PAs for any phenotype without the need for clinical adjudication
of patient records. This method would allow researchers to estimate the
full performance characteristics (sensitivity, specificity, positive pre-
dictive value, and negative predictive value) for any algorithm in any
dataset.

2. Methods

Data for this study were collected from 5 datasets: IBM®
MarketScan® Commercial Claims and Encounters Database, ages
18–62 years (CCAE); IBM® MarketScan® Medicare Supplemental and
Coordination of Benefits Database, ages 66 years and greater (MDCR);
IBM® MarketScan® Multi-State Medicaid, ages 18–62 years (MDCD);
Optum© De-Identified Clinformatics® Data Mart Database – Date of
Death (OptumInsight, Eden Prairie, MN); and Optum© de-identified
Electronic Health Record Dataset (PanTher). CCAE and MDCD were
limited to patients aged 18–62, while MDCR was restricted to patients
greater than 66. Optum and PanTher were stratified by ages
18–62 years (Optum1862, PanTher 1862) and ages 66 years and greater

(OptumGE66, PanTher66); Data were from subject records starting
January 1, 2010 until June 30, 2018 with the exception of MDCD,
which included data until December 31, 2016. Each database was
transformed to the OMOP common data model (CDM). The full speci-
fication for each extract, transform, and load (ETL) procedure for each
of the databases used in this study is publicly available at: https://
github.com/OHDSI/ETL-CDMBuilder. The OMOP CDM is an open
community standard that normalizes the structure (e.g. tables, fields,
datatypes) and content (e.g. vocabularies used across each clinical do-
main) for managing observational data, and is accompanied by com-
munity conventions for best practices of how to ETL from source data
into the CDM. The OMOP CDM is a person-centric model that accom-
modates timestamped clinical observations from an array of clinical
domains, including conditions, drugs, procedures, devices and mea-
surements. For any ETL, source vocabulary codes require mapping to
the OMOP standardized vocabularies (which are predominantly based
on international standards such as SNOMED-CT, RxNorm, and LOINC);
for all of these sources, the mappings used in the ETL were provided by
the OHDSI community (as available at athena.ohdsi.org). Source data
are routed to the appropriate clinical domain within the OMOP struc-
ture and augmented with the OMOP standard concepts.
We used a 4-step process to ensure the quality of the data in data-

bases converted to the CDM format:

(1) We used a tool called White Rabbit to profile the incoming dataset
(https://github.com/OHDSI/WhiteRabbit). This tool scans the da-
taset prior to conversion and provides a report to the user to help
illuminate possible incorrect or missing data elements.

(2) With knowledge gained about the composition of the incoming
dataset, we used a tool called Rabbit in a Hat to develop mappings
between the incoming dataset and the CDM dataset (see also
https://github.com/OHDSI/WhiteRabbit). These mappings were
then translated into an application that executed the data conver-
sion.

(3) Before running the data conversion application, we tested the ap-
plication’s logic with a test data set to ensure that the mappings in
this subset of data were handled correctly. The test data set in-
cluded data that should be dropped altogether or partially withheld
to ensure the conversion process produces what was expected.

(4) After the dataset was converted, we used a tool called Achilles Heel
to ensure that the data was correctly converted (https://github.
com/OHDSI/Achilles) This tool provides a report listing possible
issues with the data. For example, the report will note an error if
there are subjects in the database with an age less than 0 in any of
the data domains (e.g., conditions).

The Optum and IBM® MarketScan® databases used in this study
were reviewed by the New England Institutional Review Board (IRB)
and were determined to be exempt from broad IRB approval, as this
research project did not involve human subject research.
The process was as follows:

(1) Develop a diagnostic predictive model for a phenotype: Diagnostic
predictive models are used to estimate the probability that a spe-
cific outcome or disease is present in an individual. [10] The output
of the model is a set of weighted predictors for diagnosing a phe-
notype.

(2) Determine the probability of a phenotype for each individual in a
large group of subjects: The set of predictors from the model can be
used to estimate the probability of the presence of a phenotype in
an individual. We use these predictions as a ‘probabilistic gold
standard’.

(3) Evaluating the performance characteristics of the PAs: We compare
the predicted probability to the binary classification of a PA (the
test conditions for the confusion matrix). Using the test conditions
and the estimates for the true conditions, we can fully populate the
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confusion matrix and determine the full set of performance char-
acteristics, i.e., sensitivity, specific, and predictive values.

PheValuator was programmed in R, and can be applied to any
OMOP CDM v5-compliant database. The full documentation and source
code to implement PheValuator is available at: github.com/ohdsi/
phevaluator.

Process Steps:
1) Develop a diagnostic predictive model for a phenotype:
A predictive model is developed using a set of labeled data where

the label represents the presence or absence of the phenotype for each
subject in the dataset. For the subjects labeled as having the phenotype,
we used an extremely specific (“xSpec”) PA, ensuring that these sub-
jects would have the phenotype with a very high likelihood. For the
subjects to be labeled as not having the phenotype, we excluded any
subjects with the diagnosis codes used to create the extremely specific
PA for the phenotype, ensuring that these subjects would not have the
phenotype with a high likelihood.
For this study, we tested our methods on four phenotypes, chronic

kidney disease (CKD), atrial fibrillation (AF), acute myocardial infarc-
tion (AMI), and cerebral infarction.

1a) Creating the extremely specific (“xSpec”), sensitive, and
prevalence cohorts:
xSpec Cohort: The first step in the process was to find subjects with

a very high likelihood of having the phenotype. These subjects are used
as ‘noisy labeled’ positives to be used in the predictive model. To
achieve high specificity for the phenotype, we used a technique from a
prior study which chose subjects with multiple occurrences of the
phenotype in their medical record [11]. For example, for the AMI xSpec
cohort, we used a PA requiring five or more occurrences of a diagnosis
of MI in a subject’s record with at least two occurrences being a diag-
nosis from an in-patient setting (the full specification for this and all
other cohort definitions used in this study are in the appendix). For this
PA we used diagnosis codes for specific sub-types of the phenotype. For
example, for AMI we included the Systematized Nomenclature of
Medicine (SNOMED) diagnosis code, “acute subendocardial infarction”,
“acute non-ST segment elevation myocardial infarction”, and “acute ST
segment elevation myocardial infarction” along with several other sub-
types of AMI. We did not include the SNOMED ancestor diagnosis code,
“Acute myocardial infarction”.
Sensitive Cohort: We also developed a sensitive PA used to find a

large proportion of the subjects in the database who may have the
phenotype, so that they can be excluded when creating the ‘noisy ne-
gative’ labels. The PA to identify these subjects was a simple algorithm
requiring 1 or more of the condition codes used to create the xSpec PA
for the phenotype in the subject record.
Prevalence Cohort: The third PA we developed was for creating a

cohort to allow us to determine the prevalence of the phenotype in the
dataset. As an example, for AMI, the PA included all subjects with at
least one diagnostic code for AMI or any of the sub-types of AMI. For
AMI, we used the SNOMED diagnosis code, “acute myocardial infarc-
tion” and all the SNOMED descendants, e.g., “acute subendocardial
infarction”.

1b) Creating the Target and Outcome Cohorts:
The next step was to create the target and outcome cohorts to be

used as a dataset of subjects for the diagnostic prediction model as per
the recommendations of Reps et al. [12]. The target cohort contains all
subjects, both positive and negative for the phenotype, to be used in the
model. The outcome cohort is used to label the subjects in the target
cohort as positive for the phenotype. The process flow for this step was
as follows:

(1) Estimate the population prevalence of the phenotype in each da-
tabase using the prevalence cohort. This was done in order to cor-
rectly determine the relative proportion of those positive and ne-
gative for the phenotype in the modeling dataset ensuring a well-

calibrated model.
(2) Construct the target population of subjects for the diagnostic pre-

dictive model.
a. ‘Positive labels’ for the phenotype: for the ‘positive labels’ to be
used in the modeling process, we used subjects included in the
xSpec cohort.

b. ‘Negative labels’ for the phenotype: we select a random set of
subjects from the overall dataset excluding those in the sensitive
cohort.

c. Balance the number of ‘positive labels’ and ‘negative labels’ to
approximate the prevalence of the phenotype: Using the esti-
mated population prevalence, we sample a defined number of
‘positive labels’ and a proportionate number of ‘negative labels’
to make the ratio the same as the prevalence. For example, if the
prevalence was 10%, we included 1500 ‘positive labels’ and
9 X 1500 ‘negative labels’ for a total population of 15000.

(3) Use the xSpec cohort as the outcome cohort to label the xSpec
subjects in the constructed target population as “positive labels”,
i.e., positive for the phenotype, and label the remaining subjects
“negative labels”.

These steps are depicted in “A” of Fig. 1.
1c) Creating a Diagnostic Prediction Model:
We used the Patient Level Prediction (PLP) R package to create a

diagnostic prediction model for the phenotype [12]. To inform the
model, we extracted data from all time in each subject’s health record
including conditions, drugs, procedures, clinical observations, and oc-
currences of measurements. We used all available data in each data set
for development of the prediction model. The covariates used were: age
as a continuous variable; sex; presence/absence of in-patient or out-
patient diagnosed condition classes based on the Systematized No-
menclature of Medicine-Clinical Terms (SNOMED-CT) hierarchy of
conditions; presence/absence of drug exposures based on filled drug
prescriptions and using the RxNorm naming system for generic and
branded drugs; presence/absence of a clinical procedure based on the
Current Procedural Terminology, 4th Edition (CPT-4); and the pre-
sence/absence of laboratory measurements. The machine learning al-
gorithm used in this study was logistic regression with Least Absolute
Shrinkage and Selection Operator (LASSO) L1-regularization [13]. For
model development, similar to the method used by Agarwal et al., we
excluded all diagnosis codes used in the creation of the xSpec model
[14]. Thus, none of the codes used to create the positives (i.e., the codes
used in the xSpec PA) or negatives in the population to be modeled
would be included in the final model used to determine the probability
of having the phenotype. The purpose for excluding these codes was to
prevent circularity when testing the PAs to be used in research studies.
The model was developed on a random selection of 75% of the target
cohort, the “train” subjects, and internally validated on the remaining
25% of the subjects, the “test” subjects. The PatientLevelPrediction
package performs stratified sampling to ensure the proportion of out-
comes in the training (75%) set is equal to the proportion of outcomes
in the test (25%) set. Each machine learning algorithm within the Pa-
tientLevelPrediction package performs its own cross-validation within
the “train” dataset for hyperparameter tuning. The implementation of
LASSO logistic regression performs k-fold cross-validation within a
grid-search to identify an optimal regularization hyperparameter [15].
In this study we used 10-fold cross-validation. Once a model is devel-
oped on “train” set, internal validation is conducted by applying the
model developed from the train data on the test data and determining
the model’s performance characteristics including discrimination, as
measured by Area Under ROC curve, and calibration. The models de-
veloped were used if they showed excellent performance characteristics
on internal validation, i.e., an area under the receiver operator char-
acteristics curve (AUC) of greater than 0.95. The output of this step was
a model comprising a set of weighted predictors that were used to de-
termine the probability of the presence or absence of the phenotype in
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subjects.
This step is depicted in “B” of Fig. 1.
2) Determining the probability of a phenotype for each in-

dividual in a large group of subjects:
The next step was to develop a cohort of subjects to use for evalu-

ating the performance characteristics of the PAs, the “evaluation co-
hort”. In traditional PA validation, the PA is compared against a group
of subjects whose presence or absence of the phenotype is determined
by clinical adjudication using the complete set of patient records. As
this is not possible with large administrative datasets, we replaced
clinical adjudication with the probability of the presence or absence of
the phenotype as determined by the predictive model. First, we selected
a large, random subset of subjects from the database. For our very large
databases, we selected about 2,000,000 subjects for the evaluation
cohort. We extracted covariates from this population from their entire
health record based the predictors from the model developed in the
previous step. We used the applyModel function of PLP on the eva-
luation cohort to determine the probability of the presence of the
phenotype. The output of this step was a large cohort of subjects each
with a predicted probability for the phenotype.
This step is depicted in “C” of Fig. 1.
3) Evaluating the Performance Characteristics of the PAs
Developing PAs for Testing:
We used a variety of PAs for testing. Many PAs for cohort devel-

opment use variations of the phenotype condition codes with either
high sensitivity or high specificity depending on the purpose of the
cohort. Four commonly used PAs that we included in our testing were:

(1) 1 or more occurrences of the diagnosis code for the phenotype
(“≥1 XDx Code”). The diagnostic codes used in this PA, as well as
in 2, 3, and 4 below, were the same codes used in the PA for pre-
valence cohort.

(2) 2 or more occurrences of the diagnosis code for the phenotype (“≥
2 XDx Code”)

(3) 1 or more occurrences of the diagnosis code for the phenotype from
a hospital in-patient setting (“≥1 XDx Code, In-Patient”)

(4) 1 or more occurrences of the diagnosis code for the phenotype from

a hospital in-patient setting and determined to be the primary
reason for hospital admission (“≥1 XDx Code, In-Patient, 1st
Position”)

We also developed several other PAs that included clinical proce-
dures or laboratory measurements for the treatment of the phenotype
along with diagnosis codes for the phenotype. As an example, for AF we
developed a PA where subjects were selected based on having a pro-
cedure for cardioversion or atrial ablation along with a diagnosis code
for AF. These PAs were developed to select a group of subjects with a
very high likelihood of having the phenotype, i.e., minimal mis-
classification, as the performance of a clinical procedure would likely
eliminate the presence of a diagnosis code as a “rule out” diagnosis or
entered in the subject record in error.
This step is depicted in “D” of Fig. 2.
Determining the values for True Positive, False Positive, True

Negative, and False Negative from the Evaluation Cohort:
In this process, we used the probability of the phenotype determined

by the diagnostic predictive model in place of a binary designation as a
‘probabilistic gold standard’. For example, the likelihood that, say,
subject #1 has the phenotype would be higher if subject #1 had many
diagnoses, clinical procedures, drug exposures, and laboratory mea-
surements indicative of the phenotype (and thus possibly included in
the predictive model) compared to, say, subject #2 with only diagnosis
codes for the phenotype in his/her health record. In the case of subject
#1, the procedure codes, for example, may bring greater assurance that
the subject actually had the phenotype rather than simply had a diag-
nosis code as a “rule out” diagnosis, which may be more likely in
subject #2. This may be seen as analogous to the process in traditional
PA validations where the adjudication of, say, three clinicians are used
while employing the technique of “majority rules”. For a subject where
three out of three clinicians deem a subject a case based on the in-
formation included the subject’s record and the subject is thereby de-
signated a case, our method should deem this subject as having the
phenotype with a probability near one. The advantage of our method
becomes apparent in less clear situations. For example, when two out of
the three clinicians agree that the subject is a case and one clinician

Trained 
Diagnostic
Predictive 

Model

Case subjects

Inputs: Outputs:

Sample 1:n 
case/ non-case 

ratio
based on estimated

prevalence

PersonId
001
005
008
009
012
014

Non-case
subjects
PersonId

002
003
004
006
010
011
013
015

T:  Persons in noisy positive or 
noisy negative cohorts

O:  Persons in noisy positive cohort
TAR:  All time in medical history

Split data 75:25 for Training/Testing

PersonId Conditions Drugs Procedures Measurements
O 

Label
+5M,2M51D01C,2C,1C100

003 C3, C7, C10 D3, D4, D5,D6 P6 M11, M15 -
004 C1, C6, C11 P13, P23, P24 M15 -
006 C2, C5 D6 P1, P2, P10 M3, M4, M5,M6 -
008 C11, C15 D13, D23, D24 P3, P7, P10 +
010 C15 D1, D2, D10 P1, P6, P11 M6 -
011 C3, C4, C5,C6 D3, D7, D10 P2, P5 M13, M23, M24 -
012 D1, D6, D11 P11, P15 M1, M2, M10 +
014 C6 D2, D5 P15 M3, M7, M10 +
015 C13, C23, C24 D11, D15 P3, P4, P5,P6 M1, M6, M11 -

Training Data

PersonId Conditions Drugs Procedures Measurements
O 

Label
002 C3, C4, C5,C6 D3, D7, D10 P2, P5 M13, M23, M24 -
005 D1, D6, D11 P11, P15 M1, M2, M10 +
009 C6 D2, D5 P15 M3, M7, M10 +
013 C13, C23, C24 D11, D15 P3, P4, P5,P6 M1, M6, M11 -

Test Data

T: Random sample of patients from full data
TAR:  All time in medical history

PersonId Conditions Drugs Procedures Measurements
016 C11, C15 D13, D23, D24 P3, P7, P10
017 C15 D1, D2, D10 P1, P6, P11 M6
018 C3, C4, C5,C6 D3, D7, D10 P2, P5 M13, M23, M24
019 D1, D6, D11 P11, P15 M1, M2, M10
020 C6 D2, D5 P15 M3, M7, M10
021 C13, C23, C24 D11, D15 P3, P4, P5,P6 M1, M6, M11

5M,2M51D01C,2C,1C220
023 C3, C7, C10 D3, D4, D5,D6 P6 M11, M15
024 C1, C6, C11 P13, P23, P24 M15
025 C2, C5 D6 P1, P2, P10 M3, M4, M5,M6

Evaluation Data
PersonId p(O)

016 0.99
017 0.01
018 0.00
019 0.72
020 0.02
021 0.00
022 0.15
023 0.22
024 0.00
025 0.00

Probabilistic Gold 
Standard Data

Estimated 
prevalence 
of disease 

in population

A B C
Creating the Target 

and Outcome Cohorts
Training a prediction model

Apply model to evaluation data and create 
Probabilistic Gold Standard dataset

Model 
operating 

Characteristics:
AUC/calibration

T – Target Cohort; O – Outcome Cohort; TAR – Time-At-Risk; 

Fig. 1. The first portion of the PheValuator process flow creating the target and outcome cohorts to be used in training the diagnostic predictive model for developing
the probabilistic gold standard phenotype data set to be used in phenotype algorithm evaluation.
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disagrees, the designation for this subject would be as a case based on
“majority rules” and, although one clinician did not consider the subject
a case, he/she is treated as equivalent to the subject where all three
clinicians agreed. Our approach provides the flexibility to designate this
subject as having a 67% probability of being a case. Our method in-
corporates the inherent uncertainty that is present in a subject’s health
record.
We continue our example from above to illustrate the use of prob-

abilities for the confusion matrix (Fig. 2E). We examined the cohort
formed from the PA and found those subjects from the evaluation co-
hort created in the previous step who were included in the PA cohort
(PersonIds 016, 019, 022, 023, and 025) and those from the evaluation
cohort who were not included (PersonIds 017, 018, 020, 021, and 024).
For each of these included/excluded subjects, we had previously de-
termined the probability of the phenotype using the predictive model.
We approximated the values for True Positives, True Negatives,

False Positives, and False Negatives as follows:

(1) If the PA included a subject from the evaluation cohort, i.e., the PA
considered the subject a “positive”, and the predicted probability
for the phenotype indicated the expected value of the number of
counts contributed by that subject to the True Positives and one
minus the probability indicated the expected value of the number of
counts contributed by that subject to the False Positives for that
subject. We summed all the expected values of counts across sub-
jects to get the total expected value. For example, PersonId 016
(Fig. 2E) had a predicted probability of 99% for the presence of the
phenotype, 0.99 was added to the True Positives (expected value of
counts added 0.99) and 1.00–0.99= 0.01 was added to the False
Positives (0.01 expected value). This was repeated for all the sub-
jects from the evaluation cohort included in the PA cohort (i.e.,
PersonIds 019, 022, 023, and 025).

(2) Similarly, if the PA did not include a subject from the evaluation
cohort, i.e., the PA considered the subject a “negative”, one minus
the predicted probability for the phenotype for that subject was the
expected value of counts contributed to True Negatives and was

added to it, and the predicted probability for the phenotype was the
expected value of counts contributed to the False Negatives and was
added to it. For example, PersonId 017 had a predicted probability
of 1% for the presence of the phenotype (and, correspondingly,
99% for the absence of the phenotype) and 1.00 – 0.01=0.99 was
added to the True Negatives and 0.01 was added to the False
Negatives. This was repeated for all the subjects from the evaluation
cohort not included in the PA cohort (i.e., PersonIds 018, 020, 021,
and 024).

After summing these values over the full set of subjects in the
evaluation cohort, we filled the four cells of the confusion matrix with
the expected values of counts for each cell, and we were able to create
point estimates of the PA performance characteristics like sensitivity,
specificity, and positive predictive value. We emphasize that these ex-
pected cell counts cannot be used to assess the variance of the esti-
mates, only the point estimates.

Calculating the Performance Characteristics of the Phenotype
Algorithm:
The performance characteristics we calculated were:

(1) Sensitivity defined as True Positives/(True Positives+ False
Negatives)

(2) Specificity defined as True Negatives /(True Negatives+ False
Positives)

(3) Positive Predictive Value defined as True Positives/(True
Positives+ False Positives)

(4) Negatives Predictive Value defined as True Negatives /(True
Negatives+ False Negatives)

In the example in Fig. 2F, the sensitivity, specificity, PPV, and NPV
were 0.99, 0.63, 0.42, and 0.99, respectively.
We calculated the performance characteristics for each PA for the

four phenotypes. All cohort definitions were created using the OHDSI
ATLAS tool. JSON files for all the PAs used in this research are available
upon request.

Phenotype Algorithm Performance Characteristics
Sensitivity = TP/(TP+FN) = 2.08/(2.08 + 0.03) = 0.99

Specificity = TN/(TN + FP) = 4.97/(4.97 + 2.92) = 0.63
Positive Predictive Value = TP/(TP + FP) = 2.08/(2.08 + 2.92) = 0.42

Negative Predictive Value = TN/(TN + FN) = 4.97/(4.97 + 0.03) = 0.99

:stuptuO:stupnI

Candidate 
Phenotype
definition:

E.g., ‘Persons with 
>=2 Diagnosis 

Codes’ 

Phenotype 
Algorithm Cohort

PersonId
016
019
022
023
025

PersonId p(O)
True 

Positive
False 

Positive
True 

Negative
False 

Negative
016 0.99 0.99 0.01

10.099.010.0710
00.000.100.0810

019 0.72 0.72 0.28
20.089.020.0020
00.000.100.0120

022 0.15 0.15 0.85
023 0.22 0.22 0.78

00.000.100.0420
025 0.00 0.00 1.00

2.08 2.92 4.97 0.03

Probabilistic EvaluationData

Sum

PersonId p(O)
016 0.99
017 0.01
018 0.00
019 0.72
020 0.02
021 0.00
022 0.15
023 0.22
024 0.00
025 0.00

Probabilistic Gold 
Standard Data

D
Developing PAs 

for 
Testing

Output from “C” 
(Figure 1)

E
Determining the values for True 

Positive, False Positive, True Negative, 
and False Negative from the Evaluation 

Cohort

F
Calculating the Performance 

Characteristics of the Phenotype 
Algorithm

p(O) – Probability of Outcome; TP – True Positive; FN – False Negative; TN – True Negative; FP – False Positive

Fig. 2. The last portion of the PheValuator process flow using test phenotype algorithms along with the probabilistic gold standard phenotype data for developing the
performance characteristics of the phenotype algorithm.
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3. Results

The performance characteristics of the diagnostic predictive models
used in this study for the four phenotypes are shown in Table 1. Each
model showed excellent performance characteristics with areas under
the Receiver Operator Characteristics curve at 0.98 and above for all
phenotypes in each of the databases tested. This indicates that the
models were able to effectively discriminate between the positive and
negative labels. The calibration curves also showed excellent perfor-
mance with intercepts at 0 and slopes close to unity, the ideal value.
This indicates that the models were able to accurately predict outcomes
across the full range of predicted probabilities. We found that the
average predicted probability for cases in the test dataset ranged from
an average of about 77% for AMI to 88% for cerebral infarction. The
average predicted probability for non-cases was 2% or less for all
phenotypes across the 4 databases tested.
We examined how PheValuator performed using four PAs that are

common in the literature. We found that as the specificity of the PAs
increased by including more parameters in the algorithm (e.g., in-
creasing the specificity of the PA from ≥1 instance of a diagnosis code
for the phenotype, “>=1XDX Code”, to ≥1 instance of a diagnosis
code for the phenotype in a hospital in-patient setting with the diag-
nosis code being the primary reason for discharge, “1 X DX Code, In-
Patient, 1st Position”), the results from PheValuator showed increases
in specificity as well as decreases in sensitivity (Tables 2a and 2b).
Chronic kidney disease (CKD) was one of the phenotypes we examined.
We found that as the specificity of the PA increased, we saw small
changes in specificity and large changes in sensitivity. The average
specificity in the seven datasets tested increased from about 95.2% to
99.9%. The average sensitivity decreased from about 81.9% to about
11.0%. Along with sensitivity and specificity we saw increases in PPV as

the specificity of the PA increased. For CKD, the average PPV for
the>= 1X PA was about 52.8% and increased to 87.8% for the>
=1X, IP, 1st Pos. PA. Similar patterns of change were found in the
other phenotypes tested.
We next examined the performance of PheValuator with PAs using

clinical procedure codes or laboratory measurements either stand-alone
or combined with diagnosis codes. For CKD, we tested the use of renal
dialysis, a procedure specific for CKD, as a PA. As expected, the sensi-
tivity decreased dramatically to an average of about 8.6% while the
specificity rose to nearly 100% (Table 3). With those changes we saw a
large increase in the average PPV which increased to about 96%. We
used estimated glomerular filtration rate (eGFR) as an indicator for
CKD. For this PA, we predicted that sustained eGFRs<= 60ml/min/
1.73m2 would be strongly indicative of CKD as per clinical guidelines.
However, we found that the PPV for 3 low eGFR measures during one
year averaged about 62.5%. This low PPV was similar to that found by
Kern and colleagues who concluded that diagnosis codes for CKD were
specific but insensitive [16].
For atrial fibrillation (AF) we examined a PA using a procedure code

for atrial ablation or cardioversion, which is very specific for AF, plus a
diagnosis code for AF. For this PA, we found very low values for sen-
sitivity (~1%), very high values for specificity (~99.9%), and high
values for PPV (~95%). We used a more complex PA to test AMI. For
AMI we developed a PA that required the presence of coronary re-
vascularization (using the CPT4 procedure code for “Percutaneous
transluminal revascularization of acute total/subtotal occlusion during
acute myocardial infarction, coronary artery or coronary artery bypass
graft, any combination of intracoronary stent, atherectomy and angio-
plasty”) in patients without evidence for concomitant procedures for
insertion of a stent, coronary bypass, angioplasty, or atherectomy along
with a diagnosis code for AMI during the same visit when the procedure

Table 1
Performance characteristics of the diagnostic predictive models used to create probabilistic gold standard datasets.

Phenotype Database AUC Calibration
intercept

Calibration
slope

Average predicted
probability case

Median predicted
probability case

Average predicted
probability non-case

Median predicted
probability non-case

Chronic kidney
disease

CCAE 0.997 0 1.00 0.87 1.00 0.00 0.00
Optum1862 0.996 0 1.05 0.84 1.00 0.00 0.00
OptumGE66 0.977 0 1.02 0.79 0.97 0.04 0.01
MDCD 0.997 0 1.02 0.88 1.00 0.00 0.00
MDCR 0.988 0 1.01 0.85 1.00 0.03 0.00
PanTher1862 0.993 0 1.02 0.81 0.98 0.01 0.00
PanTherGE66 0.982 0 1.01 0.78 0.94 0.03 0.00

Atrial fibrillation CCAE 0.999 0 0.98 0.86 0.98 0.00 0.00
Optum1862 0.999 0 0.97 0.87 0.97 0.00 0.00
OptumGE66 0.992 0 1.00 0.84 0.94 0.02 0.00
MDCD 0.996 0 0.98 0.78 0.91 0.00 0.00
MDCR 0.996 0 1.01 0.88 0.99 0.02 0.00
PanTher1862 0.998 0 1.01 0.84 0.96 0.00 0.00
PanTherGE66 0.994 0 1.02 0.84 0.95 0.03 0.00

Myocardial
infarction

CCAE 1.000 0 1.00 0.84 0.97 0.00 0.00
Optum1862 1.000 0 0.98 0.86 0.97 0.00 0.00
OptumGE66 0.994 0 1.05 0.74 0.91 0.01 0.00
MDCD 0.998 0 1.01 0.76 0.92 0.00 0.00
MDCR 0.994 0 1.04 0.77 0.94 0.01 0.00
PanTher1862 0.998 0 1.03 0.76 0.94 0.00 0.00
PanTherGE66 0.984 0 1.02 0.68 0.83 0.02 0.00

Cerebral infarction CCAE 1.000 0 1.01 0.90 1.00 0.00 0.00
Optum1862 1.000 0 1.02 0.90 0.99 0.00 0.00
OptumGE66 0.999 0 1.04 0.87 0.99 0.01 0.00
MDCD 0.999 0 0.99 0.88 1.00 0.00 0.00
MDCR 0.998 0 1.00 0.91 1.00 0.01 0.00
PanTher1862 0.996 0 0.99 0.82 0.99 0.00 0.00
PanTherGE66 0.991 0 1.01 0.79 0.97 0.01 0.00

AUC – Area Under Receiver Operator Characteristics Curve; CCAE - IBM®MarketScan® Commercial Claims and Encounters Database, ages 18–62 years; MDCR - IBM®
MarketScan® Medicare Supplemental and Coordination of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, ages
18–62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18–62 years; OptumGE66 - ages 66 years and greater;
PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 18–62 years; PanTherGE66 - Optum© de-identified Electronic Health Record Dataset,
ages 66 years and greater.
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occurred. For this highly specific PA, we again found low values for
sensitivity (~4%) and high values for specificity (~99.9%) and PPV
(~87%). We examined a very complex PA for cerebral infarction re-
quiring the presence of a magnetic resonance imaging of computed
tomography procedure along with a cerebral infarction diagnosis and
thromboendarterectomy in the head or neck region followed by re-
habilitation therapy. Using this highly specific PA we found results si-
milar to other highly specific procedure codes with low sensitivities
(less than1%), high specificities (~99.9%), and high PPVs (~93%).
We examined how the results from PheValuator compared to results

previously published for traditional PA validation (Table 4a). Rubbo
and colleagues performed a systematic review of PA validation studies
[1]. We examined several of the studies to see how the results from

their PA validation compared with PheValuator. Wahl and colleagues
developed a PA for AMI using standard codes (i.e., ICD-9 410.XX) from
an hospital inpatient visit with a length of stay between 3 and 180 days
[17]. They excluded subsequent AMI codes from their PA (i.e., ICD-9
410.X2). Their validation was limited to PPV where they found a result
of 88.4% (177/200 subjects; 95%CI: 83.2, 92.5%). Using a similar PA,
we found lower average PPVs across 5 datasets of 62.6% (range:
56.0–69.8). Choma et al developed a PA using similar AMI codes as
Wahl without excluding subsequent AMI codes and required a length of
stay greater than 2 days [18]. They determined the PPV for this PA to be
92.8% (313/337 subjects; 95% CI: 89.6, 95.2). For this PA we again
found lower average PPVs of 69.4% (range: 62.8–76.3). Finally we
compared our results to Cutrona et al using a PA of standard AMI codes

Table 2a
Performance characteristics of four phenotype algorithms using diagnostic condition codes to determine chronic
kidney disease and atrial fibrillation on multiple datasets using PheValuator. The continuous 3-color heat map for
the data in the table was defined as Red (value=0), Yellow (value=0.5), and Green (value=1).

Sens – Sensitivity; PPV – Positive Predictive Value; Spec – Specificity; NPV – Negative Predictive Value; Dx Code –
Diagnosis code for the phenotype; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages
18–62 years; MDCR - IBM® MarketScan® Medicare Supplemental and Coordination of Benefits Database, ages
66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, ages 18–62 years; Optum1862 - Optum©
De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18–62 years; OptumGE66 - ages 66 years and
greater; PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 18–62 years; PanTherGE66 -
Optum© de-identified Electronic Health Record Dataset, ages 66 years and greater.
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in the principal or primary position on facility claims for hospitaliza-
tions excluding subsequent AMI codes and without specifying a length
of stay [19]. Their results showed a PPV of 86.0% (123/143 subjects;
95% CI: 79.2%, 91.2%). Using a similar algorithm, we found an average
PPV of 69.9% (range: 58.9–78.7).
In addition to comparing our results to those from traditional vali-

dations of MI algorithms, we also compared our results to prior vali-
dation work on CKD and cerebral infarction (Table 4b). Nadkarni and
colleagues validated two phenotype algorithms for CKD using data from
electronic health record systems at three clinical sites [20]. In the first
algorithm they used diagnosis and procedure codes plus glomerular
filtration rate measurements. At one site (Mount Sinai Hospital) they
found a PPV of 0.960 (95% CI: 0.940, 0.973). They found similar results

at the other 2 clinical sites. Using a similar algorithm, our approach
found a mean PPV of 0.811 (range: 0.692–0.873). We found similar
results for NPV as was found in the traditional validation. They also
validated an algorithm using diagnosis codes only. They found a lower
PPV, 0.629 (95% CI: 0.578, 0.677) using this algorithm. We found a
similar mean value for PPV, 0.716 (range: 0.626–0.890) across 5 da-
tasets. Wahl et al developed and validated an algorithm for cerebral
infarction [17]. In their algorithm they used diagnosis codes for cere-
bral infarction and required a length of hospital stay of 3 days or
greater. Their validation produced a PPV of 0.874 (95% CI: 0.820,
0.917). Our validation, using a similar algorithm, found a PPV of 0.599
(range: 0.566–0.635).
To understand how changes in the xSpec PA affect the diagnostic

Table 2b
Performance characteristics of four phenotype algorithms using diagnostic condition codes to determine myocardial
infarction and cerebral infarction on multiple datasets using PheValuator. The continuous 3-color heat map for the
data in the table was defined as Red (value= 0), Yellow (value=0.5), and Green (value=1).

Sens – Sensitivity; PPV – Positive Predictive Value; Spec – Specificity; NPV – Negative Predictive Value; Dx Code –
Diagnosis code for the phenotype; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages
18–62 years; MDCR - IBM® MarketScan® Medicare Supplemental and Coordination of Benefits Database, ages
66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, ages 18–62 years; Optum1862 - Optum©
De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18–62 years; OptumGE66 - ages 66 years and
greater; PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 18–62 years; PanTherGE66 -
Optum© de-identified Electronic Health Record Dataset, ages 66 years and greater.
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predictive model, we examined 4 different, increasingly specific, ver-
sions of the xSpec PA for AF in the MDCR database (Table 5). The least
specific algorithm we tested required 2 condition codes for AF in the
subject’s health record. The most specific algorithm, and ultimately the

xSpec PA we used for our cross-database testing, required 10 condition
codes for AF in the subject’s health record. These xSpec PAs were ex-
amined using the common PAs we tested previously, e.g., “>=1XDx
Code”. We found that, in general, as the xSpec PA became more specific

Table 3
Performance characteristics of phenotype algorithms using diagnosis codes plus clinical procedures to de-
termine health outcomes of interest on multiple datasets using PheValuator. The continuous 3-color heat map
for the data in the table was defined as Red (value= 0), Yellow (value= 0.5), and Green (value= 1).

Sens – Sensitivity; PPV – Positive Predictive Value; Spec – Specificity; NPV – Negative Predictive Value; CKD –
Chronic Kidney Disease; AMI – Acute Myocardial Infarction; CCAE - IBM®MarketScan® Commercial Claims and
Encounters Database, ages 18–62 years; MDCR - IBM® MarketScan® Medicare Supplemental and Coordination
of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, ages
18–62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of Death, ages
18–62 years and OptumGE66 - ages 66 years and greater; PanTher1862 - Optum© de-identified Electronic
Health Record Dataset, ages 18–62 years and PanTherGE66 - ages 66 years and greater.
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for AF, i.e., increasing from requiring 2 to 10 AF condition codes in the
subject’s health record, the sensitivity of the common PA increased, the
specificity remained relatively unchanged, and the PPV decreased.

4. Discussion

The results of this study provide support for the PheValuator tool as
an alternative mechanism for estimating the performance character-
istics of PAs. The results show how increasing the specificity of a PA
changes the sensitivity of the algorithm. In many cases, the sensitivity
may be lowered to such a great extent as to call into question whether
studies using these very specific PAs are experiencing selection bias. We
were able to demonstrate that the tool can evaluate PAs that are derived
from data elements other than diagnostic condition codes such as
procedures and clinical laboratory measures. We also found similar,
albeit more conservative, estimates for PPV in our comparison between

the results achieved through PheValuator and results from traditional
PA validations.
We tested this method on one electronic health record (EHR) da-

tabase and four insurance administrative claims databases. While the
results were similar in many cases, we did observe source-specific
performance differences when testing PAs that involved hospital in-
patient records. This finding is likely attributable to differential capture
of the phenotype in the source data, but may also be reflective of biased
estimates from the ‘probabilistic gold standards’ given that each source
had a differently fitted predictive model. In either case, observing dif-
ferent performance across sources should stimulate further exploration
to assess the generalizability of the PA. In this example, since the EHR
dataset is sourced by general and specialty practices and does not fully
capture hospital care, a PA requiring hospital records would be ex-
pected to have lower sensitivity than a private-payer claims dataset for
which most inpatient services are expected to be captured. The per-
formance estimates from PheValuator can enable relative comparisons
between data sources and PAs to understand the tradeoff in types of
measurement error that may exist when applying a PA to a source for
observational research.
Based on our comparisons with the 3 studies examining the PPV’s

for AMI, it appears as though PheValuator may produce a more con-
servative estimate of the performance characteristics of PAs [17–19].
However, strict comparisons between our results and those from tra-
ditional PA validations may be prone to bias. The datasets used in our
studies are likely very different than those used in prior studies. For
example, the data we used to inform our models were from 2010 on-
ward. Those in the prior studies were from data collected between 1999
and 2009. At least one major difference was that during this period US
claims datasets transitioned from the use of International Classification
of Diseases, Ninth Revision, Clinical Modification (ICD-9) to ICD-10.
Cutrona et al. used an administrative dataset from hospital claims data
which would likely have different data quality characteristics from in-
surance claims data. As there are likely differences in the prevalence of
AMI between the datasets used in this study and those from the 3 stu-
dies compared, PPV, which is prevalence dependent, would be im-
pacted. The small sample size used in traditional validation studies will
also impact the precision of results. In our analyses we used evaluation
cohorts with sample sizes of about two million subjects.
An advantage to the use of this method for PA performance mea-

surement is that any number of PAs may be tested on each database to
provide relative advantages and disadvantages of each. The use of va-
lidation results from published PAs is limited to the specific PA tested. If
changes to the PA are required for study-specific reasons, the published
results are no longer directly applicable. Consider, for example, if the
study to be conducted required some limitation on prior therapeutic
interventions, such as no prior statin use. In this case, the results from
the validation studies for the PAs would likely be very different from
the performance characteristics of the PAs used in the study to be
conducted. Using PheValuator, this new PA for AMI with no prior statin
use could be readily tested and would provide information on how the
new criteria impacted, say, PA sensitivity. The tool also allows for a
comparative examination of the impact of added PA elements on per-
formance. For example, we found that including a diagnosis code from
a hospital in-patient visit improved the PPV for AMI with only a small
impact on sensitivity while the same PA change for AF produced only a
moderate gain in PPV with a large impact on sensitivity (Table 2b).
As the models are developed using the data available within the

dataset, the tool provides an estimate of PA performance based on the
level of quality of the data in hand. If data is sparse within the dataset,
the model will have less information to discriminate between cases and
non-cases and may produce poor quality models [21]. PheValuator
provides a set of performance characteristics for the model developed
which provides a level of confidence as to the validity of the results
from PAs.
The importance using PA performance characteristics from a

Table 4a
Performance characteristics of 3 phenotype algorithms replicating those from
prior publications to determine acute myocardial infarction on multiple data-
sets using PheValuator.

Comparison Database Sens PPV Spec NPV

Wahl From Paper1 – 0.884 (95% CI. 0.832,
0.925)

– –

CCAE 0.343 0.698 0.999 0.996
Optum1862 0.323 0.642 0.999 0.995
OptumGE66 0.359 0.641 0.990 0.970
MDCD 0.364 0.561 0.996 0.991
MDCR 0.373 0.636 0.991 0.973
PanTher1862 0.100 0.642 0.999 0.992
PanTherGE66 0.129 0.560 0.996 0.968
Mean: 0.284 0.626 0.996 0.984

Choma From Paper2 – 0.928 (95% CI. 0.896,
0.952)

– –

CCAE 0.332 0.763 0.999 0.996
Optum1862 0.303 0.716 0.999 0.995
OptumGE66 0.310 0.701 0.994 0.967
MDCD 0.324 0.643 0.998 0.991
MDCR 0.321 0.686 0.994 0.971
PanTher1862 0.074 0.720 0.999 0.992
PanTherGE66 0.087 0.628 0.998 0.966
Mean: 0.250 0.694 0.997 0.983

Cutrona From Paper3 – 0.860 (95% CI. 0.792,
0.912)

– –

CCAE 0.610 0.787 0.999 0.998
Optum1862 0.565 0.752 0.999 0.997
OptumGE66 0.430 0.710 0.991 0.973
MDCD 0.480 0.664 0.997 0.993
MDCR 0.444 0.692 0.991 0.976
PanTher1862 0.201 0.700 0.999 0.993
PanTherGE66 0.180 0.589 0.995 0.969
Mean: 0.416 0.699 0.996 0.986

Sens – Sensitivity; PPV – Positive Predictive Value; Spec – Specificity; NPV –
Negative Predictive Value;; CCAE - IBM® MarketScan® Commercial Claims and
Encounters Database, ages 18–62 years; MDCR - IBM® MarketScan® Medicare
Supplemental and Coordination of Benefits Database, ages 66 years and greater;
MDCD - IBM® MarketScan® Multi-State Medicaid, ages 18–62 years;
Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date
of Death, ages 18–62 years; OptumGE66 - ages 66 years and greater;
PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages
18–62 years; PanTherGE66 - Optum© de-identified Electronic Health Record
Dataset, ages 66 years and greater.
1 Standard codes for acute myocardial infarction (i.e., ICD-9 410.XX) ex-

cluding subsequent AMI codes (i.e., ICD-9 410.X2) from an hospital inpatient
visit with a length of stay between 3 and 180 days or death if length of stay is
less than 3 days (Wahl et al. [17]).
2 Standard codes for acute myocardial infarction from an hospital inpatient

visit with a length of stay> 2 days (Choma et al. [18]).
3 Standard codes for acute myocardial infarction in the principal or primary

position on facility claims for hospitalizations excluding subsequent AMI codes
(Cutrona et al. [19]).
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population similar to that in which the research is to be conducted may
be illustrated in the CKD PA validation (Table 2a). When using the PA
for “1 X Dx Code, In-Patient, 1st Position”, we found that the PPVs for
the 7 datasets were quite similar with a narrow range of values between
84% and 91%. However, there was significant dissimilarity in the va-
lues for sensitivity where the values ranged from 4% to 25%. The
highest sensitivity was in the MDCD population. MDCD enrollees with
CKD have been shown to have poorer outcomes and have higher rates
of hospitalization [22]. Using performance characteristics from a PA
validated on a population very different than those in MDCD would
likely give disease burden estimates much higher than is actually the
case. This example also underscores the need for a complete set of
performance characteristics as the similarities between the PPV esti-
mates may be misleading.
PheValuator may also be used as a way to enhance PAs. During the

PheValuator process, a diagnostic prediction model is developed. The
selected predictors from the model may be useful to consider as can-
didate criteria to include within a PA. For example, for AMI, the model
included the procedure codes “Measurement of Cardiac Sampling and
Pressure, Left Heart, Percutaneous Approach”, “Dilation of Coronary
Artery, One Artery with Drug-eluting Intraluminal Device,
Percutaneous Approach”, and “Percutaneous transluminal coronary
angioplasty”. If the goal of the PA is to achieve an algorithm with a very
high specificity, the investigator may want to include these procedures
to locate those with AMI.
Understanding the performance characteristics of the xSpec PA used

for model development is important as this algorithm ultimately de-
termines the predicted probability of the subjects in the evaluation
cohort used to test PAs used in studies. In our comparisons between
increasingly specific xSpec PAs for AF in MDCR, we found that the more
specific the xSpec PA is for AF, the less likely the model will infer false
negatives and the more likely the model will infer false positives. This
makes intuitive sense as the more specific the xSpec model the more
“particular” the model will be when inferring a subject is positive based
in his/her health record. In our research, we chose the most con-
servative PA, based on the highest PA specificity, for our testing.
Misclassification is a part of the systematic error of a study.

Table 4b
Performance characteristics of phenotype algorithms replicating those from prior publications to determine chronic kidney disease and cerebral infarction on
multiple datasets using PheValuator.

Comparison Database Sens PPV Spec NPV

Nadkarni et al (CKD)
Conditions, Procedures, GFR Measurements

From Paper1 – 0.960 (95% CI: 0.940, 0.973) – 0.933 (95% CI: 0.909, 0.951)
CCAE 0.001 0.814 0.999 0.989
Optum1862 0.001 0.866 0.999 0.980
OptumGE66 0.002 0.873 0.999 0.806
MDCR 0.001 0.692 0.999 0.895
Mean: 0.001 0.811 0.999 0.918

Nadkarni et al. (CKD)
Conditions

From Paper1 – 0.629 (95% CI: 0.578, 0.677) – 0.543 (95% CI: 0.507, 0.578)
CCAE 0.331 0.626 0.998 0.993
Optum1862 0.310 0.700 0.997 0.986
OptumGE66 0.402 0.890 0.988 0.873
MDCD 0.349 0.700 0.994 0.976
MDCR 0.376 0.666 0.978 0.931
Mean: 0.354 0.716 0.991 0.952

Wahl et al. (Stroke)
Conditions, >=3 Days LOS

From Paper2 – 0.874 (95% CI: 0.820, 0.917) – –
CCAE 0.253 0.607 0.999 0.997
Optum1862 0.247 0.600 0.999 0.996
OptumGE66 0.277 0.635 0.993 0.971
MDCD 0.249 0.589 0.997 0.988
MDCR 0.290 0.566 0.992 0.976
Mean: 0.263 0.599 0.996 0.986

Sens – Sensitivity; PPV – Positive Predictive Value; Spec – Specificity; NPV – Negative Predictive Value; HOI – Health Outcome of Interest; CKD – Chronic Kidney
Disease; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages 18–62 years; MDCR - IBM® MarketScan® Medicare Supplemental and
Coordination of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, ages 18–62 years; Optum1862 - Optum© De-
Identified Clinformatics® Data Mart Database – Date of Death, ages 18–62 years; OptumGE66 - ages 66 years and greater.
1 Nadkarni et al. [20].
2 Wahl et al. [17].

Table 5
Comparison of performance characteristics of 4 extremely specific (xSpec)
phenotype algorithms used for atrial fibrillation diagnostic predictive model
development in the IBM® MarketScan® medicare supplemental and coordina-
tion of benefits database, ages 66 years and greater. The continuous 3-color heat
map for the data in the table was defined as Red (value= 0), Yellow
(value=0.5), and Green (value=1).

Sens – Sensitivity; PPV – Positive Predictive Value; Spec – Specificity; NPV –
Negative Predictive Value; AF – Atrial Fibrillation.
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PheValuator can be used to gain a better understanding of the level of
possible misclassification by estimating the sensitivity and specificity of
the PAs for the phenotype used within a study. These performance
characteristics may support a researcher in the design of a study by
allowing for exploration of alternative PAs with more preferable sen-
sitivity or specificity. It can also support researchers in study execution
by providing an estimate of measurement error that can be in-
corporated into the statistical analysis or communicated in study lim-
itations.
CKD provides an interesting example of one of the limitations of this

method: PheValuator uses predictive modeling to create a ‘probabilistic
gold standard’ based on binary features extracted from the structured
data available in the data, which may not reflect the desired health
status for the patient. If the phenotype is undiagnosed and untreated,
PheValuator will not form a model with a strong capability for de-
tecting false negatives. In the case of CKD, clinical guidelines indicate
that those with eGFR values<= 60ml/min/1.73m2 should be con-
sidered to have CKD. Nadkarni et al found that ICD-9 codes for CKD had
a PPV of about 63% based on their PA validation [20]. In our data, we
found that the PPV for subjects with a sustained low eGFR was about
63%, i.e., PheValuator considers 37% of those with a laboratory mea-
surement indicative of CKD to be false positive. For CKD, it is possible
that instead some of these 37% false positives are in fact undiagnosed
patients who are in need of treatment but not yet receiving it.
There are a number of other limitations to this method and its va-

lidation. This approach is not applicable in situations where there is
only a single concept that is used to define a disease as the xSpec PA and
the predictive model would both require use of that concept, which
would introduce circular logic. This method relies on the use of pre-
dictive models that use all patient data for assessing probability of a
phenotype. We found that errors in prediction were higher in subjects
with sparse data records. This issue occurred both at the micro level
(e.g., specific subjects within a database) as well as at the macro level
(e.g., comparisons between databases). The development of the pre-
diction models is also dependent on the quality of the data in the da-
taset, which can vary substantially [23]. The models generated within
any phenotype show significant differences between datasets. As we
noted, while traditional PA validation from a specific dataset may not
apply to any particular observational datasets, e.g., due to prevalence
differences, the results from PheValuator should be used with caution
between datasets. Source record verification was not conducted as part
of the validation of PheValuator in this study.

5. Conclusions

PheValuator represents a novel approach to phenotype evaluation
by providing an automated process using a probabilistic gold standard
for estimating the performance of phenotype algorithms. We believe
PheValuator may be a useful tool when phenotype algorithm evaluation
is required but manual chart review is infeasible or prohibitively ex-
pensive, and when multiple phenotype algorithms require comparison
across a network of databases. Future work can seek to improve the
predictive modeling approach within PheValuator, and to further va-
lidate the approach using additional phenotypes and data sources and
comparing with source record review. Current results suggest
PheValuator shows promise as a useful tool for researchers seeking to
generate reliable evidence from observational data.
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