

#OHDSICOVID19

OHDSI COVID-19 International Study-A-Thon

Follow our COVID19 Updates

www.ohdsi.org/ covid-19-updates

- OHDSI (
- in /company/ohdsi

#JoinTheJourney

The meeting will begin shortly.

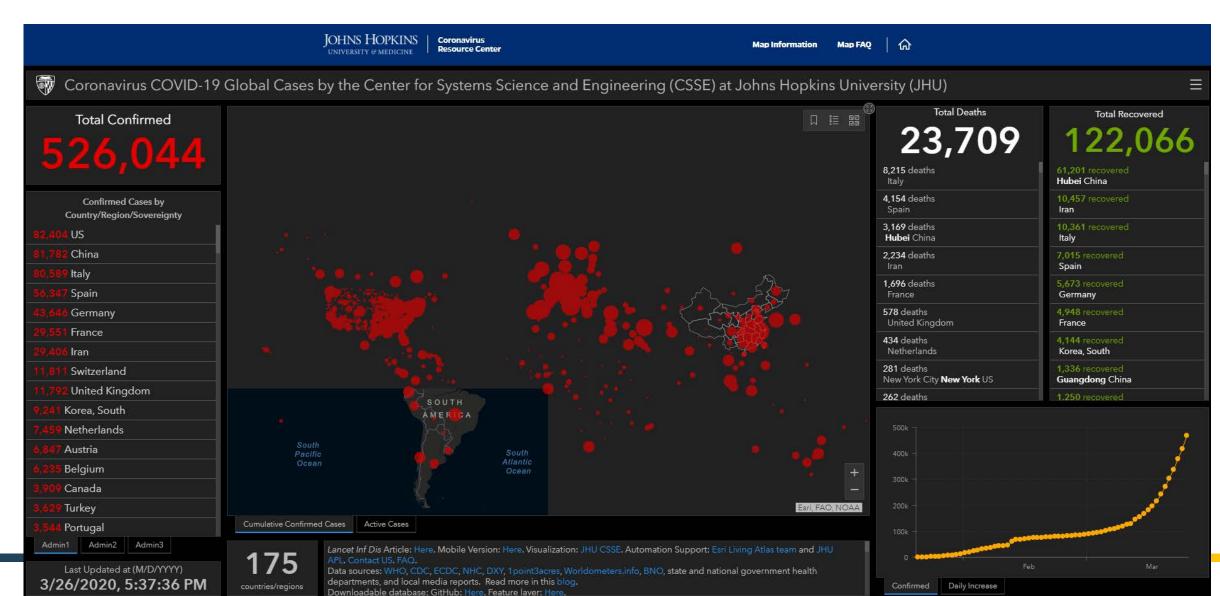
Collaborating to design and execute observational research and generate real-world evidence to inform the global pandemic

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care

... #flattenthecurve

OHDSI COVID-19 Study-a-thon kickoff 26Mar2020 3amEST

When we started on 26 March 2020



29th March 6:00pmEST



Tracking our collaboration 26Mar2020 3amET

OHDSI COVID-19 Study-a-thon Study Tracker

		Lit Review and	Phenotype			
Analytic		protocol	development and	Study package	Study execution	Clinical review and
use case	Study	development	evaluation	development	across network	dissemination
Characterization						
	COVID-19 positive patients					
	COVID-19 +ve subgroup analyses					
	Influenza, symptoms, and complications					
	Invasive treatments for respiratory distress					
	other questions?					
Prediction						
	1) Who presenting with flu, symptoms, or					
	complications will be admitted to hospital?					
	2) Who sent home with symptoms will					
	progress to require hospitalizaton?					
	3) Who admitted to hospital will require					
	intensive care services or die?					
	other questions?					
Estimation						
	Effects of hydroxychloroquine					
	Effects of IL6 and JAK inhibitors					
	Effects of HIV protease inhibitors					
	Effects of HepC protease inhibitors					
	Effects of ACE inhibitors					
	other questions?					

To be done Completed

Where are we now?

OHDSI COVID-19 Study-a-thon Study Tracker

		Lit Review and	Phenotype			
Analytic		protocol	development and	Study package	Study execution	Clinical review and
use case	Study	development	evaluation	development	across network	dissemination
Characteri	ization					
	COVID-19 positive patients					
	COVID-19 +ve subgroup analyses					
	Influenza, symptoms, and complications					
	Invasive treatments for respiratory distress					
	other questions?					
Prediction	1					
	1) Who presenting with flu, symptoms, or					
	complications will be admitted to hospital?					
	2) Who sent home with symptoms will					
	progress to require hospitalizaton?					
	3) Who admitted to hospital will require					
	intensive care services or die?					
	other questions?					
Estimation	n					
	Effects of hydroxychloroquine					
	Effects of IL6 and JAK inhibitors					
	Effects of HIV protease inhibitors					
	Effects of HepC protease inhibitors					
	Effects of ACE inhibitors					
	other questions?					

To be done
In progress
Results in, more to come
Completed

Who We Are v Latest News Standards Software Tools Methods Book of OHDSI v Research Resources v Join the Journey

The Journey Newsletter v Past Events Upcoming Events

Home > COVID-19 Updates Page

COVID-19 Updates Page

The Observational Health Data Sciences and Informatics (OHDSI) international community will host a COVID-19 virtual study-a-thon this week (March 26-29) to inform healthcare decision-making in response to the current global pandemic.

Day 4

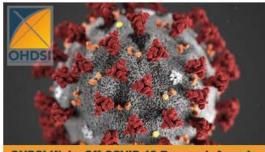
Early Call: Video Global Call: Video

FINAL CALL: Use This Link To Watch Live (regardless of whether you registered)

Please take a look at the early calls, but we're going to save the exciting study-a-thon updates for our final call tonight! This link will work for anybody, regardless of whether you registered for the study-a-thon. We are so excited to share our studies and early

results with the world. Please share this link with people in your networks, so they can see the power of global collaboration in the OHDSI community.

Day 3 Updates



OHDSI Kicks Off COVID-19 Research Agenda With 4-Day International Virtual Study-A-Thon

What have we done?

In only **88** hours, we have:

- Convened 351 participants brought together
 from 30 countries
- Held 12 Global Huddles, >100 collaborator
 calls, >13,000 chat messages
- Engaged 15 concurrent channels
- Reviewed > 10,000 publications
- Drafted **9** protocols
- Released 13 study packages
- Designed **355** cohort definitions
- Assembled a distributed data network with
 - **37** partners signed on to execute studies

3 things that we did in 4 days together that nobody has ever done before

- First large-scale characterization of COVID patients in US and Asia (Ed)
- First prediction model externally validated on COVID patients to support triage to 'flatten the curve' (Jenna)
- Largest study ever conducted on the safety of hydroxychloroquine (Dani)

3 things we're about to do that nobody has ever done before

- Designed self-controlled case series to examine safety of IL6 and JAK inhibitors....package is running
- Designed and implemented international study to evaluate protease inhibitors....package is running (Albert)
- Designed and implemented a study to evaluate impact of ACE inhibitor amongst Covid....need more COVID data (Daniel)

Ground rules for presentation

- We will be sharing the journey we've been on through all our our studies
 - Celebrate the tremendous progress
 - Highlight the rigorous analytical methods and scientific best practices applied through the week
 - Share *preliminary* results, which should not be over-interpreted but provide an exciting view of the journey ahead

Collaborative literature review

Jenny Lane
University of Oxford

Pre Study-a-thon...

DMARDS

ANTIVIRALS

Systematic approach

PubMed
Embase (1974)
Clinicaltrials.gov
ICTRP
BioRxiv & medRxiv

5458 DMARD Articles

(Hydroxychloroquine/csDMARDs Biologics-IL6 & JAK inhibitors)

4800 Antiviral Articles

Protease Inhibitors (Lopinavir/ ritonavir)
Hep C/ H1N1 / Ebola/ Influenza

Clinical guidelines

Results

Rayyan (https://rayyan.qcri.org) to collaboratively screen Data extraction files (efficacy, safety, mechanism of action) Written summaries for protocols & manuscripts Updated searches Chinese clinical trial registry

COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv

The Team & Final Products

5 continents; core team 15, 25 in total

Data scientists to clinicians

Teams -> files -> Competency Literature Review -> HCQ / IL6 /HepC Study Channel

BIG thanks to everyone!!

OHDSI Data Network in Action

Kristin Kostka IQVIA

United Nations of OMOP (Our Global Network)

- 37 databases participating
 - Insurance claims, EHRs, Administrative data, Registries
 - 10 countries on 3 continents
- 8 databases with COVID+ patients (and growing)
- Everyone adopted OMOP CDMv5+

Executing 9 OHDSI network studies concurrently...

Expectation

Reality

Process for managing 9 OHDSI network studies concurrently

Intake Requests

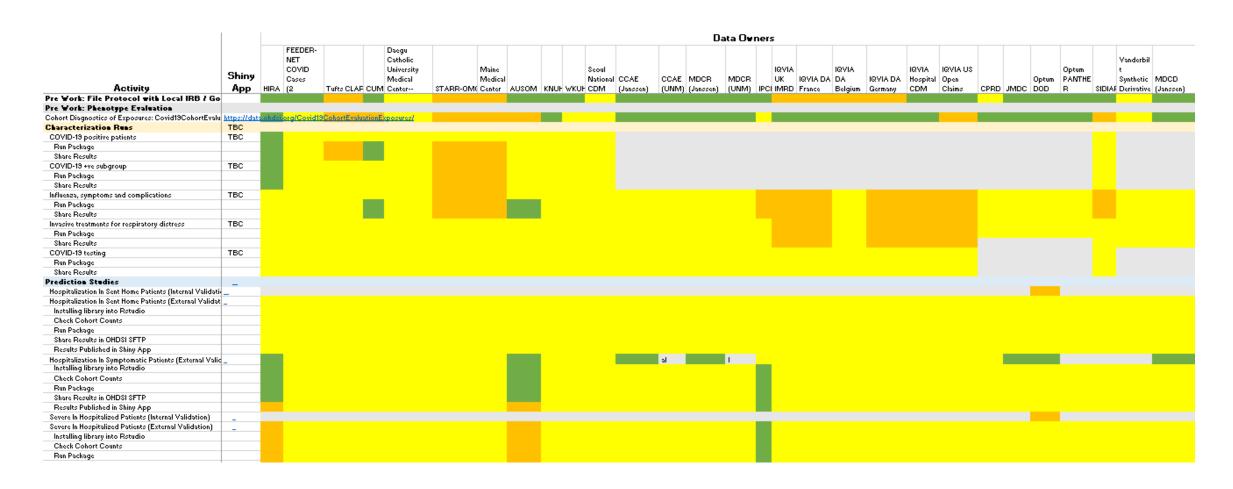
Test Packages

Assign
Tasks/Priority

Provide
Technical
Support for
Sites

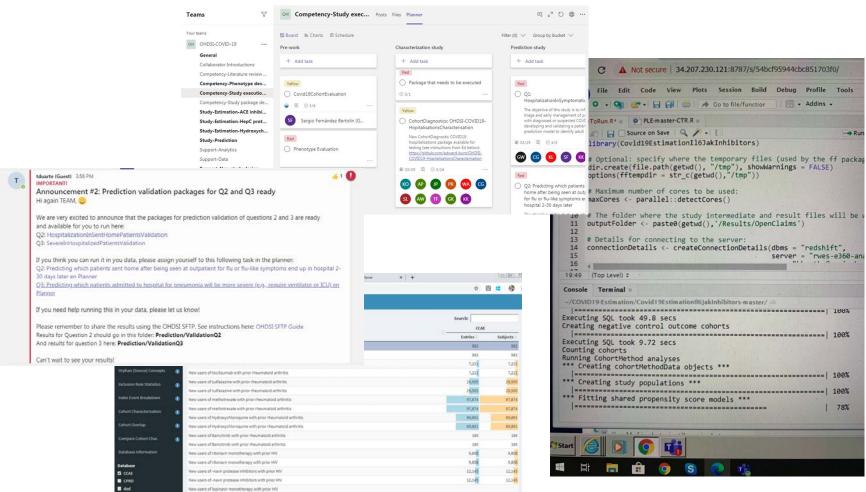
Get Results to
SFTP

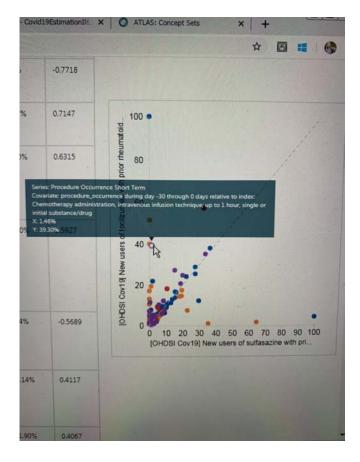
Mobilizing our action plan



Thank you HIRA, AUSOM, Tufts, CUMC, Stanford, UC Denver, Vanderbilt, SIDIAP and Veteran's Affairs/VINCI!

A snapshot of our journey...





Phenotype development and evaluation

Anna Ostropolets
Columbia University

Systematic process we followed

Building blocks Phenotypes Empirical Concept sets: Using building evaluation: blocks to create Atlas and Literature review Cohort composite Concept Diagnostics and phenotypes Prevalence PheValuator

Three lesson we learned

1. To create composite phenotypes we first have to create and validate building blocks.

Example: pneumonia is used in 29 different phenotypes.

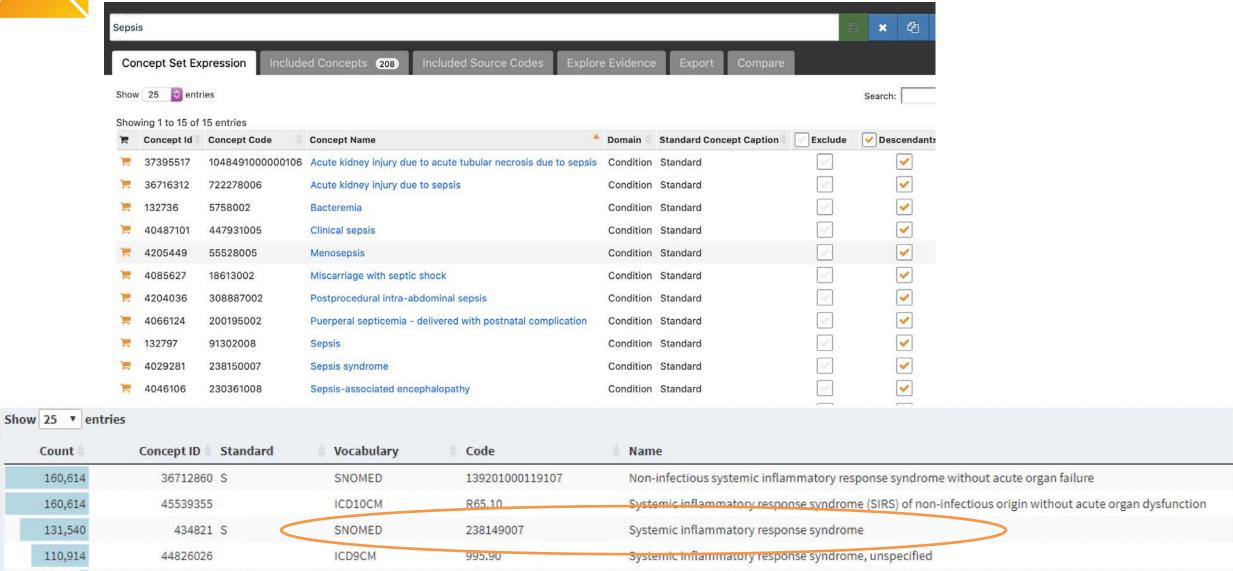
2. Phenotypes are driven by their intended use.

Example: how to find influenza?

- Narrow: diagnosis of influenza or test result
- Broad: suspected, confirmed, symptoms (fever AND (cough OR dyspnea OR malaise OR fatigue OR myalgia))

3. Phenotypes require knowledge of the data: data exploration is a must!

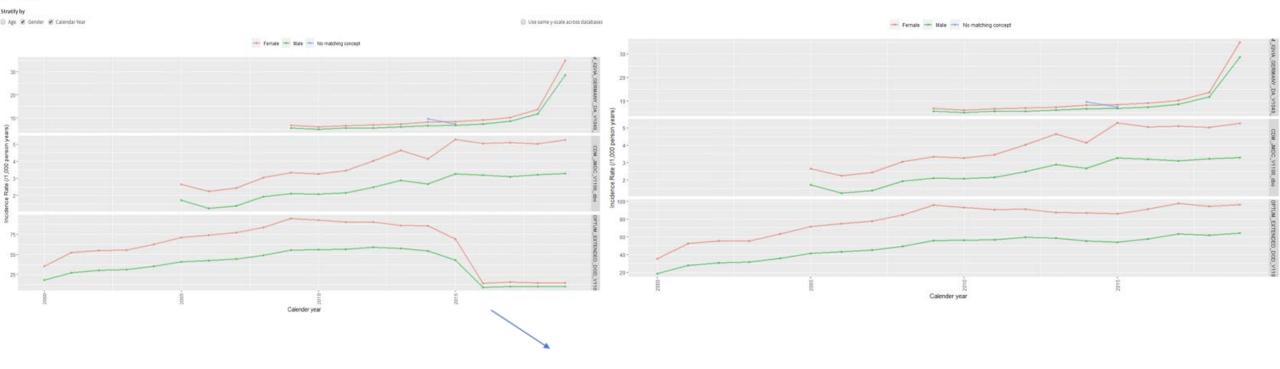
Exploring the data: creating comprehensive concept sets



Incidence Rate

Exploring the data: capturing coding practices

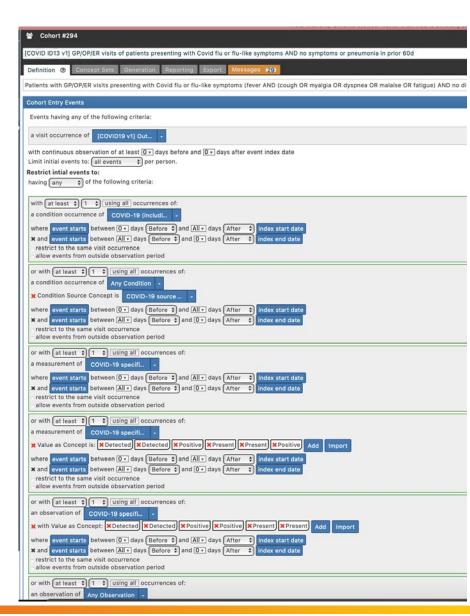
Malaise OR (malaise and fatigue)



Incidence rate dropped, need to add fatigue

Final Results

- Literature reviews done for 36 phenotypes
- 355 cohorts created in atlascovid19.ohdsi.org
- 114 validated and reviewed cohorts for prediction,
- estimation and characterization on atlas.ohdsi.org
- Results of Covid19CohortEvaluation are posted on data.ohdsi.org



Next Steps

- Complete the remaining cohorts for characterization
- Finalize the CohortEvalution package for all cohorts and run across the OHDSI network
- Write a paper about our phenotyping experience

Clinical characterization of COVID-19

Ed Burn

Background

Characterisation in OHDSI: Defining Cohorts

 A cohort is a set of persons who satisfy one or more inclusion criteria for a duration of time

Background

Characterisation in OHDSI: Cohort characterisation

 OHDSI approaches characterization through descriptive statistics of all conditions, drug and device exposures, procedures and other clinical observations that are present in the person's history.

Using FeatureExtraction

Martijn J. Schuemie 2019-08-28

Contents

4 Comparing two cohorts

Background

Characterisation in OHDSI: Incidence

Incidence rates and proportions are statistics that are used in public health to assess the occurrence of a new outcome in a population during a time-at-risk (TAR)

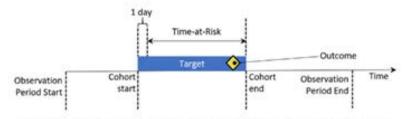


Figure 11.2: Person-level view of incidence calculation components. In this example, time-at-risk is defined to start one day after cohort start, and end at cohort end.

Our to do list

- ➤ Elucidating research questions
 - ➤ Writing protocols
 - ➤ Develop study packages
 - ➤ Review results
 - ➤ Disseminate results

Research questions

- Characterizing adults hospitalized with influenza in 2009-2010 and 2014-2019, and COVID-19 in 2019-2020
- 2. Characterization of individuals tested for COVID-19
- 3. Characteristics and outcomes of COVID-19 in children

Research questions

- 1. Characterizing adults hospitalized with influenza in 2009-2010 and 2014-2019, and COVID-19 in 2019-2020
- 2. Characterization of individuals tested for COVID-19
- 3. Characteristics and outcomes of COVID-19 in children

Research questions

- 1. Characterizing adults hospitalized with influenza in 2009-2010 and 2014-2019, and COVID-19 in 2019-2020
- 2. Characterization of individuals tested for COVID-19
- 3. Characteristics and outcomes of COVID-19 in children

Protocols

Research questions

D Protocol template

- 1. Table of contents
- 2. List of abbreviations
- 3. Abstract
- 4. Amendments and Updates
- 5. Milestones
- 6. Rationale and Background
- 7. Study Objectives
 - Primary Hypotheses
 - Secondary Hypotheses
 - o Primary Objectives
 - Secondary Objectives
- 8. Research methods
 - o Study Design
 - o Data Source(s)
 - Study population
 - o Exposures
 - · Outcomes
 - o Covariates
- 9. Data Analysis Plan

Protocols

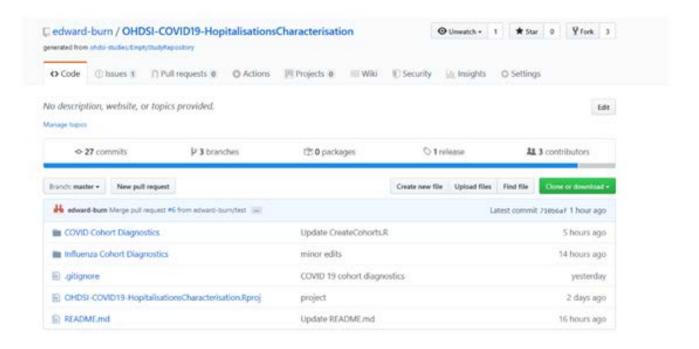
Characterization and outcomes of individuals tested for COVID-19: evidence from the OHDSI network

Characterizing adults hospitalized with influenza in 2009-2010 and influenza in 2009-2010 and 2014-2019, and COVID-19 in 2014-2020: protocol for an OHDSI network study

Protocol

Characteristics and outcomes of COVID-19 in Children in 2019-2020: evidence from the OHDSI network

Preparing study packages



Characteristics of adults hospitalized with influenza

• 2009 vs 2014-2019

Characteristic	Proportion Target	Proportion Comparator	StdDiff	
Age group				
15-19	1.8%	0.3%	-0.10	
20-24	3.2%	0.9%	-0.11	
25-29	5.0%	1.2%	-0.15	
30-34	6.3%	1.6%	-0.17	
35-39	6.4%	1.7%	-0.17	
40-44	7.2%	1.8%	-0.18	
45-49	8.5%	2.5%	-0.18	
50-54	10.8%	3.7%	-0.19	
55-59	9.4%	5.6%	-0.10	
60-64	8.5%	7.2%	-0.03	
65-69	7.3%	10.9%	0.08	
70-74	6.1%	13.7%	0.17	
75-79	6.3%	13.7%	0.17	
80-84	10.4%	13,0%	0.05	
85-89	2.7%	21.0%	0.38	
90-94		1.2%		

Characteristics of adults hospitalized with influenza

• 2009 vs 2014-2019

edical history: General			
Acute respiratory disease	89.0%	74,6%	-0.1
Attention deficit hyperactivity disorder	1.694	0.894	-0.0
Chronic liver disease	6.0%	3.8%	-0.0
Chronic obstructive lung disease	26.3%	42,4%	0.1
Crohn's disease	1.2%	0.8%	-0.0
Dementia	5.6%	16.5%	0.2
Depressive disorder	24.1%	28.6%	0.0
Diabetes mellitus	32.4%	42.9%	0.1
Gastroesophageal reflux disease	25.5%	36.5%	0.1
Gastrointestinal hemorrhage	9,2%	8.3%	-0.0
Human immunodeficiency virus infection	1.3%	0.6%	-0.0
Hyperlipidemia	47.0%	66.8%	0,1
Hypertensive disorder	61.5%	60.4%	0,1

Characteristics of adults who have tested positive for COVID-19

Characteristic	Columbia University Irving Medical Center
N	1,076
Age (median [IQR])	67
Gender: female (%)	51.2
Charlson score (median [IQR])	6
Medical history: General	
Acute respiratory disease (%)	29.6
Chronic obstructive lung disease (%)	19.7
Gastroesophageal reflux disease (%)	24.2
Hyperlipidemia (%)	41.8
Hypertensive disorder (%)	60.4
Pneumonia (%)	32.2
Renal impairment (%)	39.7
Urinary tract infectious disease (%)	15.7
Atrial fibrillation (%)	20.4
Heart disease (%)	60.7
Heart failure (%)	30.1
Malignant neoplastic disease (%)	22.2

Characteristics of adults who have tested positive for COVID-19

Characteristic	Columbia University Irving Medical Center
N	1,076
Medication use	
Anti-inflammatory and antirheumatic	
products (%)	33.2
Antithrombotic agents (%)	77.3
Beta blocking agents (%)	41.1
Calcium channel blockers (%)	36.3
Immunosuppressants (%)	16.1
Lipid modifying agents (%)	46.5

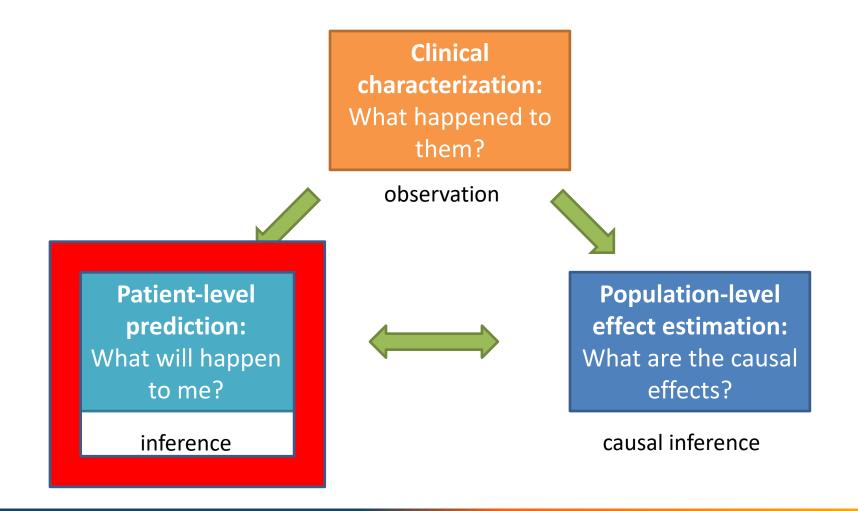
Our to do list

- ➤ Elucidating research questions
 - ➤ Writing protocols
 - ➤ Develop study packages
 - ➤ Review results
 - ➤ Disseminate results

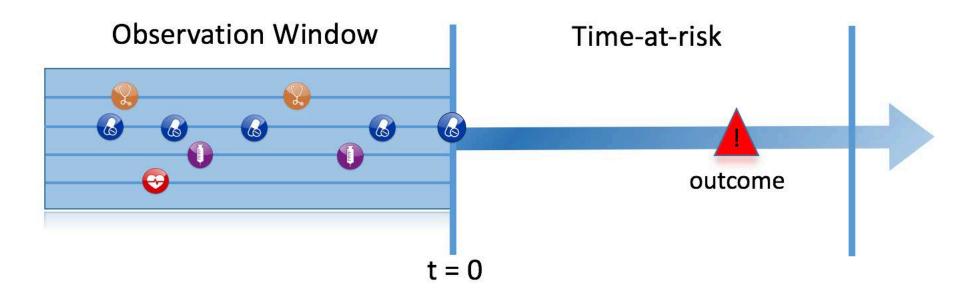
The journey through patient-level prediction

Peter Rijnbeek Erasmus MC

Complementary evidence to inform the patient journey



Prediction Problem Definition



Among a target population (T), we aim to predict which patients at a defined moment in time (t=0) will experience some outcome (O) during a time-at-risk Prediction is done using only information about the patients in an observation window prior to that moment in time.

Important questions to ask!

- What decision is the prediction model intended to inform?
- When is the decision made in the context of the patient's health experience and interaction with the healthcare system?
- Who is the decision-maker, and from which stakeholder vantage point are we evaluating the decision?
- What is the trade-off between True Positive, False Positive, True Negative, False Negative?
- Etc.

OHDSI Mission for Patient-Level Prediction

OHDSI aims to develop a systematic process to learn and evaluate large-scale patient-level prediction models using observational health data in a data network

Evidence Evaluation Evidence Dissemination

OHDSI's Patient-Level Prediction Framework

Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data 3

Jenna M Reps Martijn J Schuemie, Marc A Suchard, Patrick B Ryan, Peter R Rijnbeek

Journal of the American Medical Informatics Association, Volume 25, Issue 8, August 2018, Pages 969-975, https://doi.org/10.1093/jamia/ocy032

Published: 27 April 2018 Article history ▼

Split View

Permissions

Abstract

Objective

To develop a conceptual prediction model framework containing standardized steps and describe the corresponding open-source software developed to consistently implement the framework across computational environments and observational healthcare databases to enable model sharing and reproducibility.

R-package

www.github.com/OHDSI/PatientLevelPrediction

- Vignettes
- Videos
- Online training material

Book-of-OHDSI

https://ohdsi.github.io/TheBookOfOhdsi/

Study Results

www.data.ohdsi.org

The prediction chapter and the publication are added on top of our channel in Teams

The Journey: Problem Definition

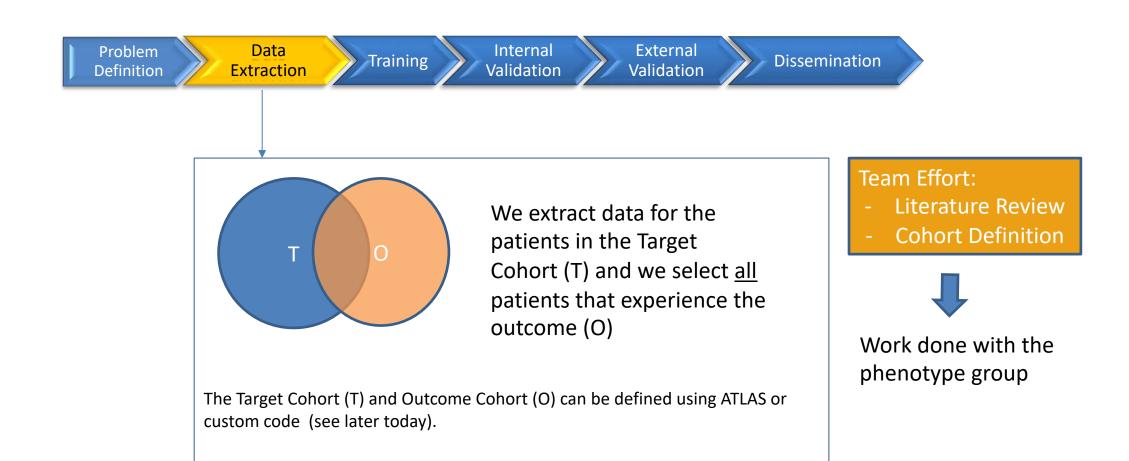
Problem pre-specification. A study protocol should unambiguously pre-specify the planned analyses.

Transparency. Others should be able to reproduce a study in every detail using the provided information. All analysis code should be made available as open source on the OHDSI Github.

Team Effort:

- Problem Definition + Questions
- Literature Research -> Prior work, Rationale
- Study Protocol Development

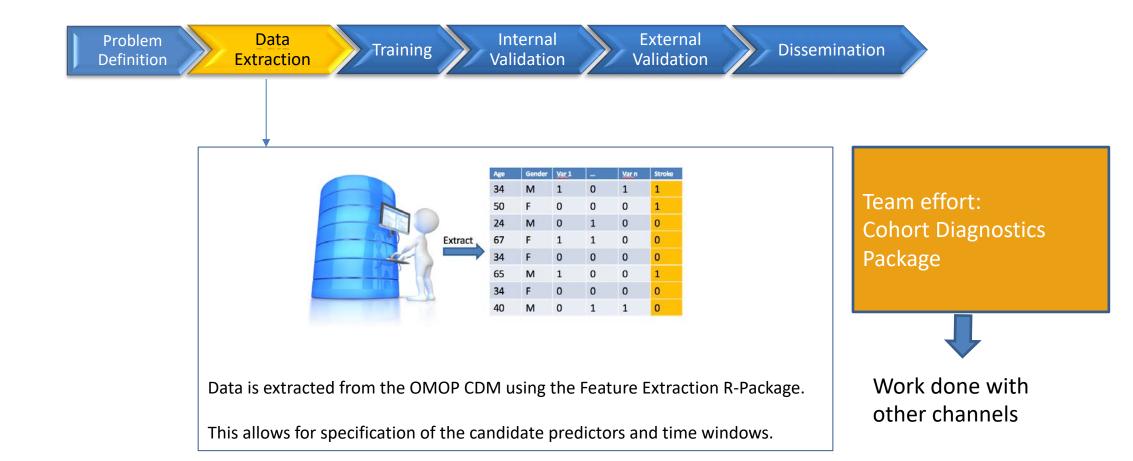
The Journey: Data Extraction



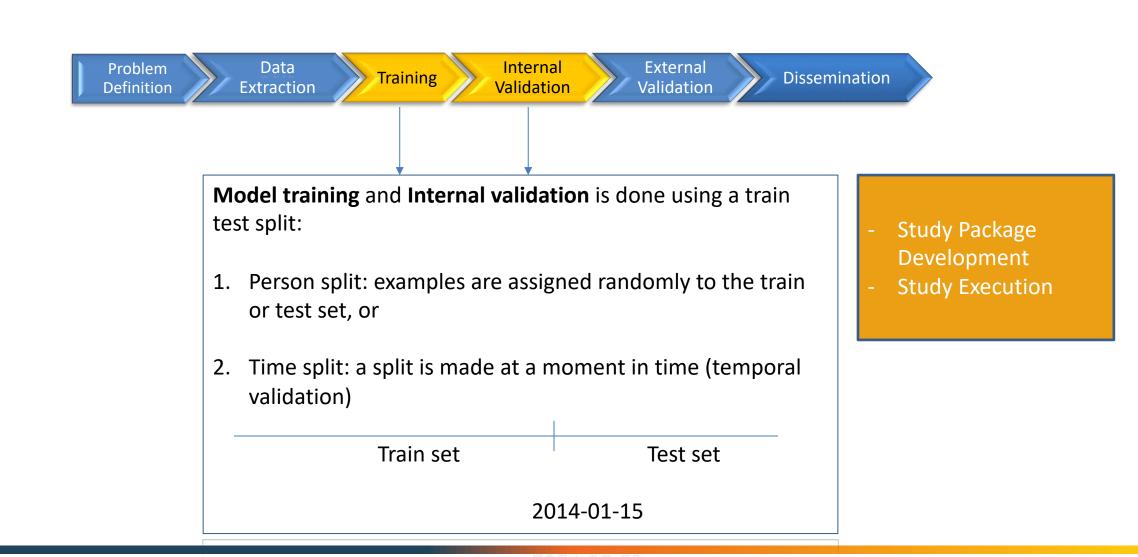
For model development all outcomes (O) of patients in the

Target Cohort (T) are used.

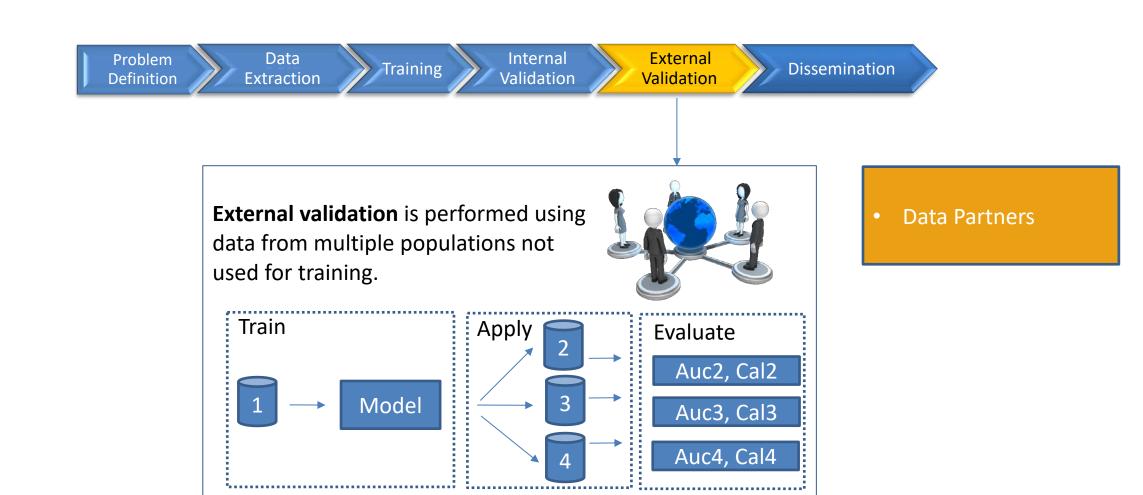
The Journey: Model Development



The Journey: Model Development



The Journey: External Validation



The Journey: Dissemination

Dissemination of study results should follow the minimum requirements as stated in the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement ¹.

- Internal and external validation
- Sharing of full model details
- Sharing of all analyses code to allow full reproducibility

Website to share protocol, code, models and results for all databases

PLP Aims Study-A-Thon

Build and evaluate models developed on Flu patients to:

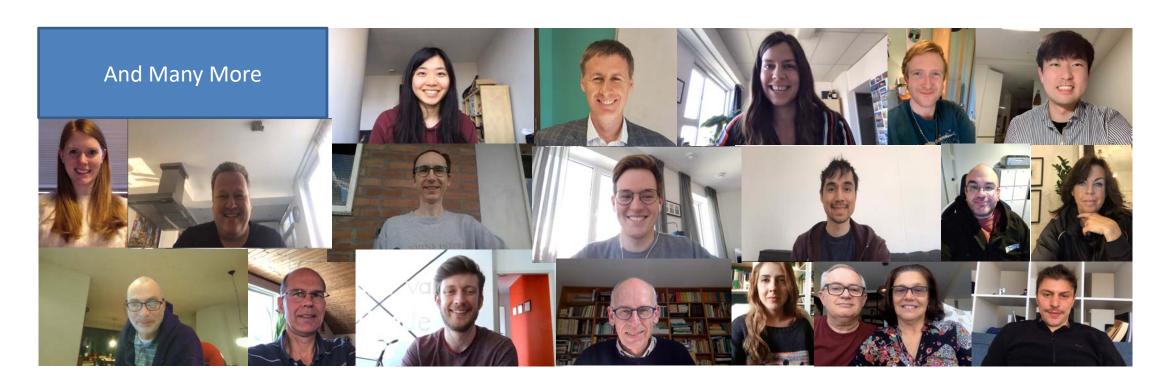
- 1) Test them on COVID patients if data becomes available
- 2) Have tools ready to learn on COVID patients

And,

Replicate some of the models found in literature

Team Effort

51 Participants in our channel and literature study



Thank you all for the great collaboration in the PLP team

Patient-level prediction #1:

Amongst patients presenting with COVID19, influenza, or associated symptoms,
who are most likely to be admitted to
hospital in next 30d?

Jenna Reps Janssen Research and Development

Background

 Can we predict who is going to be hospitalized at the point they have their first outpatient visit with flu/covid19 or flu-like symptoms?

- This could be used to aid the 'do I hospitalize or send this patient home?' decision that doctors will need to make
- Simple model could potentially be used for phone screen (patient calls medical staff and model answers questions)

Methods

T1: GP/OP/ER visits of patients presenting with Covid-19, flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d

O1: Hospitalizations with pneumonia (narrow)

O2: Hospitalizations with pneumonia or ARDS or sepsis or AKI (broad)

O3: Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services or resulting in death in 30d (severe)

O4: Death (severe)

TAR: 0-30d

Preliminary results

Analysis 🏺	Dev 🍦	Val 🌲	т	0	Model 🌲	TAR start	TAR end	AUC 🌲	AUPRC -	T Size	O Count	O Incidence (%)
Analysis_2	optumDod	optumDod	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.8721	0.3542	37500	2617	6.9787
Analysis_6	optumDod	optumDod	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.8387	0.2625	37499	2616	6.9762
Analysis_2	optumDod	ccae	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.7876	0.1358	3146729	53842	1.711
Analysis_2	optumDod	HIRA	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.74	0.082	6011	165	2.745
Analysis_2	optumDod	ipci	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.76241	0.00585	27610	36	0.13039
Analysis_2	optumDod	jmdc	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.679683	0.006628	1276478	1011	0.079202
Analysis_2	optumDod	mdcd	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.819	0.307	536410	53319	9.94
Analysis_2	optumDod	mdcr	[COVID ID13 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms AND no symptoms or pneumonia in prior 60d	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	0	30	0.709	0.351	248964	48170	19.348

Discussion and next steps

 Made a simple score model: 7 variables + age + gender model shiny: https://data.ohdsi.org/Covid19PredictionSimpleHospitalizationModel/

External validation of OHDSI score model

External validation existing risk models

Patient-level prediction #2:
Amongst patients at GP presenting with virus or associated symptoms with/without pneumonia who are sent home, who are most likely to require hospitalization in next 30d?

Ross D. Williams
Erasmus MC

Background

A large proportion of patients presenting with symptoms will be sent home

Some of these patients will go on to experience disease progression

This model can act as a safety net for a clinician and reassurance for patient.

Methods

T1: Visit with COVID or Influenza or flu-like symptoms and with NO pneumonia and NO admission

T2: same as T1 except WITH pneumonia

O1: Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services

O2: Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services or resulting in death in 30d

TAR: 2-30d

Preliminary results

Analysis 📥	Dev	Val 🌲	т ф	0	Model 🌲	TAR start	TAR end	AUC 🌲	AUPRC 🔷	T Size	O Count	O Incidence (%)
Analysis_1	optumDod	optumDod	[COVID ID14 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms with pneumonia and no admission	[COVID19 ID27 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services or resulting in death in 30d	Lasso Logistic Regression	2	30	0.75216	0.03286	25282	115	0.45487
Analysis_2	optumDod	optumDod	[COVID ID15 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms with no pneumonia and no admission	[COVID19 ID27 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services or resulting in death in 30d	Lasso Logistic Regression	2	30	0.8643	0.03104	74826	109	0.14567
Analysis_3	optumDod	optumDod	[COVID ID14 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms with pneumonia and no admission	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	2	30	0.72116	0.08942	25283	827	3.27097
Analysis_4	optumDod	optumDod	[COVID ID15 v1] GP/OP/ER visits of patients presenting with Covid flu or flu-like symptoms with no pneumonia and no admission	[COVID19 ID26 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI	Lasso Logistic Regression	2	30	0.8374	0.1153	74826	788	1.0531
			[COVID ID14 v1] GP/OP/ER visits of	[COVID19 ID27 V1] Hospitalizations with	Lasso							

Discussion and next steps

COVID-19 validation and external validation

Model parsimonisation

Tool creation

– how can we best present the model for application?

Model dissemination

Patient-level prediction #3:

Amongst patients hospitalized with pneumonia, who are most likely to require intensive services or die?

Aniek Markus Erasmus MC

Background

Lack of evidence of factors associated with disease severity

Enables close monitoring of high risk patients

Indicator for short-term demand of intensive services

Methods

- T [IV]: Hospitalization with pneumonia
- T [EV]: Hospitalization with COVID-19

- O1: Patients requiring intensive services* or death
- O2: Death

^{*} Includes ventilation, intubation, tracheotomy, or ECMO.

Preliminary results

Analysis 🍦	Dev 🍦	Val 🍦	т	÷	0 0	Model	÷	TAR start	TAR end	AUC 🍦	AUPRC 👙	T Size	O Count	O Incidence (%)
Analysis_1	optumDod	optumDod	[COVID19 ID29 V1] Hospitalizations with pneumonia, age>=18		[COVID19 ID27 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services or resulting in death in 30d	Lasso Logis Regression		0	30	0.642	0.322	37499	8062	21.499
Analysis_2	optumDod	optumDod	[COVID19 ID29 V1] Hospitalizations with pneumonia, age>=18		[COVID19 ID28 v1] persons who die	.asso Logis Regression		0	30	0.72077	0.1743	37500	2783	7.42133
Analysis_3	optumDod	optumDod	[COVID19 ID29 V1] Hospitalizations with pneumonia, age>=18		[COVID19 ID27 V1] Hospitalizations with pneumonia or ARDS or sepsis or AKI requiring intensive services or resulting in death in 30d	Lasso Logis Regression		0	30	0.538	0.236	37499	8062	21.499
Analysis_4	optumDod	optumDod	[COVID19 ID29 V1] Hospitalizations with pneumonia, age>=18		[COVID19 ID28 v1] persons who die	.asso Logis Regression		0	30	0.6305	0.1106	37499	2782	7.4189

Discussion and next steps

- Developing more parsimonious models
 - easier to use and understand in practice

External validation in COVID-19 data

In the future: also train models in COVID-19 data

Population-level Estimation #1: Hydroxychloroquine

Dani Prieto-Alhambra University of Oxford

BACKGROUND What have we achieved?

TWO RQs

1. What is the safety profile of hydroxychloroquine?

2. What is its potential anti-viral efficacy?

METHODS

DESIGN

- 1. Comparative cohort HCQ (t) vs SSZ (o) in RA patients
- 2. SCCS (regardless of indication)

PARTICIPANTS

- 1. RA diagnosis + new use of HCQ or SSZ
- 2. HCQ use (on/off) + outcome of interest ("case")

METHODS (2)

OUTCOMES

- 1. Serious adverse events, including: arrhythmia, cv disease, vte, liver failure, kidney failure, GI bleeds, mortality
- 2. Flu/viral infections, hospitalized pneumonia (not in SCCS)

ANALYSES

- 1. PS stratification + negative control outcome calibration
 - On treatment and ITT (up to 5y)
- 2. Age and season-adjusted SCCS

RESULTS (VTE) Power

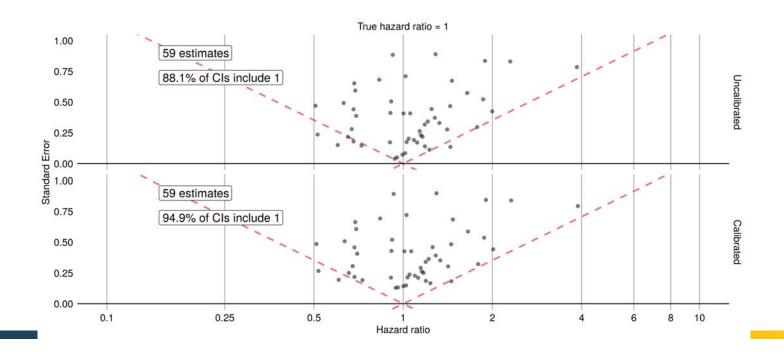
DATA SOURCE	N HCQ	N SSZ	T events HCQ	C events SSZ
CCAE	66,162	23,319	641	159
CPRD	9,134	11,401	131	176
IQVIA-DE	3,898	5,052	34	47
OPTUM	51,288	17,464	946	209
TOTAL	130,482	57,236	1,752	591

2.0-Density 1.0-0.5-0.0 0.25 0.75 0.50 1.00 0.00 Preference score After propensity score adjustment Before propensity score adjustment

RESULTS (VTE)

Diagnostics (CCAE)

- ✓ PS overlap
- ✓ Covariate balance
- ✓ Negative control outcomes



RESULTS (3)

Risk estimates

OHDSI COVID-19 Studyathon: Hydroxychloroquine population-level effect estimation

About Explore results

Target

[OHDSI Cov19] New users of Hydroxychloroquine with prior rheumatoid arthritis

Comparator

[OHDSI Cov19] New users of sulfasazine with prior rheumatoid arthritis

Outcome

[LEGEND HTN] Venous thromboembolic (pulmonary embolism and deep vein thrombosis) events

Show 15 \$ entries

Showing 1 to 8 of 8 entries

Analysis	Data source	HR	LB 🛊	UB	P -	Cal.HR	Cal.LB	Cal.UB
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	CCAE	0.99	0.82	1.20	0.92	1.00	0.74	1.35
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	CPRD	1.06	0.81	1.38	0.66	1.01	0.52	1.98
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	IQVIA_GERMANY	0.98	0.58	1.63	0.94	0.72	0.42	1.23
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	OptumDOD	1.04	0.89	1.22	0.64	1.06	0.84	1.32
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	CCAE	0.97	0.87	1.07	0.51	0.98	0.88	1.10
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	CPRD	0.99	0.83	1.19	0.94	1.01	0.83	1.23
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	IQVIA_GERMANY	0.86	0.65	1.14	0.30	0.76	0.57	1.02
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	OptumDOD	0.95	0.87	1.04	0.24	0.97	0.88	1.07

Previous

Data source

- CCAE
- ✓ CPRD
- IQVIA_GERMANY
- OptumDOD

RESULTS (3) Risk estimates

Analysis	Data source	HR 🛊	LB 🔷	UB 🏺	P	Cal.HR	Cal.LB	Cal.UB	Cal.P
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	CCAE	0.99	0.82	1.20	0.92	1.00	0.74	1.35	0.88
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	CPRD	1.06	0.81	1.38	0.66	1.01	0.52	1.98	0.83
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	IQVIA_GERMANY	0.98	0.58	1.63	0.94	0.72	0.42	1.23	0.28
No prior outcome in last 30d, 5 PS strata, TAR on-treatment+14d	OptumDOD	1.04	0.89	1.22	0.64	1.06	0.84	1.32	0.69
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	CCAE	0.97	0.87	1.07	0.51	0.98	0.88	1.10	0.77
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	CPRD	0.99	0.83	1.19	0.94	1.01	0.83	1.23	0.73
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	IQVIA_GERMANY	0.86	0.65	1.14	0.30	0.76	0.57	1.02	0.09
No prior outcome in last 30d, 5 PS strata, TAR intent-to-treat 5yr	OptumDOD	0.95	0.87	1.04	0.24	0.97	0.88	1.07	0.56

DISCUSSION

COMPLETED

- ✓ The biggest study to date on the safety of HCQ.
- ✓ Reassuringly, no consistent signals found

WORK IN PROGRESS

- Running across the whole network (where possible)
- SCCS

OUTSTANDING

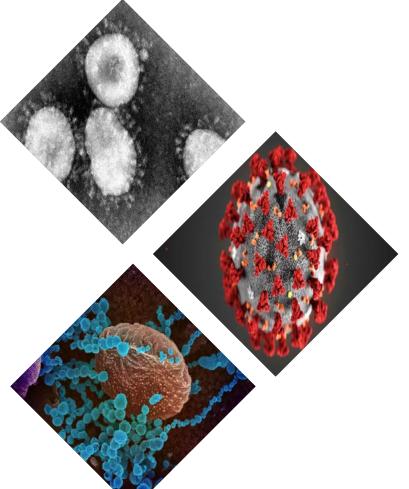
Anti-viral efficacy (new user design in COVID19 infectees)

Population-level Estimation #1: Safety of HIV/HepC protease inhibitors

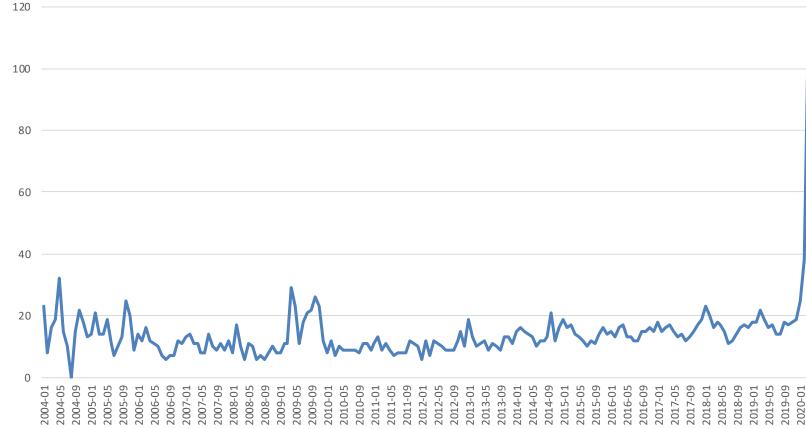
Albert Prats University of Oxford

SARS-CoronaVirus-2

A little piece of enveloped RNA!

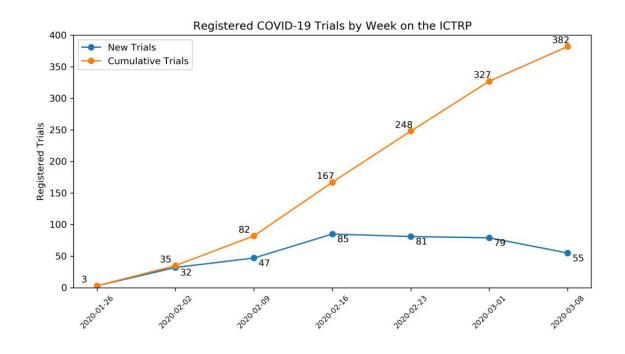


Antiviral searches globally



SARS-CoV-2 Antiviral Trials

COVID Treatments being tested!



Antiviral drugs, non-specific						
Interferons	Activate cytoplasmic enzymes affecting viral messenger RNA translation and protein synthesis; evidence of minor efficacy in MERS-CoV in combination with ribavirin	4				
	Antiviral drugs, antiretrovirals					
ASC09	HIV protease inhibitor; to be used in combination with ritonavir	4				
Azvudine	Azidocytidine nucleoside analogue; HIV reverse transcriptase inhibitor	4				
Danoprevir	Hepatitis C virus NS3 protease inhibitor; to be used in combination with ritonavir	1				
Darunavir	HIV protease inhibitor; used in combination with cobicistat, a CYP3A inhibitor	2				
Lopinavir + ritonavir	Both HIV reverse transcriptase inhibitors; ritonavir is mainly used to enhance the action of other drugs by inhibition of CYP3A4; in vitro and possible clinical efficacy in SARS-CoV	2				
Remdesivir	Nucleotide analogue; inhibitor of RNA-dependent RNA polymerase; used to treat Ebola and Marburg viruses; effective in vitro against SARS-CoV-1 and MERS and blocks infection with 2019-nCoV in vitro	2				

Antivirals Background

HIV antivirals

Hepatitis C antivirals

SARS

? COVID

in-vitro

X SARS

? COVID

Safety
Does it harm
patients?

Gastrointestinal events

Liver Injury

Pancreatitis

etc ...

Arrythmia

Liver Injury

Hematologic

etc ...

HIV Antivirals Estimation

Ritonavir/lopinavir

All HIV protease inhibitors

VS

NNRTIs

Integrase inhibitors

SCCS

Cohort study

of HIV treatment naïve patients

(PS stratification)

HIV Antivirals Estimation

Ritonavir/lopinavir

All HIV protease inhibitors

VS

Hydroxychloroquine

Cohort study

of SARS-CoV-2 Patients

(PS stratification)

Hospital treated

pneumonia

Poor outcomes

Hep C Antivirals Estimation

Hepatitis C protease inhibitors

Peginterferon alfa-2b

Ribavirin

SCCS

Cohort study

Pairwise Comparisons

(PS stratification)

Hep C Antivirals Estimation

Hepatitis C protease inhibitors

Peginterferon alfa-2b

Ribavirin

Cohort study pairwise comparisons

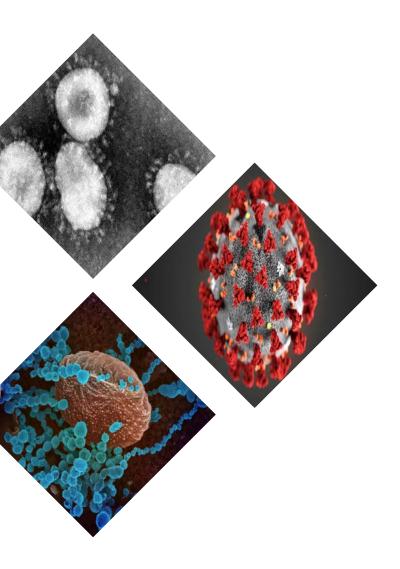
of SARS-CoV-2 Patients
(PS stratification)

Hospital treated pneumonia

Poor pneumonia outcomes

Hydroxychloroquine

Progress



Protocol

Safety Analyses

Effectiveness Analyses

Paper writing

Done!

SCCS Cohorts

Cohorts

Background and methods

Population-level Estimation #3:
Association of angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARB) on COVID incidence and complications

Daniel Morales
University of Dundee

Background

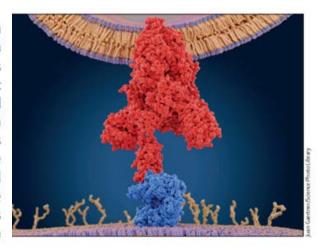
Authors	COVID Patients	Location	Key Content
Guan et al	1099	China	24% HTN in severe disease (vs 13%)
Zhou	191	China	HTN Univariate OR 3.1 (1.6-6.0) for death
Wang et al	138	China	HTN admissions 31%, HTN ICU 58%
Wu et al	201	China	HTN admissions 19%, HTN ARDS 27%

- People with hypertension (HTN) have worse COVID-19 outcomes
- Speculation that ACE/ARBs taken for HTN may be detrimental
 - Coronaviruses interact with RAS ACE-2 receptor, allowing them to enter the cell
 - ACE & ARBs upregulate ACE-2 receptors (limited data)
 - RAS ACE-2 expressed in lung, kidney, heart, GI tract
- Speculation that ARBs may be protective
 - Prevent the angiotensin I receptor from being stimulated
 - Regulate ACE-2 and reduce angiotensin production by ACE and increase production of the vasodilator angiotensin(1-7)

Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?

The most distinctive comorbidities of 32 non-survivors from a group of 52 intensive care unit patients with novel coronavirus disease

inhibitors and ARBs, which results in an upregulation of ACE2.5 ACE2 can also be increased by thiazolidinediones and ibuprofen. These data suggest that ACE2 expression is increased in diabetes and treatment with ACE inhibitors and ARBs increases ACE2 expression. Consequently, the increased expression of ACE2 would facilitate infection with COVID-19. We therefore hypothesise that diabetes and hypertension treatment with



Fang et. Al. Lancet Resp Medicine 11 March 2020

EMA advises continued use of medicines for hypertension, heart or kidney disease during COVID-19 pandemic <share

Press release 27/03/2020

EMA is aware of recent media reports and publications to which question whether some medicines, for instance angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs, or sartan medicines), could worsen coronavirus disease (COVID-19). ACE inhibitors and ARBs are most commonly used for treating patients with high blood pressure, heart failure or kidney disease.

https://www.ema.europa.eu/en/news/ema-advises-continued-use-medicines-hypertension-heart-kidney-disease-during-covid-19-pandemic

Clinical Hypotheses

1. Prevalent ACE or ARB use is associated with a difference in risk of COVID-19 infection relative to an active comparator in hypertensive patients

2. Prevalent ACE or ARB use in COVID-19+ patients is associated with a difference in risk of intensive outcomes relative to an active comparator in hypertensive patients

Protocol for Hypothesis 1

Covariates (-1 -365 days)

Exposure (-1 to 60 days)

Inclusion:

- ACEi drug era that overlaps with index date [ACEi Exposure within 60 days prior*
- And history of hypertension any time prior to index date
- And no exposure to Other antihypertensive within 180 days prior

1 year observation in database

First event

Incident COVID-19 diagnosis

End of follow-up:

- End Exposure
- Death
- End of observation period

Follow-up

Cohort Entry

2019-12-01

Protocol for Hypothesis 2

Covariates (-1 -365 days)

Exposure (-1 to 60 days)

Inclusion:

- ACEi drug era that overlaps with index date [ACEi Exposure within 60 days prior*
- And history of hypertension any time prior to index date
- And no exposure to Other antihypertensive within 180 days prior

1 year observation in database

Outcome

- ICU, endotracheal intubation, artificial ventilation, extracorporeal membrane oxygenation, mortality
- Composite event of all previous outcomes

End of follow-up:

- 30 days
- End Exposure
- Death
- End of observation period

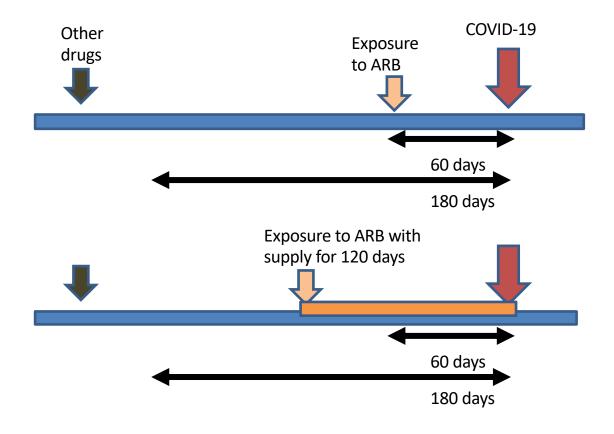
Follow-up

Cohort Entry

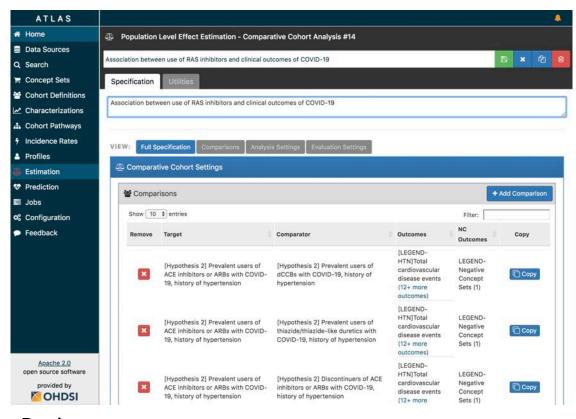
Incident COVID-19 diagnosis

Drug Exposure Specification

Prevalent users of ARBs, with COVID-19, history of hypertension



Specification



Design:

- Logistic regression outcome (30/60/90 days) (cohort 2)
- PS matched / stratified (including age, gender, month)
- Potential for large-scale PS with larger cohorts

Comparisons:

- ACE vs CCB
 ACE vs ARB
- ACE vs THZ
 RAS vs CCB
- ARB vs CCB RAS vs THZ
- ARB vs THZ
- RAS vs Discontinued RAS

Outcomes:

- ICU Care
- Ventilation
- ECMO
- All-cause mortality
- MI, HF, Stroke, CV death
- AKI
- LEGEND negative controls

Results

- HIRA: study executes and preliminary results (coming in next presentation)
- Columbia University Medical Center/NYP
 - Successfully ran the main cohort of HTN, recent ACE, no other anti-HTN drugs, sufficient lookback => about 20 patients
 - Analysis using SQL showed we can increase patient numbers using less recent ACE (note we have 30d prescriptions with 5 refills = 180d)
 - Do not have hospital disposition yet, but have inferred ICU, for example, via medications given
 - (Do have a subpopulation on hydroxychloroquine)

Acknowledgments

Key participants:

- Kees van Bochove
- Mitchell Conover
- George Hripcsak
- Christophe Lambert
- Michael Matheny
- Daniel Morales
- Fredrik Nyberg
- Nicole Pratt
- Daniel Prieto Alhambra
- Marc Suchard
- Cynthia Sung
- Seng Chan You

Apologies if your name is not here; let Marc know – he haphazardly compiled this list

Partial funding provided through NIH U19 AI135995 and R01 LM006910

#OpenData4COVID

Seng Chan You, Ajou University Yeunsook Rho, HIRA

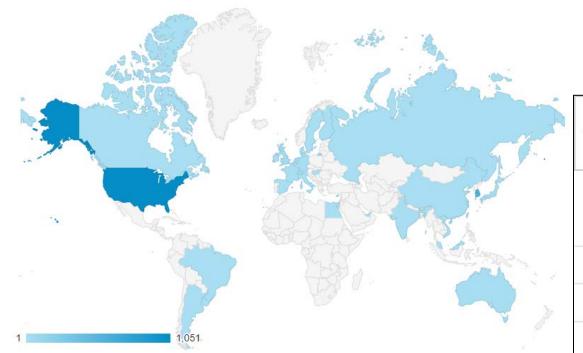
Summary of COVID-19 Study w/ HIRA Data

March 29/30, 2020

SUMMARY OF "OPENDATA4COVID19" PROJECT W/ HIRA DATA

WE'VE GOT 1,772 VISITORS FROM 32 COUNTRIES FOR 3 DAYS

- More than 160 individual researchers have registered from 15 countries
- Nearly, 30 research projects are submitted for analysis
 (disease characterization, relationship b/w baseline condition and death, relationship baseline drug intake and death, patient-level prediction using machine learning program, etc.)
- Ongoing project



		획득						
국가		사용자	신규 방문자	세션				
		1,772 전체 대비 비율 (%): 100.00% (1,772)	1,772 전체 대비 비율 (%): 100.00% (1,772)	1,988 전체 대비 비율 (%): 100.00% (1,988)				
1.	United States	1,051 (59.31%)	1,051 (59.31%)	1,083 (54.48%)				
2.	South Korea	575 (32.45%)	575 (32.45%)	734 (36.92%)				
3.	United Kingdom	24 (1.35%)	24 (1.35%)	27 (1.36%)				

SUMMARY OF "OPENDATA4COVID19" PROJECT W/ HIRA DATA

FUTURE CONSIDERATIONS

- Wonderful experience
- Data update issues
- Further opportunities

CHARACTERIZATION OF PATIENTS WITH COVID-19

Covariate Name	HIRA
Covariate Name	Proportion
Age group	
15-19	1.9%
20-24	10.9%
25-29	13.9%
30-34	10.5%
35-39	11.6%
40-44	9.4%
45-49	7.2%
50-54	5.7%
55-59	6.5%
60-64	5.7%
65-69	3,9%
70-74	3.3%
75-79	4.1%
80-84	3.2%
85-89	1.8%
90-94	0.5%
Gender: female	51.9%
Race	
race = Korean	100.0%

			HIRA						
Col	hort		Entries S	ubjects					
co	VID ID1 v1		4,123	4,123					
Medical history: Gener	ral		Medication use						
Chronic liver disease	9	5.5%	Agents acting on the renin-angiotensin system	13.8%					
Chronic obstructive	lung disease	3.8%	Antibacterials for systemic use	74.4%					
Crohn's disease		<0.2%	Antidepressants	12.5%					
Dementia		4.5%	Antiepileptics	11.8%					
Depressive disorder		11.7%	Antiinflammatory and antirheumatic products	63.2%					
Diabetes mellitus		16.0%	Antineoplastic agents	3,2%					
Gastroesophageal re	eflux disease	29.8%	Antipsoriatics	0.8%					
Gastrointestinal her	morrhage	2.7%	Antithrombotic agents	36.7%					
Human immunodef	iciency virus infection	<0.2%	Beta blocking agents	10.6%					
Hyperlipidemia		29.9%	Calcium channel blockers	14.0%					
Hypertensive disord	ler	21.7%	Diuretics	10.4%					
Lesion of liver		4.7%	Drugs for acid related disorders	66.5%					
Obesity		0.3%	Drugs for obstructive airway diseases	24.9%					
Osteoarthritis		13.6%	Drugs used in diabetes	9.7%					
Pneumonia		13.8%	Immunosuppressants	2.9%					
Psoriasis		1.4%	Lipid modifying agents	16.8%					
Renal impairment		3.9%	Opioids	65.8%					
Rheumatoid arthriti	s	3.3%	Psycholeptics	29.7%					
Schizophrenia		1.4%	Psychostimulants, agents used for adhd and nootropics	8.2%					

Led by Edward Burn (Oxford Univesity, UK)

COMPARISON OF CLINICAL OUTCOME BETWEEN ANTI-HYPERTENSIVE MEDICATIONS

Showing 1 to 7 of 7 entries

Evidence Explorer

Target

Prevalent ARB user as monotherapy for HTN within 30 days before COVID-19

▼ diagnosis

Comparator

Prevalent dCCB user as monotherapy for HTN within 30 days before COVID-19

diagnosis

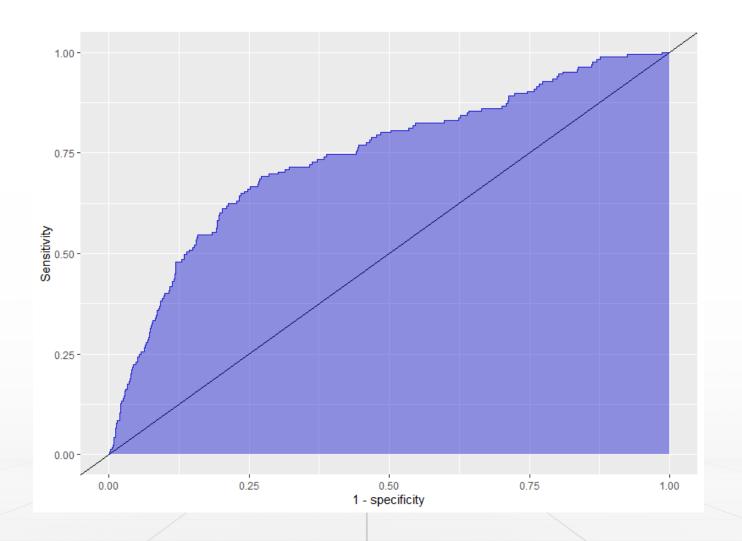
Outcome

All-cause mortality

Show 15 ▼ entries					
Analysis	Data source	♦ HR ♦	LB 🏺	UB ∳	P
Without PS adjustment-Logistic (age/gender/year/month)	HIRA	1.21	0.14	10.32	0.86
Without PS adjustment-Cox (age/gender/year/month)	HIRA	1.21	0.15	10.07	0.86
Minimum PS stratification -Cox	HIRA	1.21	0.15	10.07	0.86
Minimum PS stratification -Logistic	HIRA	1.21	0.14	10.05	0.86
Full PS stratification -Cox	HIRA	1.21	0.15	10.07	0.86
Full PS stratification -Logistic	HIRA	1.21	0.14	10.05	0.86
Unadjusted with all demographic covariates (+14 / logistic)	HIRA	2.42	0.23	52.80	0.52

Led by Seng Chan You (Ajou University, Korea)

PREDICTION OF HOSPITALIZATION AMONG PATIENTS SYMPTOMS RELATED WITH VIRAL INFECTION OR DIAGNOSIS OF COVID-19



Led by Peter Rijnbeek (Erasmus University, Netherland)

Thank you!

The journey ahead

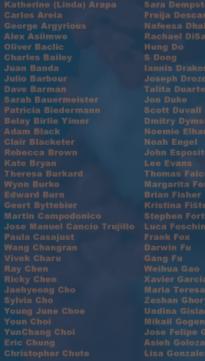
Patrick Ryan

Janssen Research and Development

Columbia University

OHDSI **OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS**

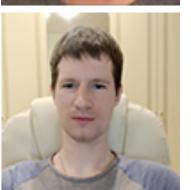
COVID-19 Study-A-Thon ohdsi.org/covid-19-updates

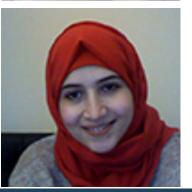


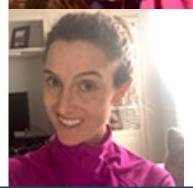
#JoinTheJourney

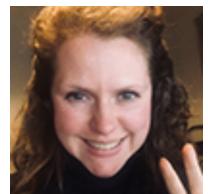
🕥 /OHDSI

Thank you literature review team!

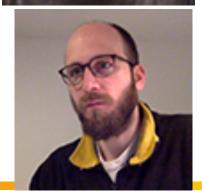




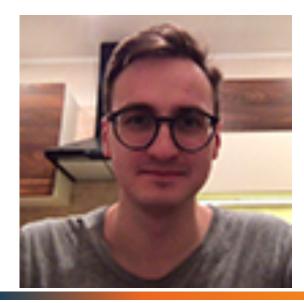


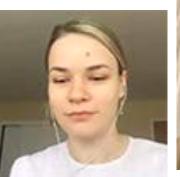




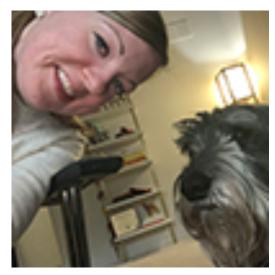


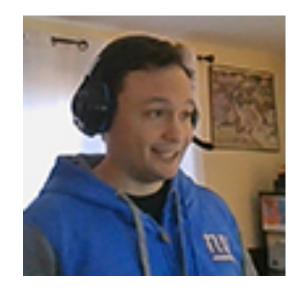
Thank you phenotype team!

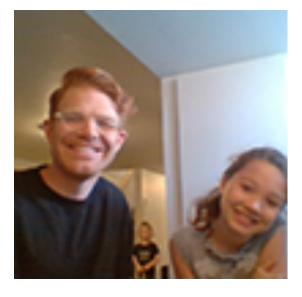




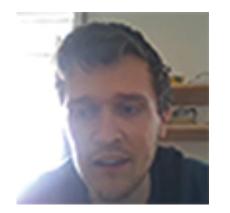
Thank you network execution team!

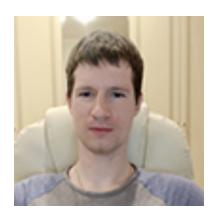


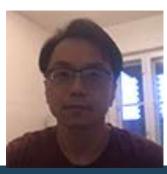


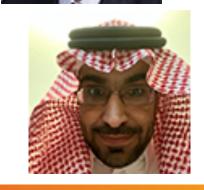


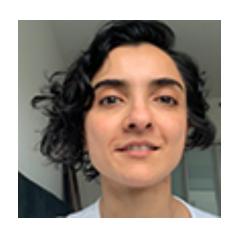
Thank you characterization team!



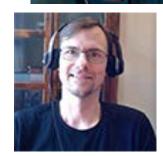


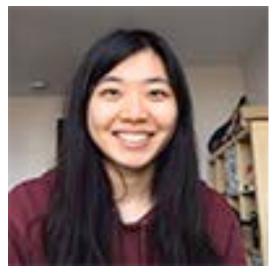


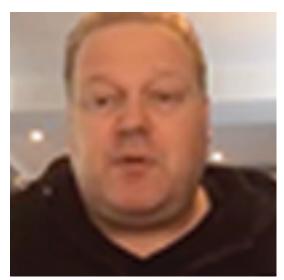




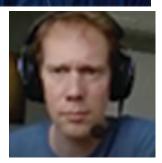
Thank you prediction team!

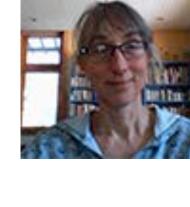


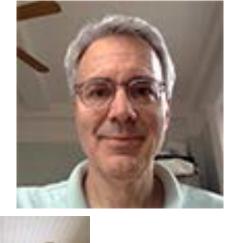




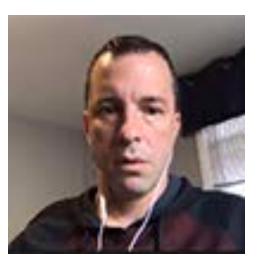
Thank you estimation teams!







Thank you infrastructure support teams!



The journey ahead

- Study-a-thon may be finishing today, but this is only the START of our journey today
 - Thanks to Erasmus MC, The MSTeams collaboration platform will continue to be available to support OHDSI collaborations
 - ATLAS-COVID19.ohdsi.org will remain available for collaborative development of analyses
 - Each study team needs to determine their own strategy for dissemination
 - Data.ohdsi.org to make results publicly available as soon as possible
 - Publications to be drafted by the community will be open access

Many more important questions need answering...

Name	Question
Alan Goldhammer	Correlation between universal BCG vaccination policy and reduced
	morbidity and mortality for COVID-19
Jeff Hammerbacher	Blood groups of stratified subpopulations of interest
Geert Byttebier	Potential impact of statin use
Rimma Belenkaya	Specific patterns in the lungs as markers of the disease as it develops
	over the course of a week and a half
Michael_Shamberger	Does evidence support that taking anti inflammatories can cause
	adverse outcome?
Sajan Khosla	Length of Stay or 30 Day mortality in patients hospitalized with viral
	pneumonia to understand patterns of antiviral use and potential
	differences in endpoints?
Chiara Attanasio	Clinical use cases on cancer patients in relation with COVID-19
Annalisa Trama	Treatment choices for cancer patients planned for surgery and those
	on cytotoxic chemotherapy or immunotherapy?
Jenny Lane	Compare epidemiological characteristics of the Chinese infections to
	other countries
Evan Minty	Risk of cardiac injuries (e.g. myocarditis) in COVID-19
Vojtech_Huser	Chronic medication stockpiling (preparing for pandemic) by patients
Jason 10033	The role of steroids in COVID-19 ARDS and ventilation management for
	patients
Sara Dempster	COVID-19 mortality in different countries
Ru Cheng	Studying pregnancy and lactation: rate of infection in pregnancy,
	complication rates for pregnant infected women, transmission to
	newborn (especially c-section vs vaginal) and through milk, premature
	birth rates, fetal loss
Michael Kallfelz	Role of coinfection with Varicella Zoster or Epstein Barr

Our ask of all of you:

- Keep asking good questions....
 - post your thoughts on the OHDSI forums
-and continue to collaborate with each other to help:
 - translate those questions into analysis designs...
 - implement those designs into study packages....
 - execute those packages to generate results....
 - share results across the community to synthesis reliable real-world evidence

We like to thank the large group of community members that worked extremely hard to make these four days possible.

We like to thank the Data Partners that have participated in this effort, and those who will join the journey shortly.

We like to thank you for your active participation in these four days.

Questions & Answers

Start of a Journey

- This disease isn't stopping yet, and neither will we
- We will remain committed to generating reliable real-world evidence to meet the needs of public health
- Thank you for continuing on the journey with us

