

The journey through patient-level prediction

Peter Rijnbeek Erasmus MC

Complementary evidence to inform the patient journey

Prediction Problem Definition

Among a target population (T), we aim to predict which patients at a defined moment in time (t=0) will experience some outcome (O) during a time-at-risk Prediction is done using only information about the patients in an observation window prior to that moment in time.

Important questions to ask!

- What decision is the prediction model intended to inform?
- When is the decision made in the context of the patient's health experience and interaction with the healthcare system?
- Who is the decision-maker, and from which stakeholder vantage point are we evaluating the decision?
- What is the trade-off between True Positive, False Positive, True Negative, False Negative?
- Etc.

OHDSI Mission for Patient-Level Prediction

OHDSI aims to develop a systematic process to learn and evaluate large-scale patient-level prediction models using observational health data in a data network

Evidence Evaluation Evidence Dissemination

OHDSI's Patient-Level Prediction Framework

Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data 3

Jenna M Reps Martijn J Schuemie, Marc A Suchard, Patrick B Ryan, Peter R Rijnbeek

Journal of the American Medical Informatics Association, Volume 25, Issue 8, August 2018, Pages 969-975, https://doi.org/10.1093/jamia/ocy032

Published: 27 April 2018 Article history ▼

Split View

Permissions

Abstract

Objective

To develop a conceptual prediction model framework containing standardized steps and describe the corresponding open-source software developed to consistently implement the framework across computational environments and observational healthcare databases to enable model sharing and reproducibility.

R-package

www.github.com/OHDSI/PatientLevelPrediction

- Vignettes
- Videos
- Online training material

Book-of-OHDSI

https://ohdsi.github.io/TheBookOfOhdsi/

Study Results

www.data.ohdsi.org

The prediction chapter and the publication are added on top of our channel in Teams

The Journey: Problem Definition

Problem pre-specification. A study protocol should unambiguously pre-specify the planned analyses.

Transparency. Others should be able to reproduce a study in every detail using the provided information. All analysis code should be made available as open source on the OHDSI Github.

Team Effort:

- Problem Definition + Questions
- Literature Research -> Prior work, Rationale
- Study Protocol Development

The Journey: Data Extraction

For model development all outcomes (O) of patients in the

Target Cohort (T) are used.

The Journey: Model Development

The Journey: Model Development

The Journey: External Validation

The Journey: Dissemination

Dissemination of study results should follow the minimum requirements as stated in the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement ¹.

- Internal and external validation
- Sharing of full model details
- Sharing of all analyses code to allow full reproducibility

Website to share protocol, code, models and results for all databases

PLP Aims Study-A-Thon

Build and evaluate models developed on Flu patients to:

- 1) Test them on COVID patients if data becomes available
- 2) Have tools ready to learn on COVID patients

And,

Replicate some of the models found in literature

Team Effort

51 Participants in our channel and literature study

Thank you all for the great collaboration in the PLP team