The journey through patient-level prediction

Peter Rijnbeek
Erasmus MC
Complementary evidence to inform the patient journey

Clinical characterization: What happened to them?

Patient-level prediction: What will happen to me?

Population-level effect estimation: What are the causal effects?

observation

inference

causal inference
Among a target population (T), we aim to predict which patients at a defined moment in time (t=0) will experience some outcome (O) during a time-at-risk. Prediction is done using only information about the patients in an observation window prior to that moment in time.
Important questions to ask!

• What decision is the prediction model intended to inform?

• When is the decision made in the context of the patient’s health experience and interaction with the healthcare system?

• Who is the decision-maker, and from which stakeholder vantage point are we evaluating the decision?

• What is the trade-off between True Positive, False Positive, True Negative, False Negative?

• Etc.
OHDSI Mission for Patient-Level Prediction

OHDSI aims to develop a systematic process to learn and evaluate large-scale patient-level prediction models using observational health data in a data network.
OHDSI’s Patient-Level Prediction Framework

R-package

www.github.com/OHDSI/PatientLevelPrediction

- Vignettes
- Videos
- Online training material

Book-of-OHDSI
https://ohdsi.github.io/TheBookOfOhdsi/

Study Results
www.data.ohdsi.org

The prediction chapter and the publication are added on top of our channel in Teams
The Journey: Problem Definition

Problem pre-specification. A study protocol should unambiguously pre-specify the planned analyses.

Transparency. Others should be able to reproduce a study in every detail using the provided information. All analysis code should be made available as open source on the OHDSI Github.

Team Effort:
- Problem Definition + Questions
- Literature Research -> Prior work, Rationale
- Study Protocol Development
The Journey: Data Extraction

The Target Cohort (T) and Outcome Cohort (O) can be defined using ATLAS or custom code (see later today).

We extract data for the patients in the Target Cohort (T) and we select all patients that experience the outcome (O).

The Target Cohort (T) and Outcome Cohort (O) can be defined using ATLAS or custom code (see later today).

For model development all outcomes (O) of patients in the Target Cohort (T) are used.

Team Effort:
- Literature Review
- Cohort Definition

Work done with the phenotype group
Data is extracted from the OMOP CDM using the Feature Extraction R-Package. This allows for specification of the candidate predictors and time windows.
The Journey: Model Development

Model training and **Internal validation** is done using a train test split:

1. Person split: examples are assigned randomly to the train or test set, or

2. Time split: a split is made at a moment in time (temporal validation)

<table>
<thead>
<tr>
<th>Train set</th>
<th>Test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-01-15</td>
<td></td>
</tr>
</tbody>
</table>

- **Study Package Development**
- **Study Execution**
External validation is performed using data from multiple populations not used for training.
Dissemination of study results should follow the minimum requirements as stated in the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement \(^1\).

- Internal and external validation
- Sharing of full model details
- Sharing of all analyses code to allow full reproducibility

Website to share protocol, code, models and results for all databases

\(^1\) Moons, KG et al. Ann Intern Med. 2015;162(1):W1-73
PLP Aims Study-A-Thon

Build and evaluate models developed on Flu patients to:

1) Test them on COVID patients if data becomes available
2) Have tools ready to learn on COVID patients

And,

Replicate some of the models found in literature
Team Effort

51 Participants in our channel and literature study

And Many More

Thank you all for the great collaboration in the PLP team