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“Causal inference refers to the process of
drawing a conclusion about cause and
effect relationships” Vogt 2011
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Individual Treatment Effect (ITE) on i
= 𝑌𝑌𝑖𝑖(T=1,X) –𝑌𝑌𝑖𝑖(T=0,X)

T=0T=1

Yi(T=0,X)Yi(T=1,X)

Titiunik 2007; Höfler 2005
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In an cohort of  treatment and comparator units, Yi(T=1) and Yi(T=0) are potential outcomes in that 
either of  these two outcomes can be potentially observed.

Contrast the mean reported outcome in each arm
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1
𝑛𝑛
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• the [potential outcome of] one unit should be unaffected by the particular assignment of  
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Approximate the counterfactual treatment effect when two assumptions are met. 

1. Stable Unit Treatment Value Assumption (SUTVA) Cox 1958; Rubin 1986
• the [potential outcome of] one unit should be unaffected by the particular assignment of  

treatments to the other units. Laffers 2016

2. Strong Ignorability/ Exchangeability Rosenbaum 1983a
• 𝑌𝑌𝑖𝑖 1 ,𝑌𝑌𝑖𝑖 0 ⊥ 𝑇𝑇𝑖𝑖 | 𝑋𝑋𝑖𝑖 = 𝑥𝑥 ∀ 𝑥𝑥

the Rubin causal model Rubin 1974

BACKGROUND



AJ Averitt

violations of  these assumptions
bias causal estimates

enforcing or correcting these assumptions 
improves causal estimates
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how do we uphold strong ignorability?

by enforcing feature balance 
Imbens 2009; Morgan 2014; Ho 2007
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Imbens 2009; Morgan 2014; Ho 2007

�𝐹𝐹 𝑋𝑋 𝑇𝑇 = 1 = �𝐹𝐹 𝑋𝑋 𝑇𝑇 = 0 where �𝐹𝐹 � is the empirical distribution

experimental data from an RCT!

theoretically 
guaranteed by 
randomization
Fisher 1926; Fisher 
1935

BACKGROUND



AJ Averitt

how do we uphold strong ignorability?

by enforcing feature balance 
Imbens 2009; Morgan 2014; Ho 2007

�𝐹𝐹 𝑋𝑋 𝑇𝑇 = 1 = �𝐹𝐹 𝑋𝑋 𝑇𝑇 = 0 where �𝐹𝐹 � is the empirical distribution

experimental data from an RCT!
expensive, unethical, 

not representative, 
poor generalizability, 

& narrow scope
World Medical Association 1997; Rothman 2000;
DiMasi 2014; Gabler 2009; Longford 1999; 
Kravitz 2004; Lachin 1988; Kernan 1999
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data that is passively collected without any engineering adjustments Czitrom 1997
• electronic health record (EHR) data Murdoch 2013
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or we could use observational data

data that is passively collected without any engineering adjustments Czitrom 1997
• electronic health record (EHR) data Murdoch 2013

observational data is non-
randomized and requires 

manipulations to enforce strong 
ignorability

suitable for studying rare outcomes
there’s a lot of  it Imai 2009
representative Concato 2004; Thadani
2006; Kleinberg 2011
inferences are more externally valid 
Steckler 2008; Rothwell 2006
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stratification 3 weighting

manipulations to enforce strong ignorability
with observational data 
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manipulations to enforce strong ignorability
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when the sample is not representative of  the 
population, we can disproportionally consider units 
to make the sample look more like the population. 

what is weighting?
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weighting and the counterfactual  
population 1 population 2

 feature
balance 

pseudo-population 1 pseudo-population 2

 weights 
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Importance sampling draws samples from a proposal distribution and re-weights the distribution 
using importance weights so that the weighted distribution represents your target distribution. 
Hammersley 1966

this is related to importance sampling

p(x) = target distribution = counterfactual distribution
q(x) = proposal distribution  = real-world data

importance weights = feature balancing weights

BACKGROUND
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a common method of  weighting
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Inverse Probability of  Treatment Weighting (IPW). Units are weighted according to inverse of  their 
probability of  being assigned to the treatment conditional on their measured, baseline features, a 
metric often called the propensity score. Rubin 2015; Rosenblatt 1965; Rosenbaum 1984; Austin 2011

𝑤𝑤 =
𝑇𝑇

𝑃𝑃(𝑇𝑇 = 1|𝑋𝑋)
+

1 − 𝑇𝑇
𝑃𝑃(𝑇𝑇 = 1|𝑋𝑋)

a common method of  weighting
BACKGROUND
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• flexible and robust causal 
modeling under selection on 
observables Imai 2013

• model dependent!
• unstable weights/feature 

imbalance/bias if  propensity scores 
very close to 0 or 1 King 2016

Inverse Probability of  Treatment Weighting (IPW). Units are weighted according to inverse of  their 
probability of  being assigned to the treatment conditional on their measured, baseline features, a 
metric often called the propensity score. Rubin 2015; Rosenblatt 1965; Rosenbaum 1984; Austin 2011
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use a Generative Adversarial Network (GAN)!

how can we learn balancing weights for causal inference 
such that the weights are more stable and model agnostic?

BACKGROUND
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implicit generative models only 
specify a stochastic procedure with 
which to generate data Mohamed 
2017

• full distributional matching on 
feature

• less prone to instability 
originating from model 
specification

why GANs?
BACKGROUND
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implicit generative models only 
specify a stochastic procedure with 
which to generate data Mohamed 
2017

• full distributional matching on 
feature

• less prone to instability 
originating from model 
specification

vs

why GANs?

prescribed models provide an explicit 
parametric specification for a 
distribution Diggle 1984

• often used to model propensity 
scores, etc that are used in 
weighting

• model dependence

BACKGROUND
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vanilla GAN
Goodfellow 2014
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vanilla GAN

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉 𝐷𝐷,𝐺𝐺 = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 log𝐷𝐷 𝑥𝑥 + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧 𝑧𝑧 log(1 −𝐷𝐷(𝐺𝐺 𝑧𝑧 ))

log probability of  D predicting 
that “real” data is genuine

log probability of  D predicting 
that “fake” data is not genuine

Goodfellow 2014
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log probability of  D predicting 
that “real” data is genuine

log probability of  D predicting 
that “fake” data is not genuine

vanilla GAN

the optimal solution to this 
expression minimizes the 
Jensen-Shannon divergence.

Goodfellow 2014
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this won’t suffice for 
causal inference. we need 
something new!

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉 𝐷𝐷,𝐺𝐺 = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 log𝐷𝐷 𝑥𝑥 + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧 𝑧𝑧 log(1 −𝐷𝐷(𝐺𝐺 𝑧𝑧 ))

log probability of  D predicting 
that “real” data is genuine

log probability of  D predicting 
that “fake” data is not genuine

the optimal solution to this 
expression minimizes the 
Jensen-Shannon divergence.

vanilla GAN
Goodfellow 2014
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the Counterfactual 𝜒𝜒-GAN

difference #1: 
two GANs joined 
at the generator
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the Counterfactual 𝜒𝜒-GAN

D1 D2
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minimize the 𝜒𝜒
divergence  

difference #1: 
two GANs joined 
at the generator
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the Counterfactual 𝜒𝜒-GAN

learns feature-
balancing weights 

through an adversarial 
training process. 

difference #2:
minimize the 𝜒𝜒
divergence  

difference #1: 
two GANs joined 
at the generator

Nowozin 2016

THE MODEL
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Under importance sampling, those ranges with in which the ratio of  ⁄𝑝𝑝(𝑥𝑥) 𝑞𝑞(𝑥𝑥)
• high  will have high importance weights, contribute more to expectations
• low  will have very small importance weights, contribute negligibly to expectations

the target distribution, 𝑝𝑝(𝑥𝑥) functions as the generator, which embodies the overlapping portions of  the 
empirical distributions, 𝑞𝑞(𝑥𝑥) of  the treatment arms. 

D1 D2

p(x)

q1(x) q2(x)

importance sampling & the Counterfactual 𝜒𝜒-GAN

THE MODEL
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importance sampling & the Counterfactual 𝜒𝜒-GAN

change the objective function to 
minimize this divergence. 
equivalent to minimizing the 
variance.

𝜒𝜒 =
Dieng 2016

p

𝐺𝐺 = generator distribution 
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 = unweighted empirical 

treatment group, T

THE MODEL
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EXPERIMENTATION

3 subpopulations A, B, C were drawn from 
randomly generated multivariate normal 
distributions.
• 5 discrete / 5 continuous features

2 populations (Pop1 & Pop2) are mixtures of  
subpopulations
• Pop 1 = subpop A & subpop B
• Pop 2 = subpop A & subpop C
• 4000 per arm, 2000 per subpopulation
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Population 1 Population 2

EXPERIMENTATION

3 subpopulations A, B, C were drawn from 
randomly generated multivariate normal 
distributions.
• 5 discrete / 5 continuous features

2 populations (Pop1 & Pop2) are mixtures of  
subpopulations
• Pop 1 = subpop A & subpop B
• Pop 2 = subpop A & subpop C
• 4000 per arm, 2000 per subpopulation

1 outcome. conditional on subpop
• Pop 1A ~ Gaussian (60, 1)
• Pop 1B ~ Gaussian (40, 1)
• Pop 2A ~ Gaussian (-10, 1)
• Pop 2C ~ Gaussian (10, 1)
ATEmixture = Pop1 – Pop2 = 50
ATEoverlap = Pop 1A – Pop2A = 70

hypotheses
1. weights from overlapping population (Pop 1A/Pop 2A) 

will be high; weights from Pop 1B/Pop 2C will be low
2. weighting will make features more similar between Pops
3. cGAN-weighted ATE will be less biased than comparators
4. effective sample size of  cGAN will be more reasonable 

than comparators
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HYPOTHESIS 1: weights from Pop 1A/Pop 2A will be high; weights from Pop 1B/Pop 2C will be low

Average Weights over Training, 
by Subpopulations
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Average Weights over Training, 
by Subpopulations

Average Final Weights, 
by Subpopulations

HYPOTHESIS 1: weights from Pop 1A/Pop 2A will be high; weights from Pop 1B/Pop 2C will be low

EXPERIMENTATION
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HYPOTHESIS 2: weighting will make features more similar between populations

EXPERIMENTATION
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HYPOTHESIS 3: cGAN-weighted ATE will be less biased than comparators

ATEmixture = 50
ATEoverlap = 70

Weighting Method

unweighted

cGAN

Inverse probability of  treatment (IPTW)

Clipped IPTW

Binary regression propensity score

generalized boosted modeling of  propensity scores McCaffrey 2004

covariate-balancing propensity scores Imai 2014

non-parametric covariate-balancing propensity scores Fong 2018 

entropy balancing weights Hainmueller 2012

empirical balancing calibration weights Chan 2016

optimization-based weights Zubizarreta 2015

EXPERIMENTATION
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HYPOTHESIS 3: cGAN-weighted ATE will be less biased than comparators

ATEmixture = 50
ATEoverlap = 70

Weighting Method ATE

unweighted 50.03

cGAN 70.01

Inverse probability of  treatment (IPTW) 92.00

Clipped IPTW 87.24

Binary regression propensity score 92.00

generalized boosted modeling of  propensity scores McCaffrey 2004 84.51

covariate-balancing propensity scores Imai 2014 91.83

non-parametric covariate-balancing propensity scores Fong 2018 37.65

entropy balancing weights Hainmueller 2012 104.13

empirical balancing calibration weights Chan 2016 52.06

optimization-based weights Zubizarreta 2015 52.07

EXPERIMENTATION
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HYPOTHESIS 4: effective sample size of  cGAN will be more reasonable than comparators

Weighting Method ATE ESS Kish 1965

unweighted 50.03 8000

cGAN 70.01 3870

Inverse probability of  treatment (IPTW) 92.00 6551

Clipped IPTW 87.24 6997

Binary regression propensity score 92.00 6551

generalized boosted modeling of  propensity scores McCaffrey 2004 84.51 7207

covariate-balancing propensity scores Imai 2014 91.83 6686

non-parametric covariate-balancing propensity scores Fong 2018 37.65 11

entropy balancing weights Hainmueller 2012 104.13 65

empirical balancing calibration weights Chan 2016 52.06 65

optimization-based weights Zubizarreta 2015 52.07 114

ATEmixture = 50
ATEoverlap = 70EXPERIMENTATION
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37 features
• repeated measurements: the most 
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• missing data: values were imputed
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EXPERIMENTATION eligible patients
• diagnosis of  Type II Diabetes 

Mellitus
• prescription to sitagliptin or 

glimepiride
• aged 65-80. 

a sub-sample of  sitagliptin users was 
taken to match the count of  the 
glimepiride arm (N=608 vs N=144). 
• not necessary

37 features
• repeated measurements: the most 

recent result was selected. 
• missing data: values were imputed

hypothesis
1. cGAN will improve feature balance 

over comparator methods

clinicaltrials.gov/ct2/show/NCT01189890

Hartley 2015
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ASDMASDM

ASDM is a common metric of  
feature balance Austin 2011. A 
lower ASDM is indicative of  feature 
balance

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = |
𝑥̅𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

2

|

same comparators as simulation

HYPOTHESIS 1: cGAN will 
improve feature balance over 
comparator methods
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EXPERIMENTATION

ASDM is a common metric of  
feature balance Austin 2011. A 
lower ASDM is indicative of  feature 
balance
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ASDMASDM

EXPERIMENTATION

Weighting Method mean ASDM

unweighted 0.1103

cGAN 0.0364

IPTW 0.8764

clipped IPTW 0.0631

binary regression 0.6246

generalized boosted modeling 0.0749

covariate-balancing 0.0682

non-parametric covariate-balancing 0.0963

entropy balancing weights 0.0524

empirical balancing calibration 0.0524

optimization-based weights 0.5356

HYPOTHESIS 1: cGAN will 
improve feature balance over 
comparator methods
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the experiments suggest that Counterfactual 𝜒𝜒-GAN is an effective 
method of  learning feature balancing weights to support counterfactual 
inference!

the Counterfactual 𝜒𝜒-GAN could provide an alternative means to causal 
inference from observational data. 

furthermore, if  we assume that all potentially confounding variables are 
observed and included as features, average treatment effect estimates 
from Counterfactual 𝜒𝜒-GAN weighted models may be less biased.

CONCLUSIONS
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GANs are unstable

Parameter tuning is hard

What is the best way to assess 
convergence?

discrete data - gradients are 
unbiased, but high variance
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CONCLUSIONS

Future Directions

application to clinical data. 
compare to RCT. need multisite 

collaborators 

assessing variance of  outcome. 
this requires a more complex 

simulation

Limitations

GANs are unstable

Parameter tuning is hard

What is the best way to assess 
convergence?

discrete data - gradients are 
unbiased, but high variance
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learning for discrete data

We leverage a score function estimator. This score function-based estimator exchanges a gradient 
of  an expectation for an expectation of  a gradient which we can make an unbiased Monte Carlo 
estimate and incorporate into a modified stochastic backpropogation procedure.

Glasserman 2003; Fu 2006; Schulman 2015 
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