/ Population-Level Estimation
Workgroup

Martijn Schuemie

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Marc Suchard




'// Meetings

* Merged meetings with PLP workgroup. One meeting per
hemisphere per month

— 1St Wednesday of the month: East
— 15t Thursday of the month: West

— For details, see OHDSI Wiki:
http://www.ohdsi.org/web/wiki/doku.php?
id=projects:workgroups:est-methods




e Package with Shiny app for diagnosing
 Will be embedded in estimation and p

Development: CohortDiagnostics package

cohorts

 Can be used in a network research setting
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r/ .
/ Research: small-counts meta-analysis

* Network studies produce estimates per site, combine using
meta-analysis.

* When (outcome) counts are low, the normality assumption in
standard meta-analysis doesn’t hold.

* Simulations show this can lead to large bias, especially when
there are many sites (n > 10)

 We have develop a viable solution for this.

Lead: Martijn Schuemie




?/
/ Research: Balance on unmeasured confounders?

* Large-scale propensity models include > 10,000 covariates.

* Anecdotal evidence suggests balancing on this many covariates
leads to balance on unmeasured covariates.

e Performing systematic evaluation, by removing (whole sets of)
covariates, and see if balance on the held-out covariates.

Lead: Ray Chen



'// Research: other ML algorithms for propensity models

 We currently use large-scale regularized logistic regression
(LASSO) to fit our propensity models.

e Evaluating other machine-learning (ML) algorithms
e Evaluating on simulated data, will move to real data

Lead: Yuchen Guo (Mimi)



