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 There are 3 main pillars at the root of 
successful drug discovery programs. 

 Informatics, Data Science and Machine 
Learning (“AI” according to the hype 
cycle) are successfully used, as follows: 

 Diseases: Significant improvements in 
EMR processing, nosology, ontology, and 
EMR-based ML for Dx & mechanisms

 Targets: Knowledge graph methods, 
coupled with ML, for biological discovery, 
target selection & validation

 Drugs: From virtual screening to vaccine 
design, therapeutic modalities benefit from 
predictive methods across the board

 IDG is developing methods applicable to 
each of these 3 areas

2/5/20 revision
Diseases image credit:  Julie McMurry, Melissa Haendel (OHSU).
All other images credit: Nature Reviews Drug Discovery 



2/4/20 revisionR. Santos et al., Nature Rev. Drug Discov. 2017, 16:19-34 link

We curated 667 human genome-derived 
proteins and 226 pathogen-derived 
biomolecules through which 1,578 US FDA-
approved drugs act. 

This set included 1004 orally formulated 
drugs as well as 530 injectable drugs 
(approved through June 2016).

Data captured in DrugCentral (link)

https://www.nature.com/articles/nrd.2016.230
http://drugcentral.org/
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 Most protein classification schemes are 
based on structural and functional criteria. 

 For therapeutic development, it is useful to 
understand how much and what types of 
data are available for a given protein, 
thereby highlighting well-studied and 
understudied targets. 

 Tclin: Proteins annotated as drug targets

 Tchem: Proteins for which potent small 
molecules are known

 Tbio: Proteins for which biology is better 
understood

 Tdark: These proteins lack antibodies, 
publications or Gene RIFs

T. Oprea et al., Nature Rev. Drug Discov. 2018, 17:317-332  link 2/10/20 revision

2020 Update: Tdark 31.2%; Tbio 57.7%; Tchem 8%; Tclin 3.1%

https://www.nature.com/articles/nrd.2018.14


4/25/19 revisionT. Oprea, Mammalian Genome, 2019, 30:192-200 https://bit.ly/2NUK0BK

Further information
Email: idg.rdoc@gmail.com
Follow: @DruggableGenome
URLs:
https://druggablegenome.net/
https://commonfund.nih.gov/idg/

IDG Knowledge User-Interface
Email: pharos@mail.nih.gov
Follow: @IDG_Pharos
URL: https://pharos.nih.gov/

IDG databases are 
interfaced in UniProt
https://www.uniprot.org/news
/2019/09/18/release

GTEx, LINCS, IMPC: Data from 3 CommonFund programs is already in Pharos

https://bit.ly/2NUK0BK
https://druggablegenome.net/
https://commonfund.nih.gov/idg/
https://pharos.nih.gov/


2/4/20 revisionHaendel M, et al. Nature Rev. Drug Discov. 2020 19:77-78 link

We revised the number of RDs from ~7,000 to 
10,393 using Disease Ontology, OrphaNet, 
GARD, NCIT, OMIM and the Monarch 
Initiative MONDO system

We also pointed out the lack of a uniform 
definition for rare diseases, and called for 
coordinated efforts to precisely define them

We surveyed therapeutic modalities 
available to translate advances in the 
scientific understanding of rare diseases into 
therapies, and discussed overarching issues 
in drug development for rare diseases.

https://www.nature.com/articles/d41573-019-00180-y
http://disease-ontology.org/
https://www.orpha.net/
https://ncats.nih.gov/gard
https://ncit.nci.nih.gov/ncitbrowser/
https://omim.org/
https://monarchinitiative.org/
https://www.ebi.ac.uk/ols/ontologies/mondo


 6077 human proteins are associated 
with at least one Rare Disease.  

 Sources: Disease Ontology (RD-slim), 
eRAM and OrphaNet

 ~50% agreement (gene level)

Contrast: Tclin at 3% & Tchem at 7% 
overall vs. RD subset: 6.94% Tclin and 
14.1% for Tchem.  

 20% of the RD proteome is Tclin & 
Tchem. This means hope for cures.

 Potentially significant opportunities for 
target & drug repurposing.

2/4/20 revisionTambuyzer E, et al. Nature Rev. Drug Discov. 2020 19:93-111 link

http://disease-ontology.org/
http://www.unimd.org/eram/
https://www.orpha.net/
https://www.nature.com/articles/s41573-019-0049-9


~31% of the proteins remain understudied (Tdark, ignorome) 
that number is steadily decreasing

~11.1% of the Proteome (Tclin & Tchem) are currently targeted by 
small molecule probes and drugs – that number is slowly increasing

With help from rare disease patient advocacy groups, rare disease 
research is likely to witness a significant increase in translation

2/5/20 revision



• To date, no drug is expressly approved for SARS-CoV-2 infections 
except the emergency authorization for (hydroxyl)chloroquine. 
• Until such time that effective vaccines and/or therapeutics are 
approved, our “best guess” is “drug repositioning” (aka drug 
repurposing) followed by drug discovery
• As of 4/13/20, there were 469 clinical trials for “COVID-19”.
• Of these 469 clinical trials, 222 are for a “drug” intervention.

https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

https://en.wikipedia.org/wiki/Drug_repositioning
https://clinicaltrials.gov/ct2/results?cond=COVID-19


• Manual curation (by intervention), e.g., identify experimental 
(novel) drug vs. already approved drug; reconcile spelling errorls 
(e.g., hidroxicloroquin; abidol)
• Five general categories:  Placebo (63), Antiviral (40), 
Experimental (29), Repurposed  (165), Biologic (50) 
• Twenty-one “specific” categories:  HCQ (63), CQ (8), 
Azithromycin (20), -navir (20), Oseltamivir (4), Favipiravir (3), 
Umifenovir (5), Remdesivir (9), -tinib (8), RAS drugs (13), NSAIDs (4), 
Steroid (13), TMPRSS2 (4), Traditional Chinese (8), Colchicine (4), 
Gases (10), Tocilizumab (14), Anakinra (4), IFN (12), Ig-based (4), 
Supplements (6)

https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

https://clinicaltrials.gov/ct2/results?cond=COVID-19


https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

• COVID-19 only
• Filtered out: 
Observational studies; “not 
repurposed” (e.g., 
experimental); withdrawn; 
“Phase” N/A, or not 
applicable).
• Median: 205 patients

https://clinicaltrials.gov/ct2/results?cond=COVID-19


https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

Biologics; N = 33All repurposed; N = 143 Antiviral; N = 22

https://clinicaltrials.gov/ct2/results?cond=COVID-19


https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

HCQ; N = 61 Azithromycin; N = 19-navir; N = 16 Tocilizumab; N = 12

https://clinicaltrials.gov/ct2/results?cond=COVID-19


https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

• COVID-19 only
• Filtered out: 
Observational studies; “not 
repurposed” (e.g., 
experimental); withdrawn; 
“Phase” N/A, or not 
applicable).
• Experimental drugs 
shown.
• Median: 216 patients

https://clinicaltrials.gov/ct2/results?cond=COVID-19


https://clinicaltrials.gov/ct2/results?cond=COVID-19 4/14/20 revision

Remdesivir; N = 7 Biologics; N = 7Experimental; N = 23

https://clinicaltrials.gov/ct2/results?cond=COVID-19


The majority study HCQ (61 out of 143)

2/5/20 revision



 Analysis based on the archived OrangeBook (2016 – 2019) and the latest Orange Book Data 
Files (OBDFs;  EOBZIP_2019_10.zip content current as of: 10/18/2019) combined with the lists 
of Newly Added Patents and Delisted Patents
*  Number of Patents; **   Number of RX drugs as single ingredient; ^ 1833 total, only 680 discontinued
 Drug Product Forms = # of PIDs (all drug forms, routes, strengths etc)
 Drug Products = # of Application Numbers
 Type “N” Drug Products  =  # of Application Numbers of type “N”. i.e., NDA (new drug application). The rest of 

the Drug products are “ANDA”, i.e., abbreviated new drug applications.
 Drugs = # of (active) ingredients, i.e., actual drug (includes combinations)
 RX Drugs = # of drugs on prescription. The rest of the drugs are OTCs.

 Up to 1772 active ingredients may be eligible for “off patent” repurposing

12/04/19 revisionS. Avram & T. Oprea, unpublished.

Drug Product 
Forms

(Patents)* Drug Products
Type N Drug 

Products
Drugs 

(Patents)* RX Drugs **
On-Patent 12236 (4585) 1057 1057 785 (738) 762
Off- Patent 22131 11874 1906 1454 1404
Discontinued 16963 11388 2801 680^ n.a.
All Drugs 51330 22362 5042 2557 1828 (1258)

https://www.fda.gov/media/76860/download


 Indications from DrugCentral were mapped 
onto proteins with bioactivity for Drugs in 
DrugCentral: 881 proteins x 1091 unique 
Indications (over 873k pairs). 
 Pearson's chi-squared statistics and Fisher test 

p-values were applied with the False Discovery 
Rate correction to p-values (P.adj).
 At χ2 > 1000 and P.adj ≤ 10-9, we found up to 

60258 novel protein-indication pairs.

12/04/19 revisionO. Ursu, C. Bologa & T. Oprea, unpublished.

X11 – GO terms count annotated for Disease and Target
X12 – GO terms count annotated for Target and not Disease
X21 – GO terms count annotated for Disease and not Target
X22 – GO terms count annotated for not Target and not Disease

Note: this set has not been yet been filtered for off-patent drugs



9/25/17 revisionS.J. Nelson et al, J Am Med Info Assn, 2017, 24:1169-1172. doi: 10.1093/jamia/ocx064

 Left:  Keeping track of multiple identifiers (to navigate across many resources) is a full-time job

 Right:  Automated drug repositioning systems are likely to fail because, as of today, no system is 
capable of capturing therapeutic intent.  If it cannot be captured, it cannot be modeled.



Implement exact annotations for drug indications and off label uses.
Mandate rigorous validation for computational models. 
Support community-based therapy-area specific research.

New Target Activity:
• In vitro animal
• In vivo animal
• Human studies
• Disease relevance
• Efficacy/Safety

Algorithmic Evaluation of Drug Repositioning 
Opportunities

Physico-Chemical 
Characteristics

Target & Ligand Based 
Virtual Screening

Disease-Target-Drug 
Associations

Chemical fingerprints,
chemotypes, derivative 
chemical descriptors

Shape & electrostatics 
derived similarity or 
complementarity

Disease & Drug target GO 
Annotations from STRING, 
GO, KEGG, other sources

Solubility, Permeability, 
Distribution, relevant PK 
properties

3D models for intended 
targets, followed by 
molecular docking

Contigency Tables, e.g., 
Fisher test for associations 
augmented via AI/ML

Metabolism, efflux 
transporters, toxicity    
end-points

Multiple tautomers / 
protomers / conformers / 
binding modes per protein

Prioritize novel disease-
target associations for off-
patent drugs

Iteratively Compare, Integrate, Cross-check, Prioritize, Evaluate

Biomolecular screen

Virtual screen

Biology-Chemistry-
Informatics-Clinical Team 

Interactive Evaluation

Confirmation of 
clinical effects

Phase II / Phase III
clinical trials

12/04/19 revision

Turn DR into an international 
effort, preferably focused on 
diseases that lack cure



04/14/20 revision

https://pubs.acs.org/doi/pdf/10.1021/acscentsci.0c00272 https://jamanetwork.com/journals/jama/fullarticle/2764727

https://pubs.acs.org/doi/pdf/10.1021/acscentsci.0c00272
https://jamanetwork.com/journals/jama/fullarticle/2764727


04/14/20 revision



• Krogan et al., preprint (cleaned-up by Lars Jensen, PhD)

• P-HIPSTER predictions

• Metapath/XGBoost AIML predictions

• STRING analysis (StringApp, Cytoscape)

04/02/20 revision

https://doi.org/10.1101/2020.03.22.002386
http://phipster.org/
http://apps.cytoscape.org/apps/stringapp


 IDG KMC2 seeks knowledge gaps 
across the five branches of the 
“knowledge tree”:  

Genotype; Phenotype; Interactions 
& Pathways; Structure & Function; 
and Expression, respectively. 

We can use biological systems 
network modeling to infer novel 
relationships based on available 
evidence, and infer new “function” 
and “role in disease” data based 
on other layers of evidence

 Primary focus on Tdark & Tbio

O. Ursu, T Oprea et al., IDG2 KMC 2/1/18 revision



 a meta-path is a path consisting of 
a sequence of relations defined 
between different object types 
(i.e., structural paths at the meta 
level)

Our metapaths encode type-
specific network topology 
between the source node (e.g., 
Protein) and the destination node 
(e.g., Disease). 

 This approach enables the trans-
formation of assertions/evidence 
chains of heterogeneous 
biological data types into a ML 
ready format. 

G. Fu et al., BMC Bioinformatics 2016, 17:160 is an early example for drug discovery

Similar assertions or evidence form metapaths (white). 
Instances of metapath (paths) are used to determine the strength of the 
evidence linking a gene to disease/phenotype/function.

10/18/18 revision

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1005-x


All datasets are merged, via R 
scripts, into a PostgreSQL. 
Python under development.

Graph embedding transforms 
evidence paths into vectors, 
converting data into matrices.

Input genes are positive 
labels. OMIM (not input) are 
negative labels (we prefer true 
negatives where possible).

XGBoost runs 100 models. The 
“median model” (AUC, F1) is 
then selected for analysis and 
prediction to avoid overfitting.

10/15/19 revisionJ.J. Yang, P. Kumar, D. Byrd et al., IDG2 KMC



• P-HIPSTER: ACE2 (experimental) plus 25 other predicted proteins

• CD147 (experimental)

• 71 proteins (mass proteomic pull-down, Krogan et al paper)

• Total 98 positives

• Another 120 negatives from the Krogan paper

• 6 models built, based on variations of this input

04/02/20 revision



• 986 proteins were predicted with “high 

confidence” by the 6 models

• 136 are predicted by 3 or more models.

• 99 of the 3x predicted proteins were 

Tbio/Tchem/Tclin

• These were used in combination with the input 

proteins plus the viral proteins from Krogan et al to 

examine the network models.

04/02/20 revision



• Data consolidation
• Building the core network (analysis/network/COVID_19_Merged_Virus_Human_PPI_Network.cys)

• Virus-protein PPIs extracted
• Preprint: as is
• P-HIPSTER: as is
• Tudor’s AIML: assumed that predictions were made for the spike protein only (?)

• PPIs merged, deduplicated, annotated by data source
• Direction of PPIs: virus -> human (for consistency)

• Node attributes added:
• NodeType: virus/human
• Tdl: TCRD v64 Yellow-colored proteins, virus proteins were assigned to value of “virus”, rest to “unk” 

(meaning that I did not have the information, did not check Pharos)

• Assembling the extended network (analysis/network/STRING_Extended_COVID_19_PPI_Network.cys)

• Human nodes of core network used as query for STRINGApp in Cytoscape

• STRINGApp settings: min. PPI confidence: 0.90, max interactors: 100

• Network edges and all attributes were exported

• Network nodes and edges merged with that of “core network

04/02/20 revision



• Custom Cytoscape style created (analysis/network/covid19_styles.xml)

• Nodes:
• NodeType

• TDL categories:

• Edges

P-HIPSTER

Preprint

STRINGApp

Tudor’s AIML

04/09/20 revision



SARS-CoV-2 proteins 
interact with multiple 
Tclin targets (blue).

Less priority given to ATP-
and tubulin- type related 
targets.

Exploration in progress…

04/09/20 revision



• HDAC2
• Interacts with SARS-CoV2 nsp5 and with SARS-CoV2-Spike. 
• HDAC inhibitors: "HDIs have a long history of use in psychiatry and neurology as mood 

stabilizers and anti-epileptics. More recently they are being investigated as possible 
treatments for cancers, parasitic and inflammatory diseases."

• HDACs or HDAC inhibitors can be used to treat viral infections including coronavirus 
infections:

• https://www.ncbi.nlm.nih.gov/pubmed/?term=28780424
• https://www.ncbi.nlm.nih.gov/pubmed/?term=23807710

04/09/20 revision

https://www.ncbi.nlm.nih.gov/pubmed/?term=28780424
https://www.ncbi.nlm.nih.gov/pubmed/?term=23807710


• From: Willson, Tim [mailto:tim.willson@unc.edu] 
Sent: Thursday, March 26, 2020 4:38 PM
Reference 1 says in its abstract “Surprisingly, the antiviral activity of U18666A was suppressed by the histone 
deacetylase inhibitor (HDACi), Vorinostat”

• Reference 2 says in the abstract “Not surprisingly, viruses have evolved a wide array of mechanisms to subvert 
HDAC functions.”

• I have not read the papers, but sounds like an HDAC inhibitor is likely to promote replication of the virus

• Viruses appear to HDAC activity so they can initiate their own replication. So the 
association is real, it just favors viruses. Tim suggested the reverse effect by blocking 
HATs, histone acetyl transferases.

04/09/20 revision



• Pracinostat, vorinostat and panobinostat
appear to accelerate the virus-induced 
killing process

• Alternatively, these drugs directly kill 
VEROE6 cells.

• This preliminary finding encourages us 
to further pursue the histone deacetylase 
hypothesis

04/09/20 revision



Metformin is remarkably similar to moroxydine. 
From Krogan et al data, metformin targets ~20 proteins. Other 
potential mechanisms of action to be explored (based on the 
summary Table).

PreyGene Drug Test
XPO1 selinexor ++++
IDH2 enasidenib +++
GLA migalastat ++
IMPDH2 mycophenolate mofetil +++
UMPS oteracil ++++
FDPS zoledronic acid ++++
PSMB2 bortezomib ++++
NDUFA10 metformin +++++
NDUFB10 metformin
MT-ND1 metformin
MT-ND3 metformin
MT-ND5 metformin
DNMT1 azacitidine +++++
ITGB1 Natalizumab ++++
SLC29A1 Dipyridamole +++
CRBN lenalidomide +++++

04/09/20 revision



• SmartGraph available at: https://smartgraph.ncats.io/
• Source

• HATs provided by Tudor
• Other proteins from the stringified PPI network.
• Parameters

• distance <= 3
• confidence >= 0.15 

• Directionality
• HATs were used as start or end nodes (“forward”/“reverse” networks, respectively)
• “Bidirectional HATs PPI” by merging forward and end networks.

04/02/20 revision

https://smartgraph.ncats.io/


EP300 Q09472 Tchem
HAT1 O14929 Tbio
KAT2A Q92830 Tbio
KAT2B Q92831 Tchem
KAT5 Q92993 Tchem
KAT6A Q92794 Tbio
KAT6B Q8WYB5 Tbio
KAT7 O95251 Tbio
KAT8 Q9H7Z6 Tchem
NAA60 Q9H7X0 Tbio
RBBP7 Q16576 Tbio
CREBBP Q92793 Tchem
ATF2 P15336 Tbio
TAF1 P21675 Tchem
NAA40 Q86UY6 Tbio
NCOA1 Q15788 Tchem
NCOA3 Q9Y6Q9 Tbio

• One of the HATs, RBBP7, is consistently overexpressed when 
interacting w/ SARS-CoV2.  Two others, HAT1 and NAA40, 
are relatively under-expressed (data from Krogan et al)

• No other HATs are on the list.
• Graph below: “chemicalizing” the HATs network

04/02/20 revision



Merging the “forward” 
and “reverse” 
networks illustrates 
how Tclin end-nodes 
could be used to 
modulate HAT function

Exploration in 
progress…

04/02/20 revision



N-alpha-acetyltransferase 40 specifically 
mediates the acetylation of the N-terminal 
residues of histones H4 and H2A 
(PubMed:21935442, PubMed:25619998). 
• In contrast to other N-alpha-

acetyltransferase, has a very specific 
selectivity for histones H4 and H2A N-
terminus and specifically recognizes the 
'Ser-Gly-Arg-Gly sequence' 
(PubMed:21935442, PubMed:25619998).

• This enzyme is consistently under-
expressed when exposed to SARS-CoV-2, 
suggesting that its inhibition.

4U9V, shown here liganded to acetyl CoA, is very likely to be 
ligandable with an inhibitor.  Starting with similarity to the 
SGRG tetrapeptide could serve as basis for virtual screening.

Note: Cristian Bologa is running virtual screening for NAA40 & HAT1 
(drug repositioning)

04/02/20 revision

https://www.uniprot.org/citations/21935442
https://www.uniprot.org/citations/25619998
https://www.uniprot.org/citations/21935442
https://www.uniprot.org/citations/25619998
https://www.rcsb.org/structure/4U9V


• Rationale: Are there human proteins acting as hubs for virus proteins?
• Derived from merged network

• Preprint PPIs, Tudor’s AIML, P-HIPSTER, STRING, HATs SmartGraph
• All human PPIs removed, but virus-human PPIs retained
• (“SARS-CoV2 unk” artificial node also removed)

• “High-degree” (>=3) human proteins in the resultant bipartite network hypothesized to 
be hubs, thus of potential importance.

• “Virus hubs”: ISG15, UBC, UBB, EZR, NEDD8, UBA52, UBD, MSN, RAD23B
• Network: analysis/network/Bipartite_COVID-19_PPI.cys

• “CytoHubba” plugin utilized for analysis

04/02/20 revision



Virus 
hubs

erlotinib

dasatinib

fasudil

Target Drug Test
EGFR erlotinib ++++
ROCK1 fasudil +++
SRC dasatinib ++++

04/09/20 revision



• Tclin
• There are 169 significant (Fold change above 10) between 23 viral and 56 human proteins.  

Some occur multiple times, and are likely to be crucial in the way the virus subverts 
intracellular machinery. 

• These are currently evaluated for potential repurposing.
• Tchem
• The Spike protein only had one significant (Fold change above 10) Tclin target, so we 

added 8 Tchem proteins for Spike and 6 for E-protein. 
• Looking for drugs hitting these targets as well.

• Note: Giovanni Bocci is virtual screening viral targets for drug repositioning

04/09/20 revision



Start: 3,981 small molecules drugs from 
DrugCentral. Enumerated tautomeric and 
protomeric forms available at pH 7.4 with 
minimum abundance of 25% (total, 6057 
structures). These were docked into the main 
SARS-CoV targets: 
5E6J: SARS Coronavirus Papain-like Protease
6NUR: SARS-CoV nsp12 polymerase

Drug CMax (uM) PDB Template
tegaserod 0.01 5E6J
triamterene 0.33 6NUR
meloxicam 5.41 5E6J|6NUR
ibuprofen 295.71 5E6J|6NUR
naproxen 408.24 5E6J|6NUR
hydrochlorothiazide 0.25 6NUR
baclofen 0.75 5E6J
trimethoprim 4.13 5E6J|6NUR
ethambutol 17.13 5E6J|6NUR
cidofovir 70.20 5E6J|6NUR
ixazomib 0.17 5E6J
safinamide 3.31 5E6J|6NUR
avibactam 55.04 6NUR

Note: BDDCS Class 2 and 3 (matching antivirals) present in screening libraries 
in-house, with half-life of 2 hours or more, and with known CMax, were 
selected and shown in this Table (the last 3 lack BDDCS category).  

04/13/20 revision



Experiments need to inform future experiments

4/14/20 revision





• SmartGraph has a Neo4j backend with a simple yet powerful data 
structure.

• Focused on COVID-19: ‘Holistic network’ as core.
• Needs a more comprehensive PPI data. 
• Needs additional layer of biomedical data:

• Metabolome
• IDG/Pharos: TDLs, tissue expression data, etc.
• OMICs
• Pharmacological action (NCATS - Inxight Drugs, UNM TID -

DrugCentral)

https://smartgraph.ncats.io/

Zahoranszky-Kohalmi et al., J Cheminform 12, 5 (2020)

https://smartgraph.ncats.io/


• A Prestwick library screen (pre-print) suggests metformin (VeroE6 cells, 
SARS-CoV-2 strain BavPat1, 10 μM drug concentration) is inactive.

• Metformin maximum recommended therapeutic dose in man is 2500 
mg/day

• https://www.mayoclinic.org/drugs-supplements/metformin-oral-
route/proper-use/drg-20067074

• MW 165.62 for metformin HCl formulation 
• Average 70 L human body and 1250 mg dose  test metformin at 100 μM

• Screening concentration of approved drugs needs to take into account 
MRTD & Cmax where available 

• Of 845 drugs, 101 drugs >= 20 μM, and 169 drugs <= 0.1 μM. 

https://doi.org/10.1101/2020.04.03.023846
https://www.mayoclinic.org/drugs-supplements/metformin-oral-route/proper-use/drg-20067074
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