OHDSI Community in Action: Where have we been in 2019? Where should we go in 2020?

Patrick Ryan, PhD
Vice President, Observational Health Data Analytics, Janssen Research and Development
Assistant Professor, Adjunct, Department of Biomedical Informatics, Columbia University Medical Center
OHDSI’s mission

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care
OHDSI’s areas of focus:
Recapping our journey in 2019...

• Maintain and evolve open community data and vocabulary standards
• Develop and improve tools to enable large-scale analysis
• Establish and promote community best practices
• Strengthen and expand collaborations across OHDSI research network
• Advance scholarship in observational data science through publication, presentations, and education
• **Generate and disseminate more clinical evidence**
Case Western Reserve University:
OHDSI face-to-face documentation-a-thon
OHDSI China Symposium 2019
- A platform to stimulate community building: 250 participants from 27 countries
- OHDSI Europe in action: 35 posters, 8 software demos
- Educate and train the community: 5 full day tutorials

www.ohdsi-europe.org
Fudan University – OHDSI tutorials
OHDSI Korea – Study design datathon
OHDSI Korea Symposium

KONJIAM Resort, Gwangju, Gyeonggi-Do, Republic of Korea
Building the LHC of observational data science?
ICMJE guidelines

The ICMJE recommends that authorship be based on the following 4 criteria:

• Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

• Drafting the work or revising it critically for important intellectual content; AND

• Final approval of the version to be published; AND

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers

George Hripcsaka, Jon D. Dukeb, Nigam H. Shahc, Christian G. Reichd, Vojtech Husere, Martijn J. Schuemief,g, Marc A. Suchardh, Rae Woong Parki, Ian Chi Kei Wongj, Peter R. Rijnbeekl, Johan van der Leil, Nicole Prattk, G. Niklas Norénl, Yu-Chuan Lim, Paul E. Stangn, David Madigano, Patrick B. Ryanp

a Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
b Regenstrief Institute, Indianapolis, IN, USA
c Center for Biomedical Informatics Research, Stanford University, CA, USA
d AstraZeneca PLC, Waltham, MA, USA
e NIH Clinical Center, Bethesda, MD, USA
f Centre for Safe Medication Practice and Research, Dept. of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
g Janssen Research & Development, LLC, Titusville, NJ, USA
h Dept. of Biomathematics & Dept. of Human Genetics, David Geffen School of Medicine, Univ. of California, Los Angeles
i Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
j Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
k School of Pharmacy and Medical Sciences, University of South Australia, Australia
l Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Uppsala
m College of Medical Science and Technology (CoMST), Taipei Medical University, Taipei, Taiwan
n Department of Statistics, Columbia University, New York, NY, USA

MEDINFO 2015: eHealth-enabled Health
L.N. Sarkar et al. (Eds.)
© 2015 IMIA and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-564-7-574

2015: 17 authors
1 promise
Characterizing treatment pathways at scale using the OHDSI network

George Hripcsaka,b,c,1, Patrick B. Ryanc,d, Jon D. Dukee, Nigam H. Shahc,f, Rae Woong Parkc,g, Vojtech Huserc,h, Marc A. Suchardc,i,j,k, Martijn J. Schuemiec,d, Frank J. DeFalcoc,d, Adler Perottea,*, Juan M. Bandaa,*, Christian G. Reichc,l, Lisa M. Schillingc,m, Michael E. Mathenyc,n,o, Daniella Meekerc,p,q, Nicole Prattc,l, and David Madiganc,s

aDepartment of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032; bMedical Informatics Services, NewYork-Presbyterian Hospital, New York, NY 10032; cObservational Health Data Sciences and Informatics, New York, NY 10032; dEpidemiology Analytics, Janssen Research and Development, Titusville, NJ 08560; eCenter for Biomedical Informatics, Regenstrief Institute, Indianapolis, IN 46205; fCenter for Biomedical Informatics Research, Stanford University, CA 94305; gDepartment of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea, 443-380; hLister Hill National Center for Biomedical Communications (National Library of Medicine), National Institutes of Health, Bethesda, MD 20894; iDepartment of Biostatistics, University of California, Los Angeles, CA 90095; jDepartment of Biostatistics, University of California, Los Angeles, CA 90095; kDepartment of Human Genetics, University of California, Los Angeles, CA 90095; lReal World Evidence Solutions, IMS Health, Burlington, MA 01809; mDepartment of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; nDepartment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37212; oGeriatric Research, Education and Clinical Center, VA Tennessee Valley Healthcare System, Nashville, TN 37212; pDepartment of Preventive Medicine, University of Southern California, Los Angeles, CA 90089; qDepartment of Pediatrics, University of Southern California, Los Angeles, CA 90089; rDivision of Health Sciences, University of South Australia, Adelaide, SA, Australia 5001; and sDepartment of Statistics, Columbia University, New York, NY 10027

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved April 5, 2016 (received for review June 14, 2015)
OHDSI in action: Safety surveillance

BRIEF COMMUNICATION

Risk of angioedema associated with levetiracetam compared with phenytoin: Findings of the observational health data sciences and informatics research network

Jon D. Duke, Patrick B. Ryan, Marc A. Suchard, George Hripcsak, Peng Jin, Christian Reich, Marie-Sophin Schwalm, Yuriy Khoma, Yonghui Wu, Hua Xu, Nigam H. Shah, Juan M. Banda, and Martijn J. Schuemie

Appligens, 58(8):e101-e106, 2017
doi: 10.1111/epi.13828

Summary

Recent adverse event reports have raised the question of increased angioedema risk associated with exposure to levetiracetam. To help address this question, the Observational Health Data Sciences and Informatics research network conducted a retrospective observational new-user cohort study of seizure patients exposed to levetiracetam (n = 276,665) across 16 databases. With phenytoin users (n = 74,482), a comparator group, propensity score-matching was conducted and hazard ratios computed for angioedema events by per-protocol and intent-to-treat analysis. Angioedema events were rare in both the levetiracetam and phenytoin groups (5.1% in per-protocol and 24% vs. 4% in intent-to-treat). No significant increase in angioedema risk with levetiracetam was seen in any individual database (hazard ratios ranging from 0.43 to 1.31). Meta-analysis showed a summary hazard ratio of 0.72 (95% confidence interval [CI] 0.59-0.87) and 0.64 (95% CI 0.52-0.79) for the per-protocol and intent-to-treat analyses, respectively. The results suggest that levetiracetam is the same or lower risk for angioedema than phenytoin, which does not currently carry a labeled warning for angioedema. Further studies are warranted to evaluate angioedema risk across all antiepileptic drugs.

KEY WORDS: Angioedema, Levetiracetam, Anticonvulsant hypersensitivity syndrome, Pharmacovigilance, Observational research, Adverse drug reactions.

2017: 13 authors
10 data sources
Association of Hemoglobin A₁c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin Analysis From the Observational Health Data Sciences and Informatics Initiative

Rohit Vashisht, PhD; Kenneth Jung, PhD; Alejandro Schuler, MS; Juan M. Banda, PhD; Rae Woong Park, MD, PhD; Sanghyung Jin, MS; Kipp W. Johnson, MD, PhD; Mark M. Shervey, PhD; Hua Xu, PhD; Yonghui Wu, PhD; Karthik Natraj, PhD; George Hripcsak, MD, MS; Anthony Reckard, BS; Christian G. Reich, MD; James Weaver, MPH, MS; Martijn J. Schuemie, PhD; Patrick B. Ryan, PhD; Alison Callahan

2018: 22 authors
8 data sources
Ohdsi in action:
Legend-HTN

The Lancet

Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis

Marc A Suchard, Martijn J Schuemie, Harlan M Krumholz, Seng Chan You, Ruijun Chen, Nicole Pratt, Christian G Reich, Jon Duke, David Madigan, George Hripko, Patrick R Ryan

Summary

Background: Uncertainty remains about the optimal monotherapy for hypertension, with current guidelines recommending any primary agent among the first-line drug classes thiazide or thiazide-like diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium channel blockers, in the absence of comorbid indications. Randomised trials have not further refined this choice.

Methods: We developed a comprehensive framework for real-world evidence that enables comparative effectiveness and safety evaluation across many drugs and outcomes from observational data encompassing millions of patients, while minimising inherent bias. Using this framework, we did a systematic, large-scale study under a new-user cohort design to estimate the relative risks of three primary (acute myocardial infarction, hospitalisation for heart failure, and stroke) and six secondary effectiveness and 46 safety outcomes comparing all first-line classes across a global network of six administrative claims and three electronic health record databases. The framework addressed residual confounding, publication bias, and p-hacking using large-scale propensity adjustment, a large set of control outcomes, and full disclosure of hypotheses tested.

Findings: Using 4.9 million patients, we generated 22,000 calibrated, propensity-score-adjusted hazard ratios (HRs) comparing all classes and outcomes across databases. Most estimates revealed no effectiveness differences between classes; however, thiazide or thiazide-like diuretics showed better primary effectiveness than angiotensin-converting enzyme inhibitors: acute myocardial infarction (HR 0.84, 95% CI 0.75–0.95), hospitalisation for heart failure (0.83, 0.77–0.89), and stroke (0.86, 0.78–0.95).
OHDSI In Action: Patient-Level Prediction Live at OHDSI’18

Development and Validation of a Prognostic Model Predicting Symptomatic Hemorrhagic Transformation in Acute Ischemic Stroke at Scale in the OHDSI Network

Qiong Wang, MSc1,2,3, Jenna M Reps, PhD3,7, Kristin Feeney Kostka, MPH3,10, Patrick B Ryan, PhD3,5, Yi-Hui Zou, MD5, Peter R Rijnbeek, PhD3,5, Runfen Chen, MD1,4, Gowtham Rao, MD, PhD3,2, Seng Chan You, MD, MS1,4, Henry Morgan Stewart, PhD5,10, Erica A Voss, MPH3,7, Andrew E Williams, PhD5,11, Ross D Williams, MSc5,2, Mai Van Zanuit, BS1,10, Thomas Falconer, MS1,2, Stranga N Kasthuriratne, PhD12,13, Margarita Fernandez-Chas, PhD13, Rohit Vashisht, PhD13, Stephen Pohl, BEng14, Nigam Shah, MBBS, PhD2,14, Qing Jiang, PhD1, Christian Reich, MD, PhD2,15, Yi Zhou, PhD15

1. Biomedical Engineering School, Sun Yat-Sen University, Guangzhou, China
2. The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
3. Observational Health Data Sciences and Informatics, New York, New York, USA
4. Department of Defence, China
5. Department of Global Health, New York, New York, USA
6. Department of Neurology, New York, New York, USA
7. Janiss, United States
8. Department of Medicine, Sungkyunkwan University Medical Center, Suwon, Korea
9. Department of Clinical Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
10. IQVIA, Durham, North Carolina, USA
11. Tufts Medical Center, Institute for Clinical Research and Health Policy Studies, Boston, Massachusetts, USA
12. Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA

From question to preliminary results in 1 day!
OHDSI in action: Oxford study-a-thon

"To compare the risk of post-operative complications and mortality between unicompartmental vs total knee replacement.

THE LANCET Rheumatology

Opioid use, postoperative complications, and implant survival after unicompartmental versus total knee replacement: a population-based network study

Summary
Background: There is uncertainty around whether to use unicompartmental knee replacement (UKR) or total knee replacement (TKR) for individuals with osteoarthritis confined to a single compartment of the knee. We aimed to emulate the design of the Total or Partial Knee Arthroplasty Trial (TOPKAT) using routinely collected data to assess whether the efficacy results reported in the trial translate into effectiveness in routine practice, and to assess comparative safety.

Dec 2018 → 2019: 26 authors
5 sources
Contributors

Each chapter lists one or more chapter leads. These are the people who lead the chapter. However, there are many others that have contributed to the book, and OHDSI would like to acknowledge here:

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamed Abediash</td>
<td>Mustafa Ascha</td>
<td>Mark Beno</td>
</tr>
<tr>
<td>Clair Blacketer</td>
<td>David Blatt</td>
<td>Brian Christian</td>
</tr>
<tr>
<td>Gino Clift</td>
<td>Frank DeFalco</td>
<td>Sara Dempster</td>
</tr>
<tr>
<td>Jon Duke</td>
<td>Sergio Eslava</td>
<td>Clark Evans</td>
</tr>
<tr>
<td>Thomas Falconer</td>
<td>George Hripcsak</td>
<td>Vojtech Huser</td>
</tr>
<tr>
<td>Mark Khayter</td>
<td>Greg Klebanov</td>
<td>Kristin Kostka</td>
</tr>
<tr>
<td>Bob Lanese</td>
<td>Wanda Lattimore</td>
<td>Chun Li</td>
</tr>
<tr>
<td>David Madigan</td>
<td>Sindhoosha Malay</td>
<td>Harry Menegay</td>
</tr>
<tr>
<td>Akihiko Nishimura</td>
<td>Ellen Palmer</td>
<td>Nirav Patel</td>
</tr>
<tr>
<td>Jose P. G. Pena</td>
<td>Carmen Pernova</td>
<td></td>
</tr>
<tr>
<td>Christopher</td>
<td>Patrick</td>
<td></td>
</tr>
<tr>
<td>Paola S.</td>
<td>Andrew S.</td>
<td></td>
</tr>
<tr>
<td>Anthony</td>
<td>Matt Spoultz</td>
<td>Marc Suchard</td>
</tr>
<tr>
<td>Devin Tian</td>
<td>Don Torok</td>
<td>Kees van Bochove</td>
</tr>
<tr>
<td>Mai Van Zandt</td>
<td>Erica Voss</td>
<td>Kristin Waite</td>
</tr>
<tr>
<td>Mike Warfe</td>
<td>Jamie Weaver</td>
<td>James Wiggins</td>
</tr>
<tr>
<td>Andrew Williams</td>
<td>Chan You Seng</td>
<td></td>
</tr>
</tbody>
</table>

2019: **56 contributors!**
Why do we need more collaboration?

• We want to learn from as many data sources as the world as possible (replicability, generalizability, heterogeneity)
 – Each data partner contributes source data understanding and shares in interpreting their results in the context of the entire network

• As we grow the number of data partners, it is likely that the number of patient records per source will become smaller, which introduces new methodological challenges to overcome → METIS

• Large scale evidence generation requires large scale collaboration for interpretation
 – LEGEND : One causal evidence system → Many clinical insights to inform different health decisions
Building the LHC of observational data science?
What will be the research we do together that generates >1000 co-author papers?

• Methods research:
 “Examining data heterogeneity across a global health network”
 “Development and evaluation of methods for integrating causal inference design and machine learning algorithms for patient-level estimation”

• Open-source development:
 “Implementation of a large-scale analytics ecosystem to enable evidence generation within health systems and across a global health network”
 “Validation of an international phenotype library to define and identify disease across electronic health record systems”

• Clinical applications:
 “Characterization of disease incidence and treatment utilization patterns across the world”
 “Comprehensive comparative safety and effectiveness of treatments for <every disease>: an OHDSI LEGEND study”
OHDSI strategic priorities in 2020

1. Finish publications from completed research before initiating new research
2. Execute the world’s largest network study – characterizing concept prevalence
 – simple yet impactful research
 – allow us to know who is (currently) interested and able to participate in network research moving forward
 – target: get >67 of 133 databases participating
3. Collaboration on shared goals
 – Phenotype library
 – CDM documentation - ETL conventions, use guide
 – Open-source development – expand community design, implementation and testing
4. Community Education through EHDEN Academy
 – more materials provided in public forum in structured curriculum
 – less requirement of in-person tutorial sessions
 – coordination of materials with EHDEN and Book of OHDSI
5. Cultivate other network studies which follow OHDSI best practices
OHDSI’s areas of focus: Continuing our journey in 2020...

- Evidence generation and dissemination: Evolve from promising proof-of-concept to impactful production
- Expand engagement of the OHDSI data network in the evidence generation process, starting with characterization of concept prevalence
- Increase adoption of existing community data standards through improved documentation on shared ETL conventions and user guide
- Improve community connections between methods research, open-source development, and clinical applications to promote greater adoption of community best practices
OHDSI Collaboration activities in 2020

OHDSI events on the books:
• EHDEN Study-a-thon – Barcelona ESP Jan13-18
• CMS AI Health Outcomes Challenge
• OHDSI Europe – Oxford UK Mar27-29
• OHDSI US - Bethesda MD Oct 18-21

Face-to-face sessions being considered:
• Phenotype development and validation
• ATLAS design-a-thon
• OHDSI Asia
Join the journey

More info: ohdssi.org
Discussion: forums.ohdssi.org
Code: github.com/OHDSI

contact@ohdssi.org