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BACKGROUND

“Causal inference refers to the process of
drawing a conclusion about cause and
effect relationships”
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BACKGROUND

exposure of interest ® counterfactual

% observable unobserveable g
<< —p

Individual Treatment Effect (ITE) on t
= Y;(T=1,X) ~¥;(T=0,X)

Y,(T=1,X)
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BACKGROUND

exposure of interest counterfactual

% observable w w w unobserveable g
<< —p
T=1 T=0

Average Treatment Effect (ATE)
' =E[Y;(T=1)-E[Y;(T=0)]
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BACKGROUND

exposure of interest counterfactual

% observable w w w unobserveable g
<< —p
T=1 T=0

the fundamental problem of causal inference!
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BACKGROUND

the Rubin causal model

In an cohort of treatment and comparator units, Y,(T=1) and Y,(T=0) are potential outcomes in that

either of these two outcomes can be potentially observed.

Contrast the mean reported outcome in each arm

E[Y|T = 1] = ZY(T—lX X))

O
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BACKGROUND

the Rubin causal model

Approximate the counterfactual treatment effect when two assumptions are met.

COLUMBIA UNIVERSITY

@ COLUMBIA DEPARTMENT OF AJ Averitt

BIOMEDICAL INFORMATICS



® O O O

BACKGROUND

the Rubin causal model

Approximate the counterfactual treatment effect when two assumptions are met.

1. Stable Unit Treatment Value Assumption (SUTVA)

* the [potential outcome of] one unit should be unaffected by the particular assignment of
treatments to the other units.
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BACKGROUND

the Rubin causal model

Approximate the counterfactual treatment effect when two assumptions are met.

1. Stable Unit Treatment Value Assumption (SUTVA)

* the [potential outcome of] one unit should be unaffected by the particular assignment of
treatments to the other units.

2. Strong Ignorability/ Exchangeability
» (), Y(0)) L T X;=x Vx
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BACKGROUND

violations of these assumptions
bias causal estimates

enforcing or correcting these assumptions
improves causal estimates
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BACKGROUND

how do we uphold strong ignorability?
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BACKGROUND

how do we uphold strong ignorability?

by enforcing feature balance

F(X|T = 1) = F(X|T = 0) where F(+) is the empirical distribution
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BACKGROUND

how do we uphold strong ignorability?

by enforcing feature balance

F(X|T = 1) = F(X|T = 0) where F(+) is the empirical distribution

experimental data from an RCT!
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BACKGROUND

how do we uphold strong ignorability?

by enforcing feature balance

F(X|T = 1) = F(X|T = 0) where F(+) is the empirical distribution

theoretically
guaranteed by

randomization

experimental data from an RCT!
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BACKGROUND

how do we uphold strong ignorability?

by enforcing feature balance

F(X|T = 1) = F(X|T = 0) where F(+) is the empirical distribution

experimental data from an RCT!
expensive, unethical,
not representative,
poor generalizability,

& narrow scope
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BACKGROUND

or we could use observational data

data that is passively collected without any engineering adjustments

* electronic health record (EHR) data
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BACKGROUND

or we could use observational data

data that is passively collected without any engineering adjustments

* electronic health record (EHR) data

suitable for studying rare outcomes
there’s a lot of it
representative

observational data is non-
randomized and requires

manipulations to enforce strong

inferences are more externally valid ignorability
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BACKGROUND

manipulations to enforce strong ignorability
with observational data

. adjustment/ . .
matching o weighting
stratification
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BACKGROUND

manipulations to enforce strong ignorability
with observational data

weighting

COLUMBIA UNIVERSITY

@ COLUMBIA DEPARTMENT OF AJ Averitt

BIOMEDICAL INFORMATICS



® O O O

BACKGROUND

what is weighting?

when the sample is not representative of the
population, we can disproportionally consider units
to make the sample look more like the population.
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BACKGROUND

weighting and the counterfactual

population 1 population 2

pRRR  ARRRRRARR
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BACKGROUND

weighting and the counterfactual

population 1 population 2

%Mﬂ PRafang

&< weights ->
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BACKGROUND

weighting and the counterfactual

population 1 population 2
&< weights -
_ 1 | 1 | | [ 1 | 1 |
pseudo- populatlon 1 pseudo- populatlon 2

Mt = AR
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BACKGROUND

this is related to importance sampling

Importance sampling draws samples from a proposal distribution and re-weights the distribution
using importance weights so that the weighted distribution represents your target distribution.

p(x) = target distribution = counterfactual distribution
q(x) = proposal distribution = real-world data
importance weights = feature balancing weights
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BACKGROUND

a common method of weighting
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BACKGROUND
a common method of weighting

Inverse Probability of Treatment Weighting (IPW). Units are weighted according to inverse of their
probability of being assigned to the treatment conditional on their measured, baseline features, a
metric often called the propensity score.

~ T . 1-T
- P(T=1|X) P(T=1|X)

w
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BACKGROUND
a common method of weighting

Inverse Probability of Treatment Weighting (IPW). Units are weighted according to inverse of their
probability of being assigned to the treatment conditional on their measured, baseline features, a

metric often called the propensity score.

B T N 1-T
Y Pa=1x)" PT =11%)
° |
e flexible and robust causal model deper.ldent.
. : * unstable weights/feature
modeling under selection on . s .
imbalance/bias if propensity scores
observables
very close to 0 or 1
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BACKGROUND

how can we learn balancing weights for causal inference
such that the weights are more stable and model agnostic?
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BACKGROUND

how can we learn balancing weights for causal inference
such that the weights are more stable and model agnostic?

use a Generative Adversarial Network (GAN)!
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BACKGROUND

why GANs?

"4

implicit generative models only
specify a stochastic procedure with
which to generate data

e full distributional matching on
feature

* less prone to instability
originating from model
specification
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BACKGROUND

why GANs?

"4

implicit generative models only prescribed models provide an explicit
specify a stochastic procedure with parametric specification for a
which to generate data distribution
VS * often used to model propensity
e full distributional matching on scores, etc that are used in
feature weighting
* less prone to instability * model dependence

originating from model
specification
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vanilla GAN
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BACKGROUND
al IIIIIlll

Real World Data

D

!

Is unit from Generator?
Yes/ No

AJ Averitt



® O O O
vanilla GAN BACKGROUND gk
.|I| Illl.

l

Real World Data

D

log probability of D predicting l log probability of D predicting

that “real” data is genuine \ is unit from Generator? [ that “fake” data is not genuine
Yes/ No

mingmaxpV(D,G) = Exp, ., (x)[logD(x)] + E,~p,_(2)[log(1 — D (G(2)))]
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vanilla GAN BACKGROUND Al\
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Real World Data <P
the optimal solution to this @

expression minimizes the

Jensen-Shannon divergence.

D

log probability of D predicting l log probability of D predicting

that “real” data is genuine \ is unit from Generator? [ that “fake” data is not genuine
Yes/ No

mingmaxpV(D,G) = Exp, ., (x)[logD(x)] + E,~p,_(2)[log(1 — D (G(2)))]
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vanilla GAN BACKGROUND Al\
.|I| Illl.

Real World Data <P
the optimal solution to this @ this won’t suffice for

expression minimizes the causal inference. we need
Jensen-Shannon divergence. something new!
D
log probability of D predicting l log probability of D predicting

that “real” data is genuine \ is unit from Generator? { that “fake” data is not genuine
Yes/ No

mingmaxpV(D,G) = Exp, ., (x)[logD(x)] + E,~p,_(2)[log(1 — D (G(2)))]
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the Counterfactual y-GAN
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THE MODEL
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the Counterfactual X—GAN THE MODEL
ml
(|
O O
Population 1 —— Population 2
AR AR

difference #1:
two GANSs joined \ /

at the generator

D, D,
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the Counterfactual y-GAN
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THE MODEL
(™
I:||:|
[ |

Population 1
difference #1:
two GANSs joined \
at the generator
Dl
difference #2:

minimize the Yy
divergence
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the Counterfactual y-GAN THE MODEL
|
DI:ID
OO
Population 1
G
difference #1:
two GANSs joined \
at the generator
V,
difference #2:
minimize the Yy v
divergence evaluation of
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variational function, T

\

importance sampling
weights for population 1
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Population 2

MM/MMN
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v

evaluation of

variational function, T,
\/
importance sampling
weights for population 2
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the Counterfactual y-GAN THE MODEL
|
DI:ID
OO
Population 1
G
difference #1:
two GANSs joined \
at the generator
V,
difference #2:
minimize the Yy v
divergence evaluation of
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variational function, T

\

importance sampling
weights for population 1

COLUMBIA UNIVERSITY
DEPARTMENT OF
BIOMEDICAL INFORMATICS

Population 2

MM/MMN

\Z
v

evaluation of

variational function, T,
\/
importance sampling
weights for population 2

learns feature-
balancing weights
through an adversarial
training process.
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THE MODEL
importance sampling & the Counterfactual y-GAN

Under importance sampling, those ranges with in which the ratio of p(x)/q(x)
* high = will have high importance weights, contribute more to expectations
e low = will have very small importance weights, contribute negligibly to expectations

the target distribution, p(x) functions as the generator, which embodies the overlapping portions of the
empirical distributions, q(x) of the treatment arms.

p(x)

OO
DI:I
O O

o Y WL

D, D,
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THE MODEL

importance sampling & the Counterfactual y-GAN
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THE MODEL

importance sampling & the Counterfactual y-GAN

B 2
y= |l

5o
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THE MODEL

importance sampling & the Counterfactual y-GAN

-p(x)?
_ q(x) —1|dx
X = f - q(x)? | '*\
\ . . .
~ change the objective function to
\ [ ° ° ° °
= = = — - minimize this divergence.
U2 . S .
_ = === equivalent to minimizing the
_ L U g ) ]dx « a“ 5
_ variance.
7
y
/
v G = generator distribution
cGAN = arg min E pG(x) | pdamr(xt)) Daata, = unweighted empirical
p treatment group, T
m COLUMBIA UNIVERSITY AJA .
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EXPERIMENTATION

1. simulation
2. application to clinical data
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EXPERIMENTATION

1. simulation
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Population 1

]
A\

pit

V

1

!

Generator

evaluation of variational function, T 4

l

importance sampling
weights for population 1
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EXPERIMENTATION

Population 2

a PopC
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/

Vo

!
l

evaluation of variational function, T,

importance sampling
weights for population 2
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. . . O 3 subpopulations A, B, C were drawn from

randomly generated multivariate normal

EXPERIMENTATION distributions.

- . 5 discrete / 5 continuous features

Population 1 (. - Population 2
2 populations (Popl & Pop2) are mixtures of

subpopulations
Pop B POP A POP C * Pop 1 = subpop A & subpop B
Generator *  Pop 2 = subpop A & subpop C
ﬂ n ﬂﬂ ﬂﬂ * 4000 per arm, 2000 per subpopulation

pit

\

Vv, V)

' l

evaluation of variational function, T 4 evaluation of variational function, T

l :

importance sampling importance sampling
weights for population 1 weights for population 2
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EXPERIMENTATION

Population 1 (. - Population 2

TR it
\ /

pit

Vv, V)

' l

evaluation of variational function, T 4 evaluation of variational function, T,

l l

importance sampling importance sampling
weights for population 1 weights for population 2
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3 subpopulations A, B, C were drawn from
randomly generated multivariate normal
distributions.

e 5 discrete / 5 continuous features

2 populations (Popl & Pop2) are mixtures of
subpopulations

* Pop 1 = subpop A & subpop B

* Pop 2 = subpop A & subpop C

* 4000 per arm, 2000 per subpopulation

1 outcome. conditional on subpop
* Pop 1A ~ Gaussian (60, 1)
* Pop 1B ~ Gaussian (40, 1)
* Pop 2A ~ Gaussian (-10, 1)
*  Pop 2C ~ Gaussian (10, 1)
ATE = Popl — Pop2 = 50
ATE = Pop 1A — Pop2A =170

mixture

overlap

AJ Averitt



. . . O 3 subpopulations A, B, C were drawn from

randomly generated multivariate normal

- EXPERIMENTATION distributions.
I:ID e 5 discrete /5 continuous features

Population 1 (. - Population 2
2 populations (Popl & Pop2) are mixtures of

subpopulations
Pop B POP A POP C * Pop 1 = subpop A & subpop B
Generator *  Pop 2 = subpop A & subpop C

ﬂ * 4000 per arm, 2000 per subpopulation

ﬂﬂ ﬂﬂ 1 outcome. conditional on subpop

pit

* Pop 1A ~ Gaussian (60, 1)
* Pop 1B ~ Gaussian (40, 1)
* Pop 2A ~ Gaussian (-10, 1)

*  Pop 2C ~ Gaussian (10, 1)
V, Vs ATE_ . ... = Popl — Pop2 =50
ATE,,y10p = Pop 1A — Pop2A =70
hypotheses
¢ l 1. weights from overlapping population (Pop 1A/Pop 2A)
evaluation of variational function, T 1 evaluation of variational function, T, will be high; weights from Pop 1B/Pop 2C will be low
l l 2. weighting will make features more similar between Pops
3. c¢GAN-weighted ATE will be less biased than comparators

importance sampling

importance sampling 4
weights for population 1 )

effective sample size of ¢cGAN will be more reasonable
weights for population 2

than comparators
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Popl + Pop2

® PoplA @ PoplB + Pop2A + Pop2C

&2 COLUMBIA
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® Gen
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Popl + Pop2

Feature 5

T
10

Feature 1 Feature 4

® PoplA @ PoplB + Pop2A + Pop2C
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Feature 3
Feature 5
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® PoplA @ PoplB + Pop2A + Pop2C
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+ Pop2

® PoplA @ PoplB + Pop2A + Pop2C
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15 4
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20

® PoplA @ PoplB + Pop2A + Pop2C
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EXPERIMENTATION
20 20 20
15 A 15 A 15 A
10 - 10 - 10 -
ch 5 - 5 4
01 0 - 0
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EXPERIMENTATION
20 20 20
15 - 15 - 15 -
10 A 10 A 10 A
ch 5 1 5 4
01 01 0
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EXPERIMENTATION
HYPOTHESIS 1: weights from Pop 1A/Pop 2A will be high; weights from Pop 1B/Pop 2C will be low
Average Weights over Training,

by Subpopulations

5e-04 1

4e-04 1

=== Population 1A

3e-04 1

Population 1B

== Population 2A

26-04

Average Weight

Population 2C

1e-04 1

Oe+00 1

0 25000 50000 75000 100000
Epoch
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EXPERIMENTATION

HYPOTHESIS 1: weights from Pop 1A/Pop 2A will be high; weights from Pop 1B/Pop 2C will be low

Average Weights over Training,

56-041 o com

4e-044 |

3e-04 1

26-04

Average Weight

1e-04 1

Oe+00 1

by Subpopulations

=== Population 1A
Population 1B
== Population 2A

Population 2C

&2 COLUMBIA

25000 50000 75000 100000
Epoch
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Weight
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0.00000-
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Average Final Weights,

by Subpopulations
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EXPERIMENTATION

HYPOTHESIS 2: weighting will make features more similar between populations

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

w 7.5~

3

S 5.0-

=

T 25-

Q

O go- /
1 1 1 | 1 1 1 1 1 1 —— Pop1

Pre Post Pre Post Pre Post Pre Post Pre Post
—o—Pop2
Feature 6 Feature 7 Feature 8 Feature 9 Feature 10
1.0+

9

QL

o 0.5-

B2

(@) \ \

OO 5 1 1 1 1 1 1 1 ] 1 ]
Pre Post Pre Post Pre Post Pre Post Pre Post
Weighting
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EXPERIMENTATION ATE

=50
=70

mixture

overlap

HYPOTHESIS 3: cGAN-weighted ATE will be less biased than comparators

Weighting Method
unweighted
cGAN
Inverse probability of treatment (IPTW)
Clipped IPTW

Binary regression propensity score

generalized boosted modeling of propensity scores

covariate-balancing propensity scores

non-parametric covariate-balancing propensity scores

entropy balancing weights

empirical balancing calibration weights

optimization-based weights
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EXPERIMENTATION ATE

=50
=70

mixture

overlap

HYPOTHESIS 3: cGAN-weighted ATE will be less biased than comparators

Weighting Method ATE
unweighted 50.03
cGAN 70.01
Inverse probability of treatment (IPTW) 92.00
Clipped IPTW 87.24
Binary regression propensity score 92.00
generalized boosted modeling of propensity scores 84.51
covariate-balancing propensity scores 91.83
non-parametric covariate-balancing propensity scores 37.65
entropy balancing weights 104.13
empirical balancing calibration weights 52.06
optimization-based weights 52.07
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EXPERIMENTATION ATE

=50
=70

mixture

overlap

HYPOTHESIS 4: effective sample size of ¢cGAN will be more reasonable than comparators

Weighting Method ATE ESS
unweighted 50.03 8000
cGAN 70.01 3870
Inverse probability of treatment (IPTW) 92.00 6551
Clipped IPTW 87.24 6997
Binary regression propensity score 92.00 6551
generalized boosted modeling of propensity scores 84.51 7207
covariate-balancing propensity scores 91.83 6686
non-parametric covariate-balancing propensity scores 37.65 11
entropy balancing weights 104.13 65
empirical balancing calibration weights 52.06 65
optimization-based weights 52.07 114
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EXPERIMENTATION

2. application to clinical data
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EXPERIMENTATION

2 NewYork-Presbyterian

Efficacy and Tolerability of Sitagliptin Compared

with Glimepiride in Elderly Patients with Type 2 Diabetes
Mellitus and Inadequate Glycemic Control: A Randomized,
Double-Blind, Non-Inferiority Trial

Paul Hartley' - Yue Shentu” - Patricia Betz-Schiff* - Gregory T. Golm? -
Christine McCrary Sisk® - Samuel S. Engel® + R. Ravi Shankar®

@ U.S. National Library of Medicine

ClinicalTrials gov clinicaltrials.gov/ct2/show/NCT01189890
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EXPERIMENTATION eligible patients
* diagnosis of Type II Diabetes
Mellitus
N * prescription to sitagliptin or
- NewYork-Presbyterian F 0 H DS I glimepiride
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ° aged 65_80.

Efficacy and Tolerability of Sitagliptin Compared

with Glimepiride in Elderly Patients with Type 2 Diabetes
Mellitus and Inadequate Glycemic Control: A Randomized,
Double-Blind, Non-Inferiority Trial

Paul Hartley' - Yue Shentu” - Patricia Betz-Schiff* - Gregory T. Golm? -
Christine McCrary Sisk® - Samuel S. Engel® + R. Ravi Shankar®

@ U.S. National Library of Medicine

ClinicalTrials gov clinicaltrials.gov/ct2/show/NCT01189890

COLUMBIA UNIVERSITY

@ COLUMBIA DEPARTMENT OF AJ Averitt

BIOMEDICAL INFORMATICS



® &6 6 O

EXPERIMENTATION

2 NewYork-Presbyterian r OHDSI

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Efficacy and Tolerability of Sitagliptin Compared

with Glimepiride in Elderly Patients with Type 2 Diabetes
Mellitus and Inadequate Glycemic Control: A Randomized,
Double-Blind, Non-Inferiority Trial

Paul Hartley' + Yue Shentu? - Patricia Betz-Schiff* - Gregory T. Golm” -
Christine McCrary Sisk® - Samuel S. Engel® + R. Ravi Shankar®
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eligible patients

* diagnosis of Type II Diabetes
Mellitus

* prescription to sitagliptin or
glimepiride

* aged 65-80.

a sub-sample of sitagliptin users was
taken to match the count of the
glimepiride arm (N=608 vs N=144).

* not necessary
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eligible patients

* diagnosis of Type II Diabetes
Mellitus

* prescription to sitagliptin or
glimepiride

* aged 65-80.

a sub-sample of sitagliptin users was
taken to match the count of the
glimepiride arm (N=608 vs N=144).

* not necessary

37 features

* repeated measurements: the most
recent result was selected.

* missing data: values were imputed
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eligible patients

* diagnosis of Type II Diabetes
Mellitus

* prescription to sitagliptin or
glimepiride

* aged 65-80.

a sub-sample of sitagliptin users was
taken to match the count of the
glimepiride arm (N=608 vs N=144).

* not necessary

37 features

* repeated measurements: the most
recent result was selected.

* missing data: values were imputed

hypothesis
1. ¢GAN will improve feature balance
over comparator methods
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HYPOTHESIS 1: cGAN will
improve feature balance over
comparator methods

ASDM is a common metric of
feature balance A
lower ASDM is indicative of feature
balance

Xtreatment — JEcontrol
ASDM = |

2 2
\/Streatment + Scontrol

2

same comparators as simulation
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HYPOTHESIS 1: cGAN will
improve feature balance over
comparator methods

ASDM is a common metric of

feature balance

lower ASDM is indicative of feature

balance

treatment — Xcontrol

X
ASDM = |

2
Streatment T S

2

same comparators as simulation
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CONCLUSIONS

the experiments suggest that Counterfactual y-GAN is an effective
method of learning feature balancing weights to support counterfactual
inference!
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CONCLUSIONS

the experiments suggest that Counterfactual y-GAN is an effective
method of learning feature balancing weights to support counterfactual
inference!

the Counterfactual y-GAN could provide an alternative means to causal
inference from observational data.
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CONCLUSIONS

the experiments suggest that Counterfactual y-GAN is an effective
method of learning feature balancing weights to support counterfactual
inference!

the Counterfactual y-GAN could provide an alternative means to causal
inference from observational data.

furthermore, if we assume that all potentially confounding variables are
observed and included as features, average treatment effect estimates

from Counterfactual y-GAN weighted models may be less biased.
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CONCLUSIONS

Limitations

G ANs are unstable

Parameter tuning is hard

What is the best way to assess
convergence?

discrete data - gradients are
unbiased, but high variance
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CONCLUSIONS

Limitations Future Directions

G ANs are unstable

application to clinical data.
compare to RCT. need multisite

Parameter tuning is hard
collaborators

What is the best way to assess

convergence?
assessing variance of outcome.
discrete data - gradients are this requires a more complex
unbiased, but high variance simulation
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learning for discrete data

We leverage a score function estimator. This score function-based estimator exchanges a gradient
of an expectation for an expectation of a gradient which we can make an unbiased Monte Carlo
estimate and incorporate into a modified stochastic backpropogation procedure.

\/’Tl'a, tq'\t(m;wa)[f(x)] — tq'\t(m;wa)[f(x)vﬁa log th (.CC, 7Ta,)]
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